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Abstract
The Terebridae are a diverse family of tropical and subtropical marine gastropods that use a
complex and modular venom apparatus to produce toxins that capture polychaete and enteropneust
preys. The complexity of the terebrid venom apparatus suggests that venom apparatus
development in the Terebridae could be linked to the diversification of the group and can be
analyzed within a molecular phylogenetic scaffold to better understand terebrid evolution.
Presented here is a molecular phylogeny of 89 terebrid species belonging to 12 of the 15 currently
accepted genera, based on Bayesian inference and Maximum Likelihood analyses of amplicons of
3 mitochondrial (COI, 16S and 12S) and one nuclear (28S) genes. The evolution of the anatomy of
the terebrid venom apparatus was assessed by mapping traits of six related characters: proboscis,
venom gland, odontophore, accessory proboscis structure, radula, and salivary glands. A novel
result concerning terebrid phylogeny was the discovery of a previously unrecognized lineage,
which includes species of Euterebra and Duplicaria. The non- monophyly of most terebrid genera
analyzed indicates that the current genus-level classification of the group is plagued with
homoplasy and requires further taxonomic investigations. Foregut anatomy in the family
Terebridae reveals an inordinate diversity of features that covers the range of variability within the
entire superfamily Conoidea, and that hypodermic radulae have likely evolved independently on at
least three occasions. These findings illustrate that terebrid venom apparatus evolution is not
perfunctory, and involves independent and numerous changes of central features in the foregut
anatomy. The multiple emergence of hypodermic marginal radular teeth in terebrids are
presumably associated with variable functionalities, suggesting that terebrids have adapted to
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dietary changes that may have resulted from predator-prey relationships. The anatomical and
phylogenetic results presented serve as a starting point to advance investigations about the role of
predator-prey interactions in the diversification of the Terebridae and the impact on their peptide
toxins, which are promising bioactive compounds for biomedical research and therapeutic drug
development.
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1. Introduction
At the macroevolutionary level, it is hypothesized that the tempo of evolution can be viewed
through the lens of key innovations (Sanderson and Donoghue, 1994). Key innovations are
biological traits that promote lineage diversification (Heard and Hauser, 1995; Hodges and
Arnold, 1995). The development of a venom apparatus in the marine gastropod superfamily
Conoidea is a key innovation that can be used as an organizational framework to decipher
the evolutionary history of this megadiverse group. Here the evolution of the venom
apparatus in auger snails (Neogastropoda; Conoidea; Terebridae) is investigated using a
molecular phylogenetic scaffold.

The Terebridae are a diverse family of medium to large-sized (mostly 15-150 mm) marine
gastropods distributed throughout most tropical and subtropical oceans. Terebrids use their
venom apparatus to capture prey, and perhaps also to defeat competitors or predators
(Olivera, 1997). Similar to the peptide toxins produced by cone snails (Neogastropoda;
Conoidea; Conidae), the peptide toxins produced by terebrids, teretoxins, are promising
bioactive compounds for biomedical research and therapeutic drug development (Puillandre
and Holford, 2010). Peptide toxins from a venom source are of increasing interest in the
pharmacological industry (Chin et al., 2006; Newman and Cragg, 2007; Butler, 2008;
Casewell et al., 2009; Hong, 2011). As recently demonstrated (Fry et al., 2003; Modica and
Holford, 2010; Puillandre et al., 2010; Saslis-Lagoudakis et al., 2011), understanding how
the organisms that produce these toxins have emerged and evolved over time, may become
central in the process of drug discovery. Specifically, in the case of the Terebridae, not all
species have a venom apparatus, therefore identifying the lineages that have a venom
apparatus is an effective route to peptide toxin characterization. Currently, the extent of
species diversification of the Terebridae is largely underestimated and the evolutionary
pathways explored by the terebrid groups, especially regarding the peptide toxins they
produce, remains largely unknown.

Whether used for defense or attack, the diversity of toxins developed by venomous
organisms is often attributed to the process of co-evolution in predator-prey relationships
(Kordis and Gubensek, 2000; Lynch, 2007; Duda, 2008; Kozminsky-Atias et al., 2008;
Barlow et al., 2009). Co-evolutionary predator-prey interactions may lead to the
development of specialized adaptations in the predator that are followed by counter-
adaptations in the prey, which in turn can lead to further adaptations in the predator, and so
on, as dictated by biotic, “Red Queen” (Van Valen, 1973) or abiotic, “Court Jester”
(Barnosky, 2001) pressures. For example, numerous plants produce toxic secondary
compounds that influence the behavior, growth, or survival of insects and other herbivores.
In addition, herbivores have developed ways to detoxify, sequester, or render ineffective
specific plant poisons (Laycock, 1978; Fowler, 1983; Zangerl et al., 2008). In snakes, it has
been demonstrated that venom diversity may result by adaptation toward specific diets
(Daltry et al., 1996; Wüster et al., 1999; Barlow et al., 2009). In parallel, some snake prey
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have developed the ability to inhibit specific venom toxins (Heatwole and Poran, 1995;
Biardi et al., 2005). By its indirect effect on fitness, the predator-prey arms race can
represent a driving force of speciation and species diversification in both predators and preys
populations. This is referred to as the “escalation/diversification hypothesis” (Ehrlich and
Raven, 1964; but see also Berenbaum and Feeny, 1981; Berenbaum, 1983; Vermeij, 1993).
Phylogenetic analyses can provide seminal evidence on rates and patterns of predation-traits
evolution and species diversification (Farrell et al., 1991). However, the correlation between
adaptative changes of predation- traits and species-diversification in predator-prey systems
is difficult to study. Such a study requires a good understanding of the biology and the
ecology of the species involved and necessitates a thorough taxonomic sampling of both
predator and prey taxa. A good alternative, as attempted here with the Terebridae, is to
obtain an exhaustive taxonomic sampling of one of the two taxa (predator or prey) and to
study the traits or innovations that affect the ability to accomplish or avoid predation.
Mapping these innovations on a phylogenetic tree then reveals patterns that may impact
species diversification.

