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Abstract

Switch like responses appear as common strategies in the regulation of cellular systems. Here we present a method to
characterize bistable regimes in biochemical reaction networks that can be of use to both direct and reverse engineering of
biological switches. In the design of a synthetic biological switch, it is important to study the capability for bistability of the
underlying biochemical network structure. Chemical Reaction Network Theory (CRNT) may help at this level to decide
whether a given network has the capacity for multiple positive equilibria, based on their structural properties. However, in
order to build a working switch, we also need to ensure that the bistability property is robust, by studying the conditions
leading to the existence of two different steady states. In the reverse engineering of biological switches, knowledge
collected about the bistable regimes of the underlying potential model structures can contribute at the model identification
stage to a drastic reduction of the feasible region in the parameter space of search. In this work, we make use and extend
previous results of the CRNT, aiming not only to discriminate whether a biochemical reaction network can exhibit multiple
steady states, but also to determine the regions within the whole space of parameters capable of producing
multistationarity. To that purpose we present and justify a condition on the parameters of biochemical networks for the
appearance of multistationarity, and propose an efficient and reliable computational method to check its satisfaction
through the parameter space.
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Introduction

Multistability is a nonlinear phenomenon characterized by the

existence of two or more stable steady states, where a given

dynamical system will evolve depending on its initial conditions.

Important biological phenomena, like cellular decision processes,

rely on multistable models, where the different functional

phenotypic states or cell fates can be understood as discrete, stable

and mutually exclusive stable states [1]. Experimental evidences for

bistability have been found in numerous pathways involved in cell

decision processes, such as the p42 MAPK/Cdc2 network

governing the maturation of oocytes in Xenopus [2], the pheromone

sensing MAPK pathway in S. cerevisiae [3], or the Rb-E2F pathway

regulating proliferation in mammalian cells [4]. The analysis of

mathematical models of the underlying multistable networks

contributes to understand these biological phenomena from a

systems perspective. In [5] for example, basic design principles for

the control of the cell cycle are suggested based on the modeling

and analysis of the gene circuit underlying the Rb-E2F switch,

identified by the criterion of robustness.

The dynamics of biochemical reaction networks (i.e., the time

evolution of the vector of species concentrations) can be described

by models of coupled ordinary differential equations where the

structure depends on the reaction connectivities, stoichiometry

and kinetics, and the parameters are defined from kinetic rate

constants. Modeling a biochemical system consists of inferring the

structure and parameters from experimental data. For a given

model structure, the corresponding parameters are typically

estimated from experimental time course measurements of

observables (usually linear combinations of some subsets of the

species concentrations), by minimizing some measure of error

between the experimental data and the model prediction [6].

Nontraditional methodologies for the determination of reaction

mechanisms from kinetic data sets have been reviewed by [7,8]. In

processes occurring within living cells, the access to quantitative

information is often very limited, and this fact has severe

implications on the development of mathematical models: it

hampers model discrimination, often leads to poor parameter

identifiability, and makes the parameter estimation task very

challenging, since it entails to solve a nonconvex optimization

problem in high dimensional search spaces [9], which cannot be

reduced and/or constrained in absence of a priori knowledge

about feasible parameter values.

One of the challenges of systems biology is to provide tools to

overcome the lack of quantitative information, by exploring and

exploiting connections between model structure and/or parame-

ters with the expected dynamic behaviour [10–12]. In this context,

methods to systematically detect multistationary regimes in

biochemical systems will help modeling multistable systems,

constraining the feasible parameter regions, for a given structure,
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based on the capability to produce multistationarity. These

methods are also of great interest in the design of synthetic

biological switches, where the robustness of the multistationarity

property needs to be analyzed [13–15].

Current results in this direction are derived from different fields,

from classical bifurcation theory [16] to monotone systems [17]. In

particular, structural properties of reaction networks and their

connection with multistationarity are at the core of the Chemical

Reaction Network Theory, pioneered by Feinberg, Jackson and

Horn [18,19] and subject to ongoing development [20,21] with

special interest in the application to biological systems [22–24]. In

the context of cell signaling, for example, CRNT has been used to

discard kinetic mechanisms based on their capacity for multi-

stationarity [25,26].

The deficiency one algorithm, the advanced deficiency theory,

the deficiency zero and deficiency one theorems are part of the

CRNT in which networks are classified by means of a nonnegative

integer index called deficiency –a property of the graph of complexes

of a network– and some structural conditions are evaluated to

decide whether networks have the capacity for multiple positive

equilibria [27].

As pointed out in [28], CRNT provides surprisingly strong

results for reaction networks based only on the systems structure.

For example, the deficiency zero theorem asserts that every weakly

reversible network of zero deficiency has a unique equilibrium, for

any choices of parameter values. However, when multistationarity

cannot be ruled out, nothing can be said about how the

parameters affect the qualitative behaviour of the solutions.

In a previous paper [29] we have introduced the parameters

into the picture, providing a canonical expression for the

equilibrium manifold in terms of the kinetic parameters and

the so called deficiency parameters of the network. The concept

of network layout, introduced in [29] as the difference between

the deficiency of a network (d) and the dimension of the

equilibrium manifold (l), allowed us to classify biochemical

reaction networks in three groups: proper networks (d~l),

overdimensioned networks (dwl) and underdimensioned networks

(dvl). The analysis presented focused on proper networks, i.e.

those networks where deficiency and manifold dimension

coincide. For those networks, the qualitative behaviour of the

manifold was evaluated through its derivative with respect to the

deficiency parameters. Then a geometric intuitive idea was

applied to find, under these restrictive assumptions (d~l), a

condition on the parameters of the network giving room to

multiple steady states. The condition was formulated as a (non

convex and multimodal) optimization problem, to be solved by

global optimization algorithms. Before the search, it was needed

to partition the parameter space in regions with different

qualitative behaviour. The parameter space was then character-

ized depending on whether the optimization algorithm could find

a solution or not, i.e., depending on whether or not we could

find a point (or a set of discrete points) in the parameter space

fulfilling the multistationarity condition.

