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Abstract
Engineered cartilage based on adult mesenchymal stem cells (MSCs) is an alluring goal for the
repair of articular defects. However, efforts to date have failed to generate constructs with
sufficient mechanical properties to function in the demanding environment of the joint. Our
findings with a novel photocrosslinked hyaluronic acid (HA) hydrogel suggest that stiff gels (high
HA concentration, 5% w/vol) foster chondrogenic differentiation and matrix production, but limit
overall functional maturation due to the inability of formed matrix to diffuse away from the point
of production and form a contiguous network. In the current study, we hypothesized that
increasing the MSC seeding density would decrease the required diffusional distance, and so
expedite the development of functional properties. To test this hypothesis, bovine MSCs were
encapsulated at seeding densities of either 20 or 60 million cells per mL in 1%, 3%, and 5% (w/
vol) hyaluronic acid (HA) hydrogels. Counter our hypothesis, higher concentration HA gels (3%
and 5%) did not develop more rapidly with increased MSC seeding density. However, the
biomechanical properties of low concentration (1%) HA constructs increased markedly (nearly 3-
fold with a 3-fold increase in seeding density). To ensure that optimal nutrient access was
delivered, we next cultured these constructs under dynamic culture conditions (orbital shaking) for
9 weeks. Under these conditions, 1% HA seeded at 60 million MSCs per mL reached a
compressive modulus in excess of 1 MPa (compared to 0.3-0.4MPa for free swelling constructs).
This is the highest level we have reported to date in this HA hydrogel system, and represents a
significant advance towards functional stem cell-based tissue engineered cartilage.
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Introduction
Articular cartilage injuries and disease result in focal defects with limited intrinsic capacity
for regeneration. The presence of a defect requires that adjacent cartilage bear an increased
proportion of joint load [1], which increases local stresses and the likelihood of continued
degeneration and development of osteoarthritis [2, 3]. An ideal repair material would
completely integrate to fill the defect with a cartilage-like material possessing functional
load-bearing characteristics [4]. However, meeting of this high benchmark for functional
repair remains an elusive goal. Current regenerative strategies that deliver ex-vivo expanded
autologous chondrocytes (ACI/ACT) [5] or promote endogenous healing via bone marrow
stimulation (microfracture) [6] may improve patient outcomes in the short term, but
functional restoration of the tissue has yet to be demonstrated [7].

An alternative approach is to engineer de novo cartilage in vitro for implantation within a
cartilage defect. Indeed, recent work utilizing chondrocytes in specialized media conditions
and 3D hydrogels has produced constructs that match or exceed native tissue values for
equilibrium modulus and proteoglycan (PG) content [8–11]. However, the clinical shortage
of healthy chondrocytes and the co-morbidity associated with their harvest [12] are
considerable limitations. Mesenchymal stem cells (MSCs) are a precursor cell population
that can be obtained from patient bone marrow and expanded in vitro to clinically relevant
numbers without losing their ability to undergo chondrogenic differentiation [13]. MSCs
have been combined with countless biomaterials for cartilage tissue engineering [14], but no
such combination has yet achieved mechanical properties that approach native tissue or
engineered chondrocyte-based cartilage [15, 16].

One approach for improving the functional maturation of MSC-based engineered cartilage
may be to increase the initial cell density within a construct. Here, the rationale is that with
more point sources for matrix production, the functional contiguity of matrix should occur at
an earlier time in culture, and formed matrix should be concentrated to a greater extent. With
chondrocytes cultured in alginate and agarose, when provided a sufficient supply of
nutrients, increasing seeding densities does increase mechanical and biochemical outcomes
[17, 18]. MSCs likewise depend on seeding density, where up to ~10 million MSCs/mL
increases expression of cartilage matrix associated genes compared to lower densities [19].
However, recent studies using both agarose and alginate hydrogels show no improvement in
mechanics at higher MSC densities with continual exposure to pro-chondrogenic media [20–
22]. Indeed, in alginate gels, there appeared to be a maximum in matrix production per cell
occurring in the range of 25 million cells/mL, with both higher and lower densities leading
to inferior outcomes [20].