Understanding the evolutionary patterns of venom apparatus evolution in the Terebridae
would significantly advance clarifying the phylogeny and systematics of the group, in
addition to advancing the characterization of terebrid peptide toxins for biomedical
applications. Recent molecular phylogenies (Holford et al., 2009a, 2009b; Puillandre et al.,
2011) of the family Terebridae based on samples from Western and Eastern Pacific
demonstrated the monophyly of terebrids relative to the other families of conoideans. Also
illustrated in these phylogenetic studies is the existence of five distinctive clades, Pellifronia,
Oxymeris [= Acus], Terebra, Hastula, and Myurella, numbered clades A to E, respectively,
with clade A, containing the recently revised Pellifronia jungi (Terryn and Holford, 2008),
as sister species of all the other terebrids. Previous molecular analyses combined with
mapping of venom apparatus morphology also indicated that the Terebridae have lost the
venom apparatus at least twice during their evolution (in clades B and E). However, these
phylogenies were based on a limited number of species (~ 50 for the most complete, vs the ~
400 currently described species), and sampling was limited to the Pacific Ocean.
Additionally, only the presence and absence of the venom glands were studied, overlooking
other morphological and anatomical innovations potentially linked to the evolution of
terebrid predatory skills and toxin diversity. In contrast, the present expanded study of the
molecular phylogeny of the family Terebridae almost doubles the number of species from 50
to 89, including 12 out of the 15 accepted genera, almost triples the number of specimens,
and increases the geographical area sampled by including the western Indian Ocean. The
molecular phylogeny in this study is based on the three mitochondrial genes, COI, 12S, 16S,
previously used in conoidean phylogenies, with the addition of one nuclear gene, 28S,
shown to be useful in resolving relationships at the genus level in Conoidea and other
gastropods (Williams and Ozawa, 2006; Puillandre et al., 2008). The analysis of the venom
apparatus, previously reduced to the presence or absence of the venom gland, and thus
underestimating the diversity of the evolutionary pathways the terebrids may have explored,
is here extended to other anatomical features linked to the venom apparatus. The
morphology of the radula, in particular, has been linked to prey capture, and consequently
different radula types may correlate to innovations in predatory behavior, including venom
evolution.

2. Material and methods
2.1. Taxon sampling

All the material studied herein was collected during several expeditions conducted by the
Museum National d’Histoire Naturelle of Paris (MNHN), in partnership with Pro-Natura
International (PNI), Instituto Español de Oceanografia (IOE), and Institut de Recherche pour
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le Développement (IRD), the Natural History Museum of London (NHM), and the
Smithonian Tropical Research Institute (STRI) (See Table 1 and acknowledgements).
Samples include 406 specimens assigned to 89 species collected off New Caledonia (4
specimens), Philippine Islands (49), Vanuatu (115), Solomon Islands (12), Australia (4), the
Coral Sea (4), Panama (50), Madagascar (87), Mozambique (75), Tahiti (4), New- Zealand
(1) and Fiji (1) (Fig. 1). These samples originate from depths ranging from 0 m to ~ 800 m
(Table 1). In the field, all specimens were specifically fixed for molecular analysis. Living
specimens were anesthetized using magnesium chloride (MgCl2), a piece of tissue was cut
from the head-foot, and fixed in 95% ethanol. Shells were kept intact for identification.
Vouchers are deposited in MNHN. Taxonomy follows Terryn (2007), with updates in
Terryn (2011) (Cinguloterebra synonymized with Triplostephanus, Impages with Hastula,
and Acus and Perirhoe with Oxymeris). Three specimens of the family Turridae (putative
sister-group of the Terebridae – Puillandre et al., 2011), Cochlespiridae (Conoidea) and
Conidae (Conoidea) were used as closely related outgroups. Harpa kajiyamai, belonging to
another neogastropod family (Harpidae), was used as a distant outgroup to root the tree.

2.2. PCR amplification and DNA sequencing
Total genomic DNA was extracted from muscle tissue using NucleoSpinR 96 Tissues
(Macherey- Nagel) and following the manufacturer’s instructions. Fragments of the
mitochondrial genes Cytochrome Oxidase I (COI), 16S rRNA and 12S rRNA as well as the
nuclear 28S rRNA were amplified (Table 2). PCR reactions were performed in 25 μL final
volume, containing approximately 3 ng template DNA, 1.5 mM MgCl2, 0.26 mM of each
nucleotide, 0.3 μM of each primer, 5% DMSO and 0.75 U of Taq Polymerase (Qbiogene).
Amplification products were generated by an initial denaturation step of 4 min at 94 °C
followed by 35 cycles at 94 °C for 40 s, annealing at 50°C for COI, 52°C for 28S, 51°C for
12S rRNA and 16S rRNA for 40 s and by an extension at 72°C for 1 min. PCR products
were purified using ExonucleaseI and Phosphatase and sequenced using BigDye Terminator
V3.1 kit (Applied biosystem) and the AB3730XL sequencer. All genes were sequenced for
both directions to confirm accuracy of each sequence. Chromatograms were edited using
CodonCode Aligner version 3.7.1.1. All the sequences were deposited in GenBank and
BOLD (Table 1).

2.3. Datasets
Six datasets were analyzed. The first three datasets were analyzed for all taxa listed in Table
1 and consisted of three independent gene analyses performed from COI, 16S and 12S
genes. The fourth dataset consisted of a combined data set of COI, 16S, and 12S and is
referred to as CD1. To evaluate the robustness of the mitochondrial phylogeny, a fifth
dataset corresponding to the nuclear 28S gene set was built, with one representative for most
of the species. This reduced dataset was then combined with the three mitochondrial genes
and is referred to as CD2.

2.4. Phylogenetic analyses
Sequences were aligned for each gene independently using MUSCLE (Edgar, 2004). The
accuracy of automatic alignments was confirmed by eye using BioEdit version 7.0.0.0 (Hall,
1999). Hyper-variable regions of 12S and 16S rRNA genes were excluded from further
analyses to avoid ambiguities in the homology hypotheses. Best-fit substitution models were
identified for each gene separately and for each combined dataset using Modelgenerator V.
85 (Keane et al., 2006). Best-scoring Maximum Likelihood (ML) trees were estimated using
RaxML (Stamatakis, 2006) from 100 independant searches each starting from distinct
random trees. Robustness of the nodes were assessed using the thorough bootstrapping
algorithm (Felsenstein, 1985a) with 1000 replicates. Bayesian Analyses (BA) were
performed running two parallel analyses in MrBayes (Huelsenbeck and Ronquist, 2001),
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consisting each of eight Markov chains of 100,000,000 generations with a sampling
frequency of one tree each ten thousand generations. The number of swaps chains was set to
5, and the chain temperature at 0.02. Convergence of each analysis was evaluated using
Tracer 1.4.1 (Rambaut and Drummond, 2007) to check that ESS values were all greater than
200. A consensus tree was then calculated after omitting the first 25% trees as burn-in. For
the treatment of combined data using ML and BA, the data were separated into six unlinked
partitions: 16S, 12S, 28S and the three codon positions of the COI gene. Analyses were
performed on the Cipres Science Gateway (http://www.phylo.org/portal2), using the
RAxML-HPC2 on TG tool for ML and the MrBayes on TG tool for BA.