In this work, we formalize the geometric intuition in [29] to

derive a sufficient condition for multistationarity which is general,

i.e. applies to networks where the dimension of the equilibrium

manifold is lower, equal or greater than the deficiency. The

general condition is stated in a formal context, and a proof of its

validity in arbitrary dimensional spaces is provided. In addition,

we present a method to search the condition through the

parameter space with several advantages over global optimization

methods. On the one hand, it is capable of finding the regions

where multistationarity condition is fulfilled, without requiring the

a priori partitioning of the parameter space in areas of different

qualitative behavior. On the other hand, the method allows the

characterization of the multistationarity regimes of a biochemical

reaction network in a reliable manner, i.e. those regions in the

parameter-state space leading to multiple steady states are ensured

to be enclosed by the solution set.

Fundamentals
Following CRNT classical description (see Feinberg’s Lecture 3

in [30] for details), we consider a generic reaction network

involving m species fS1, . . . ,Smg participating on a given set of

irreversible reaction steps. Their concentrations ci are collected on

a vector c defined on the space Rm
§0 we will refer to as the species

space. In the following, we write x[Rm
w0 if xiw0 for all i~1,,m and

x[Rm
§0 if xi§0 for all i~1, . . . , m. Each reaction step will be

represented by an arrow which connects two particular combina-

tion of species, thus indicating how a given set of reactants is

transformed into a certain set of products. The set of species at

both extremes of the arrows are known in CRNT as complexes. The

set of all complexes connected by reaction steps conforms the

reaction network which is represented by a directed graph (C-

graph or graph of complexes), where arrows (edges) indicate the

reaction steps and the nodes correspond with the complexes (see

Figure 2 for an example).

Let fC1, . . . ,Cng be the set of complexes of the network. To

each complex Ci we associate a set Ii of integer elements which

collects the indexes of those complexes that are directly reached

from Ci and a pair of vectors fyi,eig. The set Ii can be formally

defined as:

I i ~ fj [ f1, . . . , ngDCj is directly reached from Cig:

Vector yi[Rm
§0 contains the molecularities of the species in

complex i, and ei is a vector of the standard basis of Rn such that

for every i,j~1,, n:

eij~
1 if i~j

0 otherwise:

�

The complete set of edges in the graph is constructed by

connecting Ci?CIi
for all complexes i~1, . . . ,n. Every edge in the

graph (or reaction step) directly linking complex Ci to complex Cj ,

has its corresponding reaction rate, of the form:

Rij~kijyi ð1Þ

where kijw0 is a constant parameter and yi a scalar function:

yi(c) : Rm
§0?R§0: ð2Þ

In what follows we assume that the reaction rates are mass action.

Thus each function yi(c) takes the form:

yi(c)~ P
m

j~1
c

yji
j : ð3Þ

Provided that c[Rm
w0 (i.e. it is a strictly positive vector), the

expression (3) can also be written as:

Multistationarity in Biochemical Networks
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ln y(c)~Y T ln c, ð4Þ

where the natural logarithm operator ln (:) acts on any vector

element-wise.

The C-graph of a reaction network is composed by a number ‘
of ‘‘isolated’’ sub-graphs known in CRNT as linkage classes

fL1, . . . ,L‘g, (see Lecture 3, page 14 in [30] for a complete

discussion), each containing a number of complexes hk so that:

X‘
k~1

hk~n:

The reaction network presented in Figure 2 consists of two

linkage classes: one involving complexes fC1,C5g, and the other

involving complexes fC2,C3,C4g. Each linkage class Lk is

accompanied by a vector Lk[Rn
§0 of the form:

Ljk~
1 if Cj in Lk

0 otherwise:

�
ð5Þ

Complexes within a linkage class are linked by sequences of

reaction steps (or equivalently by sequences of arrows) defining

paths. Two complexes are strongly linked if they can be reached

from each other by directed paths (every complex is strongly linked

to itself). The maximal set of strongly linked complexes is a strong

terminal linkage class if no other complex can be reached from any

of its elements. A linkage class that is also a strong terminal linkage

class is said to be weakly reversible. Weakly reversible networks are

those composed of weakly reversible linkage classes. The network

depicted in Figure 2 is an example of a weakly reversible network.

The dynamics of chemical reaction networks. Making

use of the above definitions, the time evolution of species

concentrations can be described by a set of ordinary differential

equations of the form

c~
Xn

i~1

X
j[Ii

(yj{yi)Rij : ð6Þ

This system can be rearranged into the more familiar form,

extensively employed in the context of CRNT:

c~f(c):Y :A½y(c)�, ð7Þ

where vector y(c)[Rn
§0 contains as entries the scalar functions yi

(2). In what follows, we will refer to the space Rn
§0 in which every

y is defined as the space of complexes. The mapping A : Rn
§0?Rn is

such that:

A(y)~
Xn

i~1

yi(c)
X
j[I i

kij
:(ej{ei), ð8Þ

and Y in (7) is the m|n molecularity matrix, with columns being

the molecularity vectors y1, . . . ,yn of complexes C1, . . . ,Cn. The

right hand side of equation (7) f(:) : Rm
§0?Rm is known in CRNT

as the species formation function [18].

Trajectories of system (7) are constrained in the concentration

space by some invariants of motion to lie on convex regions within

the non-negative orthant known as reaction polyhedrons [31], or

stoichiometric compatibility classes in the CRNT formalism (see Lecture

2, page 17, Definition 2.9 in [30]).