Additional cues from the microenvironment, including biomolecular identity of the
supporting 3D network [20] as well as its biophysical properties [23] can influence
functional matrix elaboration. Our recent work with a photo-polymerizing hyaluronic acid
(HA) hydrogel [24, 25] showed that when MSCs were encapsulated (at a density of 20
million cells/ml) in hydrogels of 1, 2, and 5% (w/v) macromer concentrations, the most
robust constructs developed in the 1% formulation. This improved matrix functionality
occurred despite the fact that higher levels of cartilage matrix-related gene expression and
matrix synthesis (per construct) occurred in the higher macromer density constructs [26, 27].
Histological analysis showed that in high density gels, discrete lacunae of poorly distributed
matrix formed, while in 1% gels a well distributed and contiguous ECM was established.
Overcoming these limitations in the distribution of matrix may increase the potential of
higher HA macromer density hydrogels for functional development while also taking
advantage of their greater initial strength and dimensional stability.
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To test this hypothesis, the objective of this work was to determine whether an increase in
MSC seeding density would enhance tissue engineered cartilage properties in high
macromer concentration HA hydrogels, and specifically whether this increase would be
mediated by improved matrix connectivity (Fig. 1). Towards this end, HA hydrogels of 1, 3,
and 5% macromer density were seeded at either 20 or 60 million MSCs/mL and cultured for
4 and 8 weeks in a chemically defined pro-chondrogenic media formulation. At each time
point, construct maturation was evaluated via assessment of biomechanical, biochemical,
and histological properties. Further, under the best conditions derived above, we evaluated
growth of high seeding density constructs under dynamic culture (orbital shaking)
conditions.

Methods
Hyaluronic Acid Hydrogel Synthesis

Methacrylated HA (MeHA) macromer was synthesized by reacting methacrylic anhydride
(Sigma, St. Louis, MO) and 74 kDa HA (Lifecore, Chaska, MN) followed by 1H NMR
characterization (25% methacrylated) as previously described [24]. Lyophilized MeHA was
sterilized by exposure to a biocidal UV lamp for 15 minutes. Macromer was dissolved to 1,
3, and 5% (mass/volume) in sterile PBS with 0.05% photoinitiator Irgacure-2959 (2-
methyl-1-[4-(hydroxyethoxy)phenyl]-2-methyl-1-propanone; Ciba-Geigy, Tarrytown, NY).

MSC Isolation, Expansion, and 3D Culture
MSCs were isolated from three to five juvenile bovine femurs as in [15], expanded through
passage 3, combined, and encapsulated at 20 or 60 million cells/mL in 1%, 3%, and 5% (w/
v) MeHA. Gels were polymerized via UV exposure (10 min) between glass plates separated
by 2.25 mm [28] and 4 mm diameter punches used to create MSC-laden hydrogel cylinders.
MSCs were also encapsulated within agarose (Ag; 2% w/v; Type VII, Sigma, St. Louis,
MO) as a well established control [15]. All constructs (1 ml/construct) were cultured in a
chemically defined medium supplemented with TGF-β3 (10 ng/ml, R&D Systems,
Minneapolis, MN) [28]. Constructs were cultured in non-tissue culture treated 6-well plates
with media changes occurring thrice weekly. In a second series of studies, using only the
high density 1% HA formulation, constructs were cultured on an orbital shaker (Bellco,
Model #7744, Vineland, NJ) rotating at 1.2 rpm for the entire culture duration [29]. This
‘dynamic culture’ group was accompanied by a ‘static culture’ control group treated
identically.

Mechanical and Biochemical Analysis
At defined time points (4 and 8 weeks for macromer study, 3, 6, and 9 weeks for shaking
study), construct mechanical properties and biochemical content was assessed. The
unconfined equilibrium compressive modulus was derived from a stress relaxation test (10%
strain; 1000 sec relaxation) [30]. After equilibration, the dynamic