2.5. Overview of Terebridae anatomy and foregut characters
Foregut anatomy was examined by dissecting sequenced specimens. The radulae were
cleaned with diluted bleach (1 part of commercially available bleach to 3-4 parts of water),
rinsed several times in distilled water, mounted on clear glass cover-slips and air-dried. The
cover-slips were glued to stubs, coated with gold and examined by scanning electron
microscopy. Terminology previously used for description of the foregut structures in
Terebridae is rather inconsistent and confusing (Miller, 1970, 1975, 1979). Here the
terminology of Taylor et al. (1993), which reflects the supposed homologies within the
entire Conoidea was followed. Six characters of the foregut were examined and used for
tracing evolutionary pathways on the molecular tree (Table 3):

Character 1—Proboscis (PR): 0 – absent, 1 – present. PR is very variable in length, from
extremely short to very long. In long proboscises, walls often form telescopic folds, while
the proboscis can be coiled within the rhynchodaeum. The proboscis contains the buccal
tube, i.e., the portion of the alimentrary canal extending between the buccal cavity and the
true mouth, which is situated at the distal end of the proboscis (Taylor et al., 1993). The
buccal tube is absent only in those species where the proboscis is lost. All examined terebrid
species possess a more or less long rhynchodeal introvert (also known as labial tube –
Miller, 1970). The length of the introvert correlates with the presence of the proboscis: in
species without proboscis, the rhynchodeal introvert is much longer than in species with
proboscis.

Character 2—Venom gland (VG): 0 – absent, 1 – present. VG, sometimes called venom
duct, is an autapomorphy of Conoidea (Taylor et al., 1993); when present it always has a
muscular bulb, also referred to as the venom bulb. The venom gland in Terebridae opens just
posterior to the radular sac.

Character 3—Odontophore (OD): 0 – absent, 1 – present. OD, consisting of subradular
cartilages and muscles, usually present in species having a radula with a strong subradular
membrane. In Terebridae it can vary from being massive (e.g., Duplicaria bernardii) to being
vestigial and hardly recognizable (e.g., Terebra succincta, clade E3).

Character 4—Accessory proboscis structure (APS): 0 – absent, 1 – present. APS is an
extensible muscular structure that arises from the wall of the rhynchodaeum. It can be
branching or club-shaped, distally papillated, or simple, stalk-shaped. A somewhat similar
structure, named rhynchodeal outgrowth, is found in other Conoidea – Horaiclavidae and
Zemacies (Borsoniidae) (Fedosov and Kantor, 2008).

Character 5—Radula (RadT): 0 – absent, 1 – consists of duplex marginal teeth, 2 –
consists of solid recurved marginal teeth, 3 – consists of flat marginal teeth, 4 – consists of
semi-enrolled marginal teeth, 5 – consists of hypodermic marginal teeth. Radula in
Terebridae consists only of a pair of marginal teeth per transverse row. The radula was
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completely lost in several lineages, but when present the marginal teeth exhibit a range of
morphological types, and five major types are here recognized: (1) Duplex teeth (Fig. 2 A-
C), consisting of a major element (limb), attached to the subradular membrane along most of
its length, and an accessory limb, which is the thickened edge of the major element, usually
somewhat elevated above the membrane. Here, the radula has about 20-25 rows of teeth; (2)
Solid recurved teeth (Fig. 2 F-G) with a broad flatened base, which is attached to the
relatively strong subradular membrane. In species with this type of teeth, the radula is short,
with only 15-20 rows; (3) Flat and simple teeth (Fig. 2 D-E), attached by a narrow base to
the subradular membrane. Two, not clearly delimitated, variants - broad triangular (Fig. 2E)
and long irregular (Fig. 2D) - are coded as the same radular type in the analysis. The
subradular membrane is usually very thin and fragile, and easily tears apart. Radulae with
this type of teeth consist of 20 or more rows; (4) Semi-enrolled teeth with tooth edges
overlaping at the base, forming a loosely enrolled tube, while closer to the tip the tooth is
trough shape in section. Radulae with this type of teeth are very short, with only about 10
rows; (5) Hypodermic hollow teeth (Fig. 3 A-P), rather similar to the hypodermic teeth
present in other Conoidea. Such teeth have a very broad basal opening of the tooth canal,
with usually a reflected outward edge of the tooth, forming a collar-like structure; the apical
opening can be unarmed or it can have small barb(s) or blade(s). The subradular membrane
is usually very thin and vestigial. The number of rows of teeth varies from about 10 (Terebra
jenningsi) to about 30 (Hastula hectica and H. penicillata).

Character 6—Salivary glands (SG): 0 – absent, 1 – present. SG can be paired, but are
more often fused, bipartite with paired ducts. In some species, a single gland is present.

Accessory salivary gland(s) are present in different species of Terebridae, as well as in some
other conoideans. They usually are very small and difficult to find by dissection, therefore
not used in the analysis.

2.6. Evolution of the anatomy
A reduced dataset was built for the 46 species (including the four outgroups) for which
anatomical data were available. To minimize the risk of undetected cryptic species, the
dissected and sequenced specimens were the same in most cases. However, for Pellifronia
jungi and Hastulopsis pseudopertusa (Table 3), sequences were not obtained from the
dissected specimens, and a conspecific specimen was used. Four species, Oxymeris
dimidiata, O. maculata, Terebra subulata and Hastula hectica, were dissected by YK and
John D. Taylor using non-sequenced material, and conspecific specimens were used for
sequencing. ML analyses were performed using the method described above. The evolution
of the six characters listed in Table 3, and described in the anatomy overview above, was
assessed with Mesquite V2.74 (Maddison and Maddison, 2009), using the option “tracing
character history” and the parsimony ancestral reconstruction method. The characters PR
(proboscis), VG (venom gland), OD (odontophore), and RadT (marginal radular teeth
anatomy) were treated as ordered characters (using a stepmatrix), prohibiting some of the
transformation sequences, in our case from absent to present, as reapparition of these
features is highly unlikely. Other characters were treated as unordered. Additionally,
Bayestraits (Pagel and Meade, 2006) was used to test if the evolution of foregut characters
were correlated. As Bayestraits cannot compare characters with more than two states, the
character 5 (RadT) were recoded in two different characters, RadT1 and RadT2, with the
states 0 “radula absent” and 1 “radula present” for RadT1, and states 0 “radula solid” and 1
“radula hypodermic” for RadT2. In the latter case, an absence of radula was coded as
missing data. Independent and dependent models of Bayesdiscrete were compared. MCMC
were run with default parameters, except for the number of generations, which were set to
2050000.
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3. Results
3.1. Genetic diversity