In order to characterize these regions, and suggested by the

structure of the operator A (Eq. (8)), let us first consider the

subspace spanned by vectors (ej{ei), where the image of the

operator A lies. The subspace is formally defined as:

D~spanf(ej{ei)Di~1, . . . ,n and j[Iig: ð9Þ

It must be noted that the number of independent vectors

(ej{ei) per linkage class is hk{1, and vectors from different

linkage classes are independent, thus the dimension of D is n{‘.
Related to D there is another subspace we define as follows:

S~spanf(yj{yi)Di~1, . . . ,n and j[Iig: ð10Þ

The subspace S is known in CRNT as the stoichiometric subspace,

where the species formation function f(c) lies, since from (7) and

(8) we also have that:

f(c)~
Xn

i~1

yi(c)
X
j[I i

kij
:(yj{yi): ð11Þ

Let s be the dimension of S and B[R(m|m{s) a full rank matrix

that spans column-wise the orthogonal complement S\.

A linear vector-valued function of the form W (c)~BT c
characterizes the invariants of motion, since it is constant along

the trajectories defined by (7) for any initial condition c(0)~c0.

This can be shown by differentiating W (c) along (7) so that:

_WW~BT f(c)~0,

where the last equality follows because by construction B is

orthogonal to the stoichiometric subspace S. Integrating this

expression in time and taking into account the initial condition c0

we get that:

BT (c{c0)~0:

Each equation in the above expression is called a conservation law

[32]. In this way, trajectories are constrained to regions that result

from the intersection of the non-negative orthant Rm
§0 with any

linear variety associated to the stoichiometric subspace. These

regions we will refer to as reaction polyhedrons (equivalently

stoichiometric compatibility classes), can be formally defined with

respect to a reference concentration vector c0 as:

V(c0)~fc§0DBT (c{c0)~0 where ImB:S\g: ð12Þ

Mass conservation is a special case of invariance which leads to

a particular class of polyhedrons, namely those which intersect

every axis in the concentration space (in this case every species

Multistationarity in Biochemical Networks
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participate in at least one conservation law). Other polyhedrons

are possible being parallel to some axis as it is the case of the

example. In the extreme case (no species participating in

conservation laws) the stoichiometric subspace spans the whole

concentration space so that the orthogonal complement is the zero

vector (the only column of B). In this case the reaction polyhedron

is Rm
§0.

The nature of equilibrium points. Next we summarize

some results from CRNT to be used in the contribution

concerning possible equilibrium solutions of (7), namely vectors

c� such that f(c�)~0. In what follows, we will concentrate on

weakly reversible networks which in addition, for any initial condition

c§0 produce equilibrium points in the interior of the positive

orthant. Note that if the trajectories lie in the interior of the

positive orthant the networks under study are persistent [32] (i.e.

those which for any initial condition cw0 produce trajectories

lying in Rm
w0).

Any equilibrium point c�[Rm
w0 for (7) will satisfy either:

y(c�)[D0:ker A ð13Þ

or

A½y(c�)�[ ker Y with y(c�)=[ker A: ð14Þ

Related to condition (14) there exists a subspace

Dd: ker Y\ImA, we will refer to as the deficiency subspace, which

plays a central role in CRNT. Its dimension is called the deficiency

d and can be computed by making use of the standard relationship

between the dimensions of the domain, kernel and image of a

linear transformation (see [30], Lecture 4, page 23 in the proof of

Proposition 4.7). For weakly reversible networks, the terms in the

relationship coincide with the dimensions of subspaces D (see (9)),

Dd and S:ImYA, respectively. The final expression then reads:

dim( ker Y\ImA)zdim(ImYA)~dim(D), ð15Þ

since from previous discussion dim(D)~n{‘ and dim(ImYA)~s,

we finally get for dim( ker Y\ImA):

d~n{‘{s: ð16Þ

It must be noted that as stated in the so-called deficiency zero theorem

[30] (Theorem 5.1 in Lecture 5, page 2), any equilibrium point

fulfilling (13) will be stable and unique in each compatibility class.

Consequently, multistationarity, that is to say multiple equilibria,

can only occur for c� satisfying (14). For this reason, any weakly

reversible reaction network of zero deficiency possesses a unique

and stable equilibrium point (associated to D0) per stoichiometric

compatibility class. This result remains valid independently of the

values taken by the reaction rate constants.

In a previous paper [29], we have exploited the graph structure

of biochemical networks to obtain an expression of the locus of

equilibria –the set of points c� such that f(c�)~0 in (7)– in terms of

as many parameters as the deficiency of the network. For a class of

networks (the so called proper networks) we were able to partition (by

continuation of variation parameters associated with the deficien-

cy) the space of kinetic parameters in regions with different

qualitative dynamic behavior. Exploiting the concept of equilib-

rium as a intersection between solutions satisfying (14) with the so

called reaction polyhedron [31], conditions on the parameters of

the network leading to multiple steady states were found for

networks where the manifold dimension and deficiency coincide.

Here we start from this insight to provide a general condition for

the existence of multistationarity, valid for weakly reversible mass

action networks.

Analysis

The Locus of Equilibria
We present in this section a canonical expression for the locus of

equilibria, that is to say the set of all possible feasible equilibrium

solutions in terms of the kinetic parameters of the network. In what

follows, we will refer to this locus as the equilibrium manifold.

Mathematically it corresponds with an algebraic variety which

results from the intersection of two other varieties: the family of

solutions and the mass action manifold to be described below.