Of the total of 406 samples of Terebridae used to reconstruct the molecular phylogeny of the
family, 389 were sequenced for the COI gene, 400 for the 16S gene, 369 for the 12S gene
and 63 for the 28S gene. For COI, 658 bp were sequenced and no indels were found. After
the alignments and the removal of ambiguously aligned sites, fragments of 591, 654 and 761
bp in length were obtained for the 16S, 12S and 28S genes, respectively. For the COI gene,
218 different haplotypes were found, displaying 121 polymorphic sites and 278 parsimony
informative sites. For the 16S gene, 162 different haplotypes were found, displaying 277
polymorphic sites and 235 parsimony informative sites. For the 12S gene, 164 different
haplotypes were found, displaying 412 polymorphic sites and 369 parsimony informative
sites. Representatives of the mitochondrial diversity were also sequenced for the 28S gene
(62 specimens, including 2 outrgoups). Overall, the variability for the 28S gene was less
important than for the mitochondrial genes, with 127 polymorphic sites and 94 parsimony
informative sites.

3.2. Phylogenetic analyses: single-gene data sets
Modelgenerator results indicated that GTR + I + G model was the best-fit model of
evolution for the four genes analyzed (COI: I = 0.47, α = 0.55; 16S: I = 0.56, α = 0.6; 12S: I
= 0.3, α = 0.6 and 28S: I = 0.63, α = 0.4). Parameters of the models were estimated during
the maximum likelihood and bayesian analyses for both single-gene and concatenated
datasets (see below). For each gene analyzed, no supported conflict was found between the
different analyses. In each of the four single gene analyses, the consensus tree showed the
Terebridae to be monophyletic however, the relationships within terebrids were generally
poorly resolved, with few well-supported clades (Supplementary data 1-4). Therefore only
the results obtained for the combined datasets CD1 and CD2 are presented.

3.3. Phylogenetic analyses: combined data set 1 (CD1)
The best-fit model of evolution was GTR + I + G (I = 0.45, α = 0.59). Topologies derived
from ML analyses of the combined data set 1 (CD1) were congruent with the topology
derived from BA analyses. From these combined analyses, the Terebridae were found
monophyletic, CD1, Posterior Probabilities PP = 0.99, Bootstraps B = 96% (Fig. 4). Within
the Terebridae, the five major clades, Pellifronia, Oxymeris [= Acus], Terebra, Hastula and
Myurella (clades A-E, respectively) previously identified in Holford et al. (2009a) were
recovered. Each were still strongly supported (PP > 0.90, B > 70%), and the topological
relationships among the clades were similar, e.g., clades B-E were grouped together (PP =
0.99, B = 90%) (Fig. 4, and see Fig. 2 in Holford et al. (2009a). A sixth clade, hereafter
designated as clade F, is novel in the molecular analysis and presented here for the first time.
Intra-clade relationships for clades A-F are detailed in Figures 5 and 6, and some shells are
illustrated for each clade in Figure 7. Clade F appeared to be the sister group to clades B-E,
although the corresponding node is not supported (PP = 0.93, B = 46%). It is comprised of
six newly-sampled species, four from South Madagascar, one from Australia and one from
New-Zealand. The species composition of clade A remained unchanged compared to
Holford et al., 2009a and 2009b, still including a single species, and appearing to be the
sister group to all the other clades (althgough without statistical support). A newly-sampled
species from South Mozambique was added to clade B, now totalling eight species (PP =
0.99, B = 100%). Three newly- sequenced species, one from South Madagascar, one from
South Mozambique, and one from Philippines and the Solomon Islands, were added to clade
C, now comprising nineteen species (PP = 0.99, B = 73%). Clade D included eleven species,
of which one species, sampled in Madagascar, was new to the taxon set (PP = 1, B = 100%).
Clade E contained five well-supported subclades (E1-E5), but the relationships among these
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were in general poorly resolved. Clade E1 (PP = 1, B = 96%) included eleven species of
which one, from Vanuatu and Australia, was new to the taxon set. Two newly-sequenced
species, one from New Caledonia and one from Vanuatu and South Madagascar, were added
to the thirteen species previously included in clade E2 (PP = 1, B = 97%). Clade E3 (PP =
0.97, B = 66%) included five species of which two, from the Coral Sea and Solomon Islands
respectively, were new to the taxon set. Clade E4 (PP = 1, B = 75%) was new to the taxon
set, with six species from Pacific Panama. Two newly-sampled species from Madagascar
were added to clade E5, now comprising eight species (PP = 1, B = 94%).

Molecular analyses highlighted several incongruencies at the genus and species levels. With
the exception of three genera (Oxymeris – clade B, Pellifronia – clade A and Terenolla –
clade E1, the last two represented each by a single species), all the analyzed genera were
found to be non-monophyletic. Clade B comprises eight species of the genus Oxymeris. As
previously found (Holford et al., 2009a), clade C consists of 6 species of Triplostephanus
and 13 of Terebra (s.s.), including Terebra subulata, the type species of Terebra. Clade D
comprises eight species of Hastula and one Duplicaria. Clade E, the largest clade in terms of
number of species, comprises primarily species of the genera Myurella, Clathroterebra,
Terenolla, Hastulopsis, Strioterebrum, and the “Terebra” textilis-group (Terryn, 2007).
However, as shown in Holford et al. (2009a), all these genera (except Terenolla) are
polyphyletic, with species of each genus placed in several of the five clades E1-E5.
Specifically, Myurella species were found in E1, E2, E3 and E5, Clathroterebra in E1 and
E3, Hastulopsis in E1 and E5, Strioterebrum in E1 and E2, and species of Terebra (s.s.) are
distributed in clades C, E2, E3, E4 and E5. Also, the addition of newly sampled species
impacted the generic composition of clade E. For example, clade E2 now includes two
species that were attributed to Duplicaria, D. baileyi and a new species D. sp3, and one
species currently attributed to Triplostephanus. A newly sampled species, currently
attributed to Hastulopsis (H. pseudopertusa), was included in clade E5. The new lineage,
clade F, includes both Duplicaria and Euterebra species.

At species level, plumbeum, pertusa, strigilata, succincta and textilis each end up in two
distinct clades, revealing cryptic species. The COI pairwise genetic distances (K2P) between
the two clades were 9.6% for plumbeum, 9.9% for pertusa, 6.4% for strigilata, 12.47% for
succincta and 7.73% for textilis. Fourteen different lineages (five in the genus Terebra, three
in Strioterebrum, three in Duplicaria, and one each in Myurella, Triplostephanus and
Hastula) were not identified to species level and may represent new species. Conversely,
two specimens identified as Triplostephanus cumingii and Terebra punctatostriata (Clade C,
Fig. 5) share almost identical sequences (no difference in the 16S gene and only four
mutations in the 12S gene); revealing initial misidentification and/or synonymy of a species
in the T. anilis complex.

3.4. Phylogenetic analyses: combined-gene data set 2 (CD2)
The best-fit model of evolution was GTR + I + G (I = 0.58, α = 0.55). The combined data
set 2 (CD2) included 62 specimens for which at least two mitochondrial genes and the
nuclear 28S gene were available. Topologies derived from both ML and BA analyses using
CD2 were similar and consistent with the topology derived from analyses of the CD1 data
set (Fig. 8). The family Terebridae was confirmed monophyletic (PP = 1, B = 89%). The
nine clades (A-D, E1, E2, E3, E5 and F) represented in this dataset were also strongly
supported, for some of them with PP and/or B superior to the supports obtained in CD1
analysis. Relationships between and within the main clades are generally similar, except for
some non-supported nodes. For example, clade A is sister-group to all the other terebrids in
CD1, but in CD2 its position is inverted with clade F.
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3.5. Evolution of foregut characters
Reconstruction of the evolution of the proboscis (character 1) clearly demonstrates that it
was lost six times in Terebridae: in clades F, B, E1 (all species), and partially in clades E2,
E4, and E5 (Fig. 9A). The venom gland (character 2) was lost eight times – in clades F, B,
and E1 (all species), and partially in clades E2 (twice), E4 (twice), and E5 (Fig. 9B). In
many lineages the odontophore (character 3) is completely absent (including all species
having hypodermic marginal radular teeth) (Fig. 9C). Reconstruction of the presence of the
odontophore showed that it was lost in most of the clades independently. It is present in
clades A and F, and in some species of clades D, E3 and E2. It is vestigial, and hardly
discernable in Hastula strigilata, to the extent that its presence was revealed only on serial
histological sections (J.D.Taylor, personal communication). It is possible that a rudiment of
the odontophore may be present in some other species of Hastula as well. Reconstruction of
the presence of accessory proboscis structure (character 4) showed that it appeared
independently in clades E1, E2, and E4 (Fig. 9D).

Reconstruction of the presence of the radula and of the morphology of marginal radular
teeth (character 5) revealed a complicated evolutionary history of radular transformations
(Fig. 9E). The radula was lost several times: in the entire clades B and E1, and in some
species of clades E2 and E5. The most parsimonious ancestral state for the Terebridae
radular teeth is the duplex type. Duplex teeth are variable in shape: in some species (Terebra
succincta, clade E3, and Clathroterebra poppei – Figs. 2 B-C) the limb also has a thickened
edge, while in Pellifronia jungi (Fig. 2A) the limb edge is not thickened. Analysis suggests
that duplex teeth are the most parsimonious ancestral state for the entire clade E and that flat
teeth originated from duplex ones in clade E2. Analysis was not able to resolve a single most
parsimonious state for clade D, with duplex and semi-enrolled teeth being equally
parsimonious. Solid recurved teeth appeared in the single clade F. Semi-enrolled teeth were
found so far in a single of the species examined here, Hastula stylata (Fig. 3Q). Teeth of
rather similar shape were recorded in Hastula bacillus (Taylor and Miller, 1990). Finally,
hypodermic teeth appeared independently three times – in clade C, in clade D and in the
single species, Myurella kilburni, from clade E5. However, the structure of the hypodermic
teeth is slightly different in these three lineages. In the species belonging to clade C (Fig.
3A-G), the teeth are slender, have a constriction at the base, and usually a basal spur, i.e. an
anterior projection on the base of the tooth. Another important character for the hypodermic
radula of clade C is that the teeth are attached to the subradular membrane at their bases. In
species of clade D (Hastula spp.), the hypodermic teeth are conical, without constriction at
the base and without spur. Contrary to the species of clade C, the teeth are attached along
most of their length to the subradular membrane. Species in clade D can have a barb or
blade at the tip of the tooth. In Hastula hectica the walls of the tooth are penetrated by
numerous holes as previously described (Imperial et al., 2007) (Fig. 3J). The only species in
clade E5 with hypodermic teeth (Myurella kilburni) has teeth with a peculiar syringe-like
shape, with very narrow, attenuated distal end (slightly less than half of tooth length) and
broad and probably rather flacid basal part of the tooth. As the specimen examined was
badly damaged, it was not possible to examine the radula of the single species of clade E4,
Terebra elata, that possesses a venom gland, although the presence of a venom duct was
noticed (Holford, personal observation) and the presence of a radula is highly probable.

Although found in several species, such as Triplostephanus fenestratus and Hastula hectica,
the presence or absence of the accessory salivary glands cannot be confirmed without
histological sections and therefore the character was excluded from the analysis.
Reconstruction of the presence and absence of salivary glands (character 6) suggested
independent loss in one species of clade B (Oxymeris felina), in most species of clade E1, in
one species of clade E5 (Hastulopsis minipulchra) and one species of clade E2 (Duplicaria
sp. 3) (Fig. 9F).
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Bayestraits analyses revealed that the evolution of several characters is strongly correlated.
As shown in Table 4, the results from Bayestraits analyses indicate that the evolution of the
proboscis and the venom gland, of the proboscis and the radula (presence/absence), of the
venom gland and the radula (presence/absence) and of the odontophore and the radula
(solid/hypodermic) are all strongly correlated with bayes factors > 10. Additionally, the
evolution of the proboscis and salivary glands, of the venom gland and the salivary glands,
and of the radula (presence/absence) and the salivary gland are weakly correlated with bayes
factors between 5 and 10 (Table 4).

4. Discussion
A robust phylogenetic context was used to both clarify the phylogenetic relationships of the
Terebridae and to provide a framework to trace the evolution of several anatomical features
linked to the venom apparatus, a key innovation of the Conoidea. The molecular phylogeny
of the Terebridae presented here was based on an extended dataset compared to the previous
large-scale phylogeny of the group (Holford et al., 2009a, 2009b; Puillandre et al., 2011),
tripling the number of specimens, doubling the number of species to include twelve out of
the fifteen accepted genera, extending the sampled diversity to the West-Indian Ocean, and
including an additional nuclear gene that strengthened the initial phylogeny exclusively
based on mitochondrial genes. Analysis of terebrid foregut anatomy for the characters
related to the presence of a venom apparatus, namely proboscis, venom gland and radula,
and other characters, such as odontophore, accessory proboscis structure and salivary
glands, identified unexpected evolutionary traits within the Terebridae, with implications for
the whole superfamily Conoidea. Summarized below are our findings on the taxonomy,
venom apparatus evolution, and predator-prey and toxin relationships in the Terebridae.