In preparing for the description and for simplicity, we assume

that the molecularity matrix Y is full rank and mƒn. Furthermore,

we assume that the m independent molecularity vectors yi are

distributed among linkage classes so that each linkage has at least

one independent vector. For such networks, and without loss of

generality, let us number the first ‘ complexes so that each belongs

to a different linkage class (note that by previous assumption

m§‘), and so that the first m columns of the matrix Y are linearly

independent.

The family of solutions is a linear variety F defined in the

space of complexes by:

F~
X‘
k~1

xkykz
Xd

j~1

ajf j ð17Þ

where aj are given real numbers, and vectors xk, f j[Rn
§0 are

solutions of the following equations:

A(xk)~0 k~1, . . . ,‘, ð18Þ

A(f j)~wj j~1, . . . ,d: ð19Þ

The set of vectors fwjgd
j~1 that appears in (19), defines a basis

for the deficiency subspace Dd. As proved in [29], the elements of

a basis for Dd can be obtained from the left kernel of the matrix:

½L Y T � ð20Þ

where Y is the molecularity matrix and L is the n|‘ matrix with

columns being the vectors Lk defined in (5).

Vectors xk[Rn
§0 for k~1,, ‘ constitute a basis for the kernel of A

(Eq. (8)). As stated in Proposition 4.1 of [30] (Lecture 4, page 10), for

weakly reversible networks the dimension of the kernel of A, and

therefore the number of vectors of the basis, coincides with the

number of linkage classes. Actually, the same holds for networks other

than weakly reversible, provided that they have one terminal linkage

class per linkage class. The same Proposition prescribes for each

element of the basis a nonnegative vector. In particular, each vector

xk associated to a linkage class Lk, will have entries of the form:

xik~

1 i~k,

rikw0 i=k, Ci in Lk

0 i=k, Ci not in Lk

8><
>: ð21Þ

Multistationarity in Biochemical Networks
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where parameters rikw0 are functions of the reaction constants

within the linkage class Lk. The functional relation will be formally

represented as rik(K)w0 where K is the vector of kinetic rate

constants. A proof of Proposition 4.1 is out of the scope of this

contribution. It cannot be found in [30] either. However, two

alternative proofs can be found in the literature: one based on Perron-

Frobenius theorems applicable to weakly reversible networks [33].

The other more graph theoretically oriented has been proposed in

[34].

Similarly, any entry f ij(K) of vectors f j is a function of kinetic

parameters within the linkage class containing the complex Ci.

Explicit expressions relating parameters rik and f ij (for i~1, . . . ,n,

j~1, . . . ,d) with the original kinetic constants are obtained by

solving Eqs. (18) and (19).

It must be noted that by construction, F in Eq. (17) under linear

transformation A produces vectors:

AF~
Xd

j~1

ajwj ð22Þ

which correspond with elements of the deficiency subspace Dd.

For the particular case of ai~0 for every i~1,, d, F characterizes

elements of D0 (i.e. the kernel of A). In this way, Eq. (17) provides

a complete parametrization of complexes y, leading to equilib-

rium solutions.

The mass action manifold is a nonlinear algebraic variety

M defined in the space of complexes by:

lnM~Q ln ym:
Xm

j~1

qj ln yj ð23Þ

where matrix Q is of the form:

QT~Y{1
1 Y :

with Y1 being a matrix containing the first m columns of the

molecularity matrix Y . Note that each elementMi can be written

as:

Mi~ P
m

j~1
y

qij
j :

Expression (23) is the equivalent of (4), but defined in the space

of complexes instead of the concentration space. The relationship

between both spaces is given by the bijective mapping:

ln ym~Y T
1 ln c: ð24Þ

The equilibrium manifold is the algebraic variety which

results from the intersection in the space of complexes of the family

of solutions F and the mass action manifold M. Formally the

intersection can be expressed as:

F (ym,a; K){M(ym)~0 ð25Þ

where a is the vector that collects all the ai parameters for

i~1, . . . ,d. For a given parameter vector K , the equilibrium

manifold can be written as:

Hc(ym,a; K)~0 ð26Þ

where

Hc(ym,a; K) : Rm
w0|Rd?Rn{‘: ð27Þ

On occasions it may be convenient to transform the algebraic

variety by means of (24) to its equivalent in the concentration

space, namely:

Hs(c,a; K)~0, ð28Þ

where:

Hs(c,a; K) : Rm
w0|Rd?Rn{‘: ð29Þ

It should be noted that given a rate constant vector K, function Hs

(or equivalently Hc) is continuous and differentiable. In addition

the dimension of the expression (28) (or equivalently (26)), either in

the space of complexes or in the species space is l~m{s. This is

so since l~mzd{(n{‘), and by (16) d~n{‘{s.

Condition for Multistationarity
This section contains the main result of the contribution namely

a condition for a given network to have multiple (positive)

equilibria within the same stoichiometric compatibility class. The

condition is geometric in essence and makes use of the equilibrium

manifold, expressed either in the space of complexes (26) or in the

species space (28), and the linear variety that defines the set of

reaction polyhedrons (12).

The underlying idea behind the condition relates to the question

of whether or not a given set of equations can accept more than

one solution. A formal statement and discussion of this question is

presented in the Appendix S1 for a general class of functions

defined in Rn. There we present the necessary mathematical

background as well, but first let us illustrate the basic concept on a

simple two dimensional case depicted in Figure 1.

The example consists of a nonlinear manifold (the continuous

curve) and two possible families of linear varieties represented by

dashed lines with gradient vectors B and B’ respectively. Vector P,

perpendicular to the curve at x�, is the gradient of the curve at x�.
This vector also defines the tangent subspace to the curve at that

point. As it can be observed in Figure 1 A, all linear varieties

associated to vector B intersect the curve in just one point so no

multiple solutions are expected.