4.1. Taxonomy
The phylogenetic trees in this analysis confirmed the monophyly of the family Terebridae
(Holford et al., 2009a, 2009b) and the existence of five major clades previously identified as
Pellifronia, Acus [now Oxymeris], Terebra, Hastula, and Myurella, clades A-E, respectively
(Holford et al., 2009a). A novel result for terebrid molecular analysis is the discovery of a
new lineage, Clade F, which includes Euterebra and Duplicaria species, and appears to be
the sister group to Clades B-E.

Our results suggest that taxonomic diversity of the family Terebridae is still inadequately
understood. In several cases molecular data suggest the existence of at least two distinct
species within what has been identified as a single morphospecies. In three cases (S.
plumbeum, H. pertusa and T. succincta), the two cryptic species identified morphologically
as one, were collected sympatrically, i.e. co-occuring in the same region, and sometimes
syntopically, i.e. co-occuring at the same sampling station. This is the case for H. pertusa
with includes two molecular species sampled at the same station in Santo, Vanuatu. The
detection of several new cryptic lineages emphasizes that species diversity in the family
Terebridae may be underestimated. Additonally, among the ca. hundred species analyzed in
this study, about twenty could not be attributed to a species name according to the
taxonomic literature, suggesting that they could represent new species or nominal species
currently treated as synonyms.

Increasing the geographic and species diversity of Terebridae analysed in the molecular tree
demonstrates that the current genus-level classification of the group is not tenable. Most of
the genera recognized in the last working identification guide of the family are non-
monophyletic (10 out of the 12 genera analyzed). For example, the genus Duplicaria,
sampled for the first time in this study, represented by six species in our sampling, was
found in three distinct clades (D, E2 and F). This was an unanticipated finding since
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Duplicaria, which is characterized by a shell axially ribbed, and a well- marked suture
doubled on the whorls by an axial sculpture on the subsutural band (Terryn, 2007), is widely
accepted in the taxonomy community and was one of the unambiguous genera recognized
by Bratcher and Cernhorsky (1987). Similar problems were observed for Terebra and
Myurella, where species were found in five (C, E2-5) and three (E3-5) distinct clades,
respectively (see also Clathroterebra, Hastulopsis, Strioterebrum, Triplostephanus – Figs.
5-6). These examples imply that shell morphology, used to describe the diversity of
terebrids, can be misleading at both genus and species levels, and can lead to an incorrect
classification of the family.

Despite the extensive sampling efforts deployed to complete the taxonomic coverage, our
dataset is still not exhaustive. It covers less than one quarter of the species diversity of the
family, with 100 analyzed species out of the ~ 400 currently accepted species (WORMS –
www.marinespecies.org), representing 12 out of the 15 currently accepted genera. Further
sampling is needed to obtain the missing genera Granuliterebra, Microtrypetes and
Pristiterebra. In addition, among the genera analyzed, numerous type-species are not
represented. Considering that recent studies have shown that most terebrid genera are non-
monophyletic, it will also be essential to include the numerous synonymised genera.
Although further taxonomic investigations are needed to stabilize the classification of the
family, the phylogeny presented here provides a robust framework to analyze the evolution
of several characters linked to the venom apparatus in the Terebridae.

4.2. Venom apparatus evolution
The formation of the venom gland and the appearance of the feeding mechanism of
Conoidea was the initial key apomorphy of the group (Kantor and Puillandre, in press). The
unique mechanism of prey envenomation is the most outstanding character of Conoidea and
includes use of individual marginal radular teeth (detached from the subradular membrane)
at the proboscis tip for stabbing and injecting neurotoxins into prey (Taylor et al., 1993).
Teeth of very different morphologies, i.e. not only hypodermic, are used in a similar manner.
This was observed directly (e.g., Kohn, 1956) and inferred from serial sectioning of different
conoideans (Kantor and Taylor, 1991). Until recently, the Terebridae remained relatively
poorly studied anatomically and existing data confirmed a great disparity of anatomy of the
foregut, with loss of major organs, including proboscis, venom gland and radula in many
species. Nevertheless, due to the absence of a robust phylogeny, the evolution of the foregut
remained largely uncertain, and loss and apparition of novel features were considered
ancedotal. The results from this study indicate that the evolution of the venom apparatus is
not straightforward, as key features, together with the loss of various structures of the
foregut anatomy, have arisen independently on at least three occasions within terebrids.
These anatomical modifications appear to be the rule rather than the exception.

Terebridae were always treated as a major independent lineage of Conoidea until the recent
molecular phylogeny of the Conoidea superfamily was published (Puillandre et al., 2011).
The Conoidea molecular phylogeny suggests that Terebridae is a sister group of the family
Turridae (s.s.), the component species of which can possess a venom gland, a radula with
strong subradular membrane, and have duplex marginal teeth. The discovery of true duplex
teeth, and flat teeth, their derivatives in Terebridae was thus quite unexpected. Prior to this
study only two types of radula were known in Terebridae, solid recurved teeth and
hypodermic teeth. Duplex teeth appeared to be the ancestral state for the entire family
Terebridae and this is consistent with the Turridae and Terebridae being sister- groups.
Clade A, represented at the moment only by Pellifronia jungi and likely the sister clade to all
other terebrids, has similar radula to that of Turridae.
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As suggested by the Bayestraits analyses, the reduction and losses of foregut characters in
many lineages of the Terebridae are not casual and have a functional explanation. All
species possessing a venom gland have a corresponding radula and proboscis, as the bayes
factors >10 for these characters indicate (Table 4). This is explained by the peculiarities of
conoidean feeding mechanism, where envenomation of the prey requires the aid of the tooth
gripped at the proboscis tip and used for stabbing the prey, or channelling the toxins through
the internal lumen of hypodermic teeth. Currently, feeding of radulate terebrids was
observed only in different Hastula and Terebra species with hypodermic radular teeth
(Marcus and Marcus, 1960; Miller, 1970, 1979; Taylor, 1990; Taylor and Miller, 1990). The
observations established that these species fed in a similar manner to other conoideans, with
the use of marginal teeth at the proboscis tip. The prey reported were various sedentary
polychaetes, mostly spionids. A characteristic feature of terebrid feeding is the well-
developed rhynchostomal introvert, which is playing an active role in capturing and
engulfing the prey.