On the other hand, some linear varieties associated to B’ in

Figure 1 B intersect the curve in two points y1 and y2 what

corresponds with two different solutions. What differs between

Figures 1 A and 1 B is the relative orientations of the curve and

linear variety gradients. Thereby vector alignment (or linear

dependency) is what seems to be at stake to determine the number

of solutions. In this way, multiple solutions are expected to appear

whenever vector alignment takes place. This is the notion we take

advantage of and extend to higher dimensional manifolds (i.e. the

equilibrium manifold).

As discussed in the Appendix S1, essentially all is needed is the

equilibrium manifold to be locally smooth. If at a given point in

the space of concentrations this is the case, hyperplanes secant to

Multistationarity in Biochemical Networks
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the equilibrium manifold can be constructed in a small neighbor-

hood of the point by parallel translation of the corresponding

hyperplanes tangent at that point (see Figure S1). Multiple

solutions are then possible if the hyperplanes coincide with a

given reaction polyhedron.

In the remaining of the section the results discussed in the

Appendix S1 will be adapted to detect multiple equilibria

associated to the equilibrium manifold. To that purpose a mzd
(equivalently n{‘zm{s) dimensional space will be employed,

which includes the variables:

(c,a)~(c1,cm,a1,,ad):

It must be pointed out that since the map (24) is bijective, the

condition can be established either in the species space (c variables) or in

the space of complexes (ym variables). However in the species space the

reaction polyhedron is linear what simplifies the derivation of the

condition. Thus for convenience, manifold (28) will be employed in first

place. Nevertheless, some comments will be made at the end of the

section on the condition expressed in the the space of complexes.

Firstly let us note that the Jacobian of Hs reads:

DHs~ DcHsDaHs½ � ð30Þ

where DcHs[R(n{‘)|m and DaHs[R(n{‘)|d denote the Jacobians

of Hs with respect to c and a, respectively.

In the space described by the variables (c,a) we express the

linear variety associated to the reaction polyhedron (12) as:

W (c,a; c0)~0 for every c[V(c0) ð31Þ

where function W : Rm
w0|Rd?Rm{s is of the form:

W (c; c0)~BT (c{c0): ð32Þ

Note that because DcW~BT and DaW~0 (i.e. a zero (m{s)|d
matrix), its Jacobian can be written as:

DW~ BT 0
� �

: ð33Þ

DW is full rank by construction, since as discussed in the

Fundamentals, B is a basis for the orthogonal complement of the

stoichiometric subspace S.

For a given vector of rate constants K, let Hs(c,a; K)~0 be

continuous in the vicinity of a point (c�,a�). Note that by the

implicit function theorem, this implies that DHs(c
�,a�; K) is full

rank. Then we are under the conditions of Proposition A1 (see

Appendix S1) where Hs corresponds with F(x), x:(c,a) and

P~DHT
s (c�,a�; K). Furthermore, DW T takes the place of C in

matrix G in Corollaries A1 and A2. The corresponding

n{‘zm{s square G matrix then becomes:

G(c�,a�; K)~
DcHs DaHs

BT 0

� �
: ð34Þ

We are now in the position to formally state the geometric

condition.

Proposition 1 Consider a reaction network with a given

vector of rate constants K, and let Hs(c,a; K)~0 be continuous in

its domain. If for any (c,a) satisfyingHs(c,a; K)~0 matrix G is full

rank, the reaction network for K has at most one positive

equilibrium solution per stoichiometric compatibility class.

Proof: the result follows directly from Corollary A1 (see

Appendix S1), applied to the domain where the equilibrium

manifold (29) is defined (i.e. positive concentration space).

Proposition 2 Given a vector of rate constants K, a sufficient

condition for the reaction network to exhibit multiple (positive)

steady states within the same stoichiometric compatibility class is

that for at least some (c�,a�) such that Hs(c
�,a�; K)~0, matrix

G(c�,a�; K) is rank deficient. Equivalently, a sufficient condition

for the reaction network to exhibit multistationarity is that:

det½G(c�,a�; K)�~0 ð35Þ

for some (c�,a�).

Figure 1. Schematic representation of the geometric condition.
Solid and dashed lines represent nonlinear and linear varieties,
respectively in the two dimensional (x1,x2) space. Vector P is
perpendicular to the curve (nonlinear variety) at x�. B and B’ in Figure
(a) and (b) respectively, denote vectors perpendicular to the linear
variety (straight lines defining compatibility classes). In Figure (a) vector
independency leads to one intersection per compatibility class, while in
Figure (b) vector alignment leads to two different intersections
(indicated by y1 and y2).
doi:10.1371/journal.pone.0039194.g001
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Proof: The result follows directly from Corollary A2 (see

Appendix S1), applied to the domain where the equilibrium

manifold (29) is defined (i.e. positive concentration space). Rank

deficiency can be checked through expression (35).

The condition for multistationarity remains valid in the space of

complexes, since the map (24) is bijective. In this space however,

W (ym; c0)~0 is nonlinear, although continuous for every

ym[Rm
w0 (namely in the interior of the space of complexes). This

can be shown by using (24) to compute its Jacobian with respect to

ym, so that:

Dym
W~sT B ð36Þ

with sT being of the form:

s~diag(c):(Y T
1 ){1:diag{1(ym) ð37Þ

where diag(v) and diag{1(v) are the diagonal and inverse

diagonal matrices operating over the vector v, respectively.

The Jacobian Dym
W is full rank since B is full rank and

s[Rm|m invertible. Continuity of W (ym; c0)~0 then follows

from the implicit function theorem (see Appendix S1). In the space

of complexes, Condition (35) from Proposition 2 should be

checked on the matrix:

G(y�m,a�; K)~
DymHc DaHc

BT s 0

� �
: ð38Þ

Interval Based Search
In order to find the regions in the parameter space fulfilling the

multistationarity condition we formulate a so called continuous

constraint satisfaction problem (CSP) [35,36] and solve it numerically

by using interval methods [37]. Methods based on interval analysis

allow mathematical operations to be carried out over real intervals

instead of real numbers, and thus to represent a continuum of

solutions to a given CSP by a finite number of intervals or boxes,

the union of which encloses the solution set.