Analysis of the anatomical characters revealed that hypodermic teeth originated three times
independently in Terebridae, in clades C, D, and in a single species from clade E5, Myurella
kilburni. As detailed in the results section, the hypodermic teeth of these three groups appear
to be rather different (Fig. 3). Independent apparitions of hypodermic teeth suggest
increasing the effectiveness of prey envenomation. A very interesting peculiarity was found
in Hastula cinerea and H. hectica, both in clade D, where in most of the specimens
examined, a tooth was held at the proboscis tip even when the species was not feeding,
concealed within the proboscis with its base resting on the large sphincter (Marcus and
Marcus, 1960; Imperial et al., 2007). This can be explained by the presence of a relatively
strong subradular membrane and tough attachment of the teeth to the membrane. In Hastula,
because the teeth in the radular cecum are still attached to the membrane, they cannot be
immediately used for stabbing prey when required. In the process of radular growth, the
oldest part of the membrane, situated in the radular cecum, is permanently destroyed and the
teeth are dislodged. When the tooth is separated from the membrane, it is transferred to the
proboscis tip, where it is presumably held until it is used. This is also assumed for members
of the other families of “turrids” that have a strong subradular membrane. In most turrid
specimens examined, there was a tooth at the proboscis tip held by the sphincter(s) (Kantor
and Taylor, 1991).

Although nothing is known on the feeding of species with duplex/flat teeth, it is reasonable
to suppose that they are used on the proboscis tip in a manner similar to other conoideans
with non- hypodermic teeth. In this respect it was interesting to find in Terebra textilis at the
proboscis tip flat teeth very similar to those of Terebra trismacaria (Fig. 2D). A group of
four teeth attached to the subradular membrane was found in the buccal tube somewhat
posterior to the proboscis tip. It is obvious that in this case the teeth cannot be used
separately for stabbing the prey, but the mechanism of transport of the teeth from radular sac
to the proboscis tip persists in this species. A probable explanation in this case represents an
intermediate stage of reduction of radulae and transition to feeding without use of marginal
teeth at the proboscis tip.

An odontophore is present in species that have a more or less strong subradular membrane
and non-hypodermic radular teeth (bayes factor >10, Table 4). It is large and powerful in
species of clade F, Duplicaria and Euterebra, which lack proboscis and venom gland and
therefore do not utilize teeth for stabbing and envenomation of the prey. A well-developed
odontophore suggests that the radula is functioning as a whole organ only, probably for
transferring the prey from rhynchodaeum to oesophagus. There is no observation on feeding
of species of this clade and diet is known for only one species with similar anatomy, Terebra
nassoides, feeding on capitellid polychaetes (Taylor, 1990). Similarly to species with
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hypodermic radulae, an active role of the introvert in prey capture was also shown in
Terebra gouldi, a species lacking venom apparatus, radula and proboscis. and that preys on
the enteropneust Ptychodera flava, which is swallowed alive.

While reduction of the venom gland provides economy of energy that is otherwise used for
producing toxins and constant formation of the radula, the rhynchostomal introvert, which is
present and well-developed in all terebrids, may explain the numerous independent losses of
the venom gland and associated organs. With the rhynchostomal introvert present, feeding
becomes possible without stabbing and envenomation of the prey. In addition, the proboscis
also becomes unnecessary, as its primary function, gripping the tooth, does not exist any
more. The muscular buccal lip, which is well developed in radular-less species, serves for
transferring the swallowed prey further into oesophagus. Although very little is known about
diet of terebrids with such foregut anatomy, Miller (1975) suggested that they feed on
different hemichordates. The family Raphitomidae is the only other taxon of Conoidea that
possesses a developed rhynchostomal introvert. In that family numerous independent
reductions and losses of the venom gland and radula were hypothesized (Kantor and Taylor,
2002). It was also suggested that these reductions were connected with the role of introvert
in prey capture.

Bayestraits analysis revealed only weak correlations between presence of the salivary glands
and proboscis, and of venom gland and presence/absence of radula (bayes factors between
6.68 and 8.38, Table 4). The low bayes factors suggest that salivary glands are not directly
involved in process of envenomation of the prey. It should be noted however, that the
salivary glands of cone snail species Conus pulicarius contained peptide toxins when
analysed by transcriptome data (Biggs et al., 2008). The functions of the accessory proboscis
structure remain unclear as its presence is not correlated with other foregut structures. It was
suggested that it has chemosensory functions (Taylor, 1990; Taylor and Miller, 1990). The
present data supports the idea that the accessory proboscis structure is not used directly in
feeding processes, but may be related to detection of the prey.

4.3. Predator-prey and toxins
Numerous terebrid lineages have lost the venom apparatus, and by contrast the lineages that
kept it each developed novel anatomical features, such as hypodermic marginal radular
teeth. The components of the venom apparatus, radular, venom duct, venom bulb, and
proboscis, were thought to be so complicated that they certainly evolved once or twice.
However, the Terebridae acquired or lost similar structure several times, resulting in an
anatomy sometimes convergent with that of other conoideans. In the Terebridae alone, a
remarkable finding is that the hypodermic teeth, in association with reduction of the
odontophore, have likely evolved on multiple and independent occasions. Additionally, the
detailed anatomy demonstrates not only different origins of the teeth but also suggests
differences in functional use. Analysis of radular evolution in the entire Conoidea indicate
that besides terebrids, hypodermic teeth appeared only once in a major clade that unites the
families Conidae, Conorbidae, Borsoniidae, Clathurellidae, Mitromorphidae, Mangeliidae
and Raphitomidae (Kantor and Puillandre, in press).

The diversity of foregut anatomy in the single family Terebridae is as large as in the whole
superfamily Conoidea, which includes 14 other families. For example, all major types of
conoidean radular marginal teeth were recorded in the Terebridae. From prototypic duplex
teeth they evolved: solid recurved teeth, which appeared independently in some
Pseudomelatomidae; flat teeth, which appeared from duplex in some Drilliidae; and
hypodermic teeth, which appeared independently in common ancestor of a major clade of
Conoidea (Bouchet et al., 2011; Kantor and Puillandre, in press). Moreover, the flat
triangular teeth of some Terebridae are unique among Conoidea. The overview of the
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foregut anatomy presented in this study revealed an inordinate diversity of features in the
family Terebridae. These results suggest that predator-prey relationships have played an
important role in the evolutionary history of Terebridae. Indeed, repeated innovations in the
foregut anatomy of terebrids suggest that they adapted to different diets (e.g., deposit-
feeding or carnivorous polychaetes). To date, this hypothesis remains untested as the prey of
most of the analyzed terebrid species are unknown. This could be analysed by direct
observation, or by indirect approaches, such as DNA-barcoding of the gut contents (Garros
et al., 2008; Oliverio et al., 2009) or analysis of stable isotopes composition (Fujikura et al.,
2009).