Let z[Rp be the space where a set of constraints is defined. A

domain in that space is constructed by interval variables zi (for

i~1, . . . ,p) defined on closed real intervals zil ,ziu½ �, where

subindexes l and u stand for lower and upper bounds, respectively.

For p variables, the cartesian product of einterval domains

z~z1||zp is called a box.

Following [36], a constraint satisfaction problem consists in

finding an interval domain where a set of constraints G~g1, . . . ,gq

hold. This can be formally stated as:

gj(z1, . . . ,zp) 0 j~1, . . . ,q

zi~½zil ,ziu� i~1, . . . ,p

�

where constraints involve nonlinear analytic expressions and the

symbol stands for either equality or inequality constraints, that is

to say [f~,ƒ,§g. A solution of a CSP is an element of the

search space which fulfills all the equalities and inequalities

simultaneously.

In our case, the search space involves the elements of the rate

constant vector K and the independent variables which charac-

terize the equilibrium manifold (which equals l~m{s, the

manifold dimension). In this way, for K[R
r
w0, the number of

variables is p~rzm{s.

Regarding constraints, the equality ones correspond with the

equilibrium manifold plus condition (35) which adds up to

n{‘z1 equations. On the other hand, inequality constraints

must be imposed on the dependent variables that describe the

equilibrium manifold, to ensure positivity of variables representing

concentration and to search on non-zero a values.

Characterizing multistationarity regimes boils down to find the

regions in the parameter-state space composed of the rate

constants and independent variables which fulfill the constraints,

i.e. computing all real feasible solutions of the corresponding CSP.

Solutions in interval methods are approximated by subpavings

which consist of unions of boxes. Formally, a subpaving S for a

given region R of the search space is defined as the union of

nonoverlapping boxes approximating R. If we construct subpav-

ings S and S such that:

S5R5S,

the region R is bracketed between inner and outer approxima-

tions. The outer approximation is reliable [38], since it is

guaranteed that the solution region is contained within S.

Simple algorithms as SIVIA (Set Inverter Via Interval Analysis)

proposed in [37] can be used to compute inner and outer

subpavings by successive bisections and selections. Implementing

interval algorithms requires environments supporting interval

arithmetics such us the free available software package INTLAB,

which provides an interactive environment within Matlab [39,40].

Efficiency can be gained by branch-and-prune algorithms where a

set of boxes that contains all the solutions of the CSP is computed,

and then each box is reduced and split. The free software package

REALPAVER [36] provides a modeling language and a generic

branch and prune algorithm which combine different splitting

strategies and pruning techniques.

Example: Multistationary Regimes in an Autocatalytic
Network

As a proof of concept, we make use of a simple autocatalytic

network introduced by Edelstein [41], and already used as a case

study for the bifurcation analysis in the context of biochemical

systems [42]. Bistability has been shown for very simple

autocatalytic systems like phosphorylation-dephosphorylation cy-

cles with autocatalytic kinase [43].

The Edelstein network involves three species fA,B,Cg,
distributed into five complexes, fA,B,C,AzB,2Ag. The C-graph

for the Edelstein network is depicted in Figure 2, where the

following index sets indicate complex interconnections: I1~f5g,
I2~f3g, I3~f2,4g, I4~f3g, I5~f1g. The reaction steps that

correspond with the set of edges in the graph are presented in

Table 1. The network has two different linkage classes: L1

containing the complexes (C1,C5), and L2 containing the

complexes (C2,C3,C4). Their corresponding vectors L1 and L2

(see (5)) read:

L1~ 1 0 0 0 1ð Þ

L2~ 0 1 1 1 0ð Þ:

From the C-graph structure it follows that the network is weakly

reversible since each linkage class is weakly reversible (in fact the

network is reversible).
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The species space is in this case three dimensional (m~3) with

concentrations c1~½A�, c2~½B� and c3~½C�. The molecularity

matrix Y reads:

Y~

1 0 0 1 2

0 1 0 1 0

0 0 1 0 0

2
6664

3
7775

with rank equal to the number of species, i.e. rank(Y )~3. The

dynamics of the reaction network can be encoded by Eq. (7),

where the expression for A½y� reads:

A½y�~

{k15 0 0 0 k51

0 {k23 k32 0 0

0 k23 {(k32zk34) k43 0

0 0 k34 {k43 0

k15 0 0 0 {k51

2
6666664

3
7777775

y1

y2

y3

y4

y5

2
6666664

3
7777775
:

The elements of vector y (mass action monomials) are related to

concentrations by Eq. (3) so that:

y~ c1 c2 c3 c1c2 c2
1

� �T
:

The time evolution of species concentrations results from substitut-

ing previous expressions for Y, A½y� and y into Eq. (7) so that:

_cc1~k15c1{k51c2
1zk34c3{k43c1c2

_cc2~{k23c2z(k32zk34)c3{k43c1c2

_cc3~k23c2{(k32zk34)c3zk43c1c2:

The stoichiometric subspace S defined in (10) is in this case:

S~span y1{y5, y2{y3, y3{y4f g

being its dimension s~2 (i.e. two linearly independent vectors).