Based on the hypothesis that the diversity of foregut structures in the Terebridae is linked to
the diversity of feeding types and preys, it could also be argued that the species diversity of
the Terebridae could be linked to the prey diversity, and thus to foregut anatomy. However,
the results also illustrate that several species may share an apparently identical foregut
structure, suggesting that the diversity of the foregut and the prey are not the only factor at
the origin of the species diversity in the Terebridae and other features of the prey-capture
system should be investigated e.g., reduced dispersion abilities and geographical isolation
(Bouchet, 1981; Duda and Palumbi, 1999; Cunha et al., 2005; Meyer et al., 2005; Cunha et
al., 2008; Castelin et al., 2010), or differential selection by abiotic factors such as depth
(Chase et al., 1998; Quattro et al., 2001; Zardus et al., 2006). Given the rate of evolution of
conopeptides in cone snails, it can be argued that various Terebridae species evolved
different toxins as an answer, or a consequence, to prey adapation. Integrative approaches
will be employed to complete the phylogeny of the Terebridae, identify their respective
preys, and compare their foregut anatomy and the peptide toxins they produce. An integrated
approach is not only a promising way to identify the factors that led to the diversification of
the Terebridae and potentially the (co-)evolution of their prey, but is also a step forward in
the characterization of novel terebrid toxins with novel function and potentially new
therapeutic applications. Terebrids have clearly evolved different responses to the costs and
benefits of having a venom apparatus under varying conditions. Using, for example,
phylogenetic independent contrasts (Felsenstein, 1985b), the large-scale phylogeny
presented here could assist in analysing the potential correlation between the anatomical
innovations developed by the Terebridae and various biotic and abiotic parameters.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

An expanded molecular phylogeny of venomous marine snails Terebridae is presented. >
Six characters associated with the venom apparatus are used to map terebrid evolution. >
Hypodermic teeth and other innovations have likely evolved on multiple occasions. >
Multiple radular origins may reflect variable functionalities associated to feeding. >
Terebrids may have adapted to dietary changes following predator-prey relationships.
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Figure 1.
Map showing localities sampled for Terebridae study. AU, Queensland, Australia; CH,
Coral Sea; FI, Fiji; SMA, South Madagascar; MO, Mozambique; NMA, North Madagascar;
NNC, North New Caledonia; PA, Pacific Panama; PH, Philippines; SNC, South New
Caledonia; SO, Solomon Islands; TA, Tahiti; VA, Vanuatu.
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Figure 2.
Flat (A-E) and solid recurved (F-G) teeth of Terebridae. A – Pellifronia jungi
(IM_2007_30591), ventral view of radular membrane, only half shown; B – Clathroterebra
poppei (IM_2007_30546), ventral view of radular membrane; C – Terebra succincta
(IM_2007_30582), separate marginal tooth; D – Terebra trismacaria (IM_2007_30579),
ventral vies of radular membrane; E – Myurella lineaperlata (IM_2007_30635), group of
teeth attached to the subradular membrane; F – Euterebra fuscolutea (IM_2009_10133),
ventral view of radular membrane, only half shown; G – Duplicaria sp. 2 (IM_2009_10164),
ventral view of radular membrane, only half shown. Scale bars – 10 μm.
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Figure 3.
Hypodermic (A-O) and semienrolled (Q) teeth in Terebridae. Clade C (A-G): A, B –
Terebra cingulifera (IM_2007_30382); C – Triplostephanus fenestratus (IM_2007_30418);
D-E – Triplostephanus triseriatus (IM_2007_30404); F-G – Terebra guttata
(IM_2007_30376);. Clade E5 (H-I) – Myurella kilburni (IM_2007_30461); Clade D (J-P):
J- K – Hastula hectica, Philippines, Panglao Island; L – Hastula lanceata (IM_2007_30535);
M-N – Hastula penicillata (IM_2007_30540), N – central part of the radular membrane; O-P
– Hastula strigilata (IM_2007_30607); Q – Hastula stylata (IM_2009_10106). Scale bars: 50
μm (except E, G, P – 10 μm).
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Figure 4.
Likelihood phylogenetic tree obtained with 410 specimen sequences for the COI, 12S and
16S genes. Boostraps and Posterior Probabilities are indicated for each node (when > B =
70% and > PP = 0.90 respectively). The ten collapsed clades of Terebridae (A, B, C, D, E1,
E2, E3, E4, E5 and F) are detailed on Figures 2-5.
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Figure 5.
Likelihood phylogenetic tree for clades A, B, C, D, F. Boostraps and Posterior Probabilities
are indicated for each node (when > 70 and > 0.90 respectively). For clarity purposes,
intraspecific support values are not shown.
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Figure 6.
Likelihood phylogenetic tree for the clades E1-E5. Boostraps and Posterior Probabilities are
indicated for each node (when B > 70% and PP > 0.90 respectively). For clarity purposes,
intraspecific support values are not shown.
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Figure 7.
Illustration of some specimens in each clade. From left to right: Clade A: Pellifronia jungi
IM_2007_30539; Clade B: Oxymeris maculata IM_2007_30370, Oxymeris crenulata
IM_2007_30377, Oxymeris dimidiata IM_2007_30379; Clade C: Terebra argus
IM_2007_30383, Terebra guttata IM_2007_30387, Terebra funiculata IM_2007_30394,
Triplostephanus fujitai IM_2007_30482, Terebra cingulifera IM_2007_30485, Terebra
tricolor IM_2007_30493; Clade D: Hastula strigilata IM_2007_30416, Hastula hectica
IM_2007_30426, Hastula albula IM_2007_30437; Clade E1: Terenolla pygmaea
IM_2009_10121, Hastulopsis pertusa IM_2007_30388, Clathroterebra fortunei
IM_2007_30391, Myurella affinis IM_2007_30415; Clade E2: Terebra fijiensis
IM_2007_30423, Terebra succincta IM_2007_30433, Terebra textilis IM_2007_30451,
Myurella lineaperlata IM_2007_30471, Duplicaria sp. 3 IM_2009_10151; Clade E3:
Terebra succincta IM_2007_16731, Myurella orientalis IM_2007_30515; Clade E4:
Terebra elata IM_2007_42111, Terebra larvaeformis IM_2007_42113, Terebra puncturosa
IM_2007_42116, Terebra berryi IM_2007_42144; Clade E5: Myurella undulata
IM_2007_30384, Myurella paucistriata IM_2007_30453, Terebra sp. 5 IM_2007_30946;
Clade F: Euterebra fuscolutea IM_2009_10112, Duplicaria albofuscata IM_2009_10162
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Figure 8.
Likelihood phylogenetic tree obtained with 63 specimens sequences for the COI, 12S, 16S
and 28S genes.
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Figure 9.
Character mapping of the six characters presented in the Table 2. Bootstraps are shown for
each node.
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