The corresponding matrix B (with columns defining a basis of the

orthogonal complement S\) is:

BT~½0,1,1�:

For reference concentrations c10
, c20

, c30
the linear variety (31) is

a plane of the form:

c2zc3{c20
{c30

~0:

According to formula (16) we have that d~5{2{2~1. Thus

the deficiency subspace Dd is one dimensional with the following

basis computed from the left kernel of matrix (20):

w~
1 {1 0 1 {1
� �T

:

For this network, the expression for the family of solutions (17)

takes the form:

F~

1

0

0

0

r51

2
666666664

3
777777775

y1z

0

1

r32

r42

0

2
666666664

3
777777775

y2za

0

0

{f3

{f4

zf5

2
666666664

3
777777775

,

where the explicit expressions relating the parameters rij and f i1

(subindex 1 is omitted), obtained by solving Eqs. (18) and (19), are

given in Table 2.

In order to compute the mass action manifold (23) we first select

matrix Y1 as that which collects the first m~3 molecularity

vectors:

Figure 2. Graph of complexes (C-Graph) for the Edelstein
network. The network involves three chemical species A, B and C.
Nodes in the graph correspond with complexes, denoted by Cj with
j~1, . . . ,5. Arrows in the graph represent reaction steps. In this
example every reaction is reversible.
doi:10.1371/journal.pone.0039194.g002

Table 1. Edelstein network reaction steps.

Reaction step Rate

A?2A R15~k15
:½A�

2A?A R51~k51
:½A�2

AzB?C R43~k43
:½A�½B�

C?AzB R34~k34
:½C�

C?B R32~k32
:½C�

B?C R23~k23
:½B�

doi:10.1371/journal.pone.0039194.t001
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Y1~

1 0 0

0 1 0

0 0 1

2
64

3
75:

Matrix Y1 defines the bijective mapping (24). The resulting

mass action manifold becomes:

lnM~

1

0

0

1

2

2
666666664

3
777777775

ln y1z

0

1

0

1

0

2
666666664

3
777777775

ln y2z

0

0

1

0

0

2
666666664

3
777777775

ln y3:

Using (25), we compute the equilibrium manifold as the

intersection of the family of solutions with the mass action

manifold. Its dimension is l~m{s~1 and its expression in the

space of complexes (26) is given by the equations:

r32y2{af3{y3~0

r42y2{af4{y1y2~0

r51y1zaf5{y2
1~0:

The bijective mapping (24) allows us to write the equations for

the equilibrium manifold in the species space (28):

r32c2{af3{c3~0 ð39Þ

r42c2{af4{c1c2~0 ð40Þ

r51c1zaf5{c2
1~0: ð41Þ

In order to derive the geometric condition defined by (35) in

Proposition 2, we first compute the Jacobian of Hs as described in

(30), where:

DcHs~

0 r32 {1

{c2 r42{c1 0

r51{2c1 0 0

2
64

3
75 and DaHs~

{f3

{f4

zf5

2
64

3
75:

Matrix G in (34) becomes:

G~

0 r32 {1 {f3

{c2 r42{c1 0 {f4

r51{2c1 0 0 f5

0 1 1 0

2
6664

3
7775,

being its determinant:

det(G)~{f5c2(1zr32){

(2c1{r51) f4(1zr32)zf3(c1{r42)½ �:

Setting det(G)~0 as in (35) and using the equivalences in

Table 2, we get:

0~(k23zk32)k43c2z

(2k51c1{k15)(k32zk34zk23zk43c1): ð42Þ

In the interior of the species space (i.e. that of positive

concentrations), the first term at the right hand side of (42) is

always positive, while the sign of the second term is conditioned by

that of (2k51c1{k15). Therefore, the determinant can only vanish

for values of c1 that make (2k51c1{k15)v0. Equivalently, for c1

values within the open interval (0,r51=2), i.e. c1 satisfying:

c1~
br51

2
for some 0vbv1:

Substituting this expression for c1 into (41) and its result in (40)

we obtain, respectively:

a~
k2

15b(b{2)

4k51
,

and

Table 2. Edelstein network parameter equivalences.

Parameter Equivalence

r51 k15

k51

r32 k23

k32

r42 k23k34

k32k43

f3 1

k32

f4 k32zk34

k32k43

f5 1

k51

doi:10.1371/journal.pone.0039194.t002
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c2~
b(b{2)r2

51f4

2f5(2r42{br51)
:

Since b[(0,1) the term b{2v0. Thus for c2 to be positive it is

required that:

2
r42

r51

vbv1:

By substituting the expressions obtained for a and c2 in the

equilibrium manifold Hs, it can be deduced that c3 is also positive

for every b in the open interval (2r42=r51,1). Summarizing, the

network will show multiplicities for those parameters fulfilling (42)

with:

c1~
br51

2
, c2~

b(b{2)r2
51f4

2f5(2r42{br51)

for b[(2r42=r51,1). Note that multistationarity is ruled out for
r42

r51

w

1

2
since bv1.

Let us consider the set of kinetic constants given in Table 3. For

b~0:6451 they satisfy the condition described by (42). The

resulting values for c1 and c2 are:

c1~2:7416, c2~12:4230:

In Figure 3, the equilibrium manifold for these values of the

kinetic constants is depicted, together with the reaction polyhedron

corresponding to ½B�0z½C�0~30. The manifold is one dimen-

sional, and intersects the reaction polyhedron in three points,

corresponding to three different equilibria. The points fulfilling the

rank deficiency condition, corresponding to a~{15:787 and

a~{9:079 are also indicated. As it can be deduced from the

figure, three steady states will exist for a range of the sum of initial

concentrations ½B�0z½C�0. In fact, performing a continuation of

the curve of equilibria by varying the values of ½B�0z½C�0 we

obtain the curve shown in Figure 4, where two limit points or

saddle node bifurcations appear for ½B�0z½C�0~29:7768 and

½B�0z½C�0~30:6949. Within these values, corresponding to

different positions of the reaction polyhedron, three steady states

will exist. Note that the points fulfilling the rank deficiency

condition indicated in Figure 3 correspond precisely with the

bifurcation points in Figure 4.

Alternatively, interval methods can be employed to search for

the condition given by (35). Here it is important to remark that the

method allows searching for parameters and/or steady state values

of species concentrations within multistationary regimes, provided

some other parameter values and/or steady state concentrations

fixed. To illustrate this, let us assume we are interested in the

ranges of parameters allowing for multistationarity, and the steady

state values of c1, for a given steady state concentration of the

species B (i.e. ½B�~c2). The variables in the constraint satisfaction

problem are thus the free kinetic parameters and the steady state

concentration of the species A.

A three dimensional plot of the result is given in Figure 5 for

c2~12:4230, where the x and y axis represent two of the kinetic

parameters (k23 and k51), and the z axis represents a function of

the steady state concentration of the species A in the steady state.

We represent b in the z axis in order to facilitate the comparison

with the results derived analytically. The corresponding values of

c1 can be computed as c1~br51=2.

Table 3. Edelstein Network parameters.

Kinetic constant Value

k15 8.5

k51 1

k23 0.2

k32 1

k34 1

k43 1

doi:10.1371/journal.pone.0039194.t003

Figure 4. Equilibrium curve for the Edelstein network. The curve
is obtained by varying ½B�0z½C�0 , using the software Cl Matcont [46].
The kinetic parameters are kept fixed with the values shown in Table 3.
doi:10.1371/journal.pone.0039194.g004

Figure 3. Equilibrium manifold for the Edelstein network. The
corresponding parameter values are given in Table 3. Stars indicate
steady states of the system for ½B�0z½C�0~30. Dots indicate those
points in the locus of equilibria where the rank deficiency condition is
fulfilled.
doi:10.1371/journal.pone.0039194.g003
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Discussion

In this work we present a method to compute the regimes of

multiple steady states in biochemical reaction networks, i.e. the

regions in the parameter space, or in the state-parameter space of

network models leading to multistationarity.

The main result of the paper consists of a sufficient condition for

multistationarity, demonstrated to be valid for weakly reversible

networks of arbitrary dimension and deficiency.

The idea behind is based on the fact that one steady state is an

intersection between the locus of equilibria, or equilibrium

manifold, and the reaction simplex, or stoichiometric compatibility

class. In search for the existence of multiple steady states in

reaction networks, we explored the requirements for multiple

intersections between these two varieties.

In a previous work of the authors [29] it was shown that, for

networks with d~l, (or equivalently with m~n{‘), and fixed a

kinetic rate vector K, the equilibrium manifold could be continued

by the variation of the deficiency parameters of the network, and

its qualitative behaviour evaluated through the derivative of the

manifold with respect to the deficiency parameters. After

partitioning of the parameter space in regions of different

qualitative behaviour, global optimization algorithms [44] were

used to check, within every region, whether multiple intersections

between the manifold and the simplex were possible.

Here we use and extend this geometric insight to state a general

condition of multistationarity for networks where the deficiency

might be lower, equal or greater than the dimension of the

equilibrium manifold. In this regard, [29] deals with a particular

case of the general condition presented (and proved) here.

The evaluation of the multistationarity condition presented boils

down to check the rank of a matrix which depends on the kinetic

parameters, the concentrations, and the deficiency parameters.

This matrix is systematically derived as indicated in the Analysis

section, from the equations of the manifold and the mass

conservation laws. In order to check the condition through the

(state-)parameter space, we reformulate the problem as a

constraint satisfaction one to be solved by interval methods.

For the purpose of characterizing the (state-)parameter space in

terms of the capability for multiple steady states, methods based on

interval arithmetics presents several advantages over classical

global optimization methods [44]. On the one hand, they allow

identifying regions, and not sets of discrete points, in the (state-

)parameter space. In this way, there is no need to partition a priori

the (state-)parameter space in regions with different qualitative

behaviour. On the other hand, they ensure reliability of the

solution [38], i.e. they guarantee that all the multistationarity

regimes are enclosed by the solution regions.

As it has been commented in the Introduction, the CRNT

provides particularly strong results to rule out multiple steady

states based on the network structure irrespective of the network

parameters. In this regard, this paper extends the results of the

CRNT by introducing the kinetic parameters into the picture,

giving a general condition for the appearance of multiple steady

states.

In terms of applicability and performance, the method

presented here is valid independently of the value of the network

deficiency and dimension. The efficiency of the search will depend

on the computational cost of the algorithm which increases in high

dimensional spaces. In case we are only interested in finding points

in the state-parameter space leading to multistationarity (for

example if the goal is to decide only whether the network can

exhibit multiple steady states or not), global optimization methods

[44,45] would perform much faster.

Once the condition for multistationarity is derived, and

depending on the particular scenario we want to explore, the

search can be performed considering some of the parameters and/

or states to be fixed. In this way we obtain bifurcation diagrams in

the desired low dimensional projections of the state-parameter

spaces much more efficiently than using standard continuation

techniques. For example, if we are interested in computing all the

parameter sets giving multiple steady states for a particular value

of the equilibrium concentration of one the species, we can

perform the search keeping this concentration fixed.

To end up, we would like to stress the applicability of our

method to standard problems appearing in systems and synthetic

biology. The method can be particularly convenient, for example,

to evaluate the robustness of the switching property for a given

network. As remarked by [13], building a synthetic switch does not

only require to start from a network structure allowing bistability,

but such bistability must be sufficiently robust, meaning that the

range of parameters leading to bistability is wide enough to enable

a successful practical implementation. In this context, our method

will efficiently characterize the regions of interest within the state-

parameter space.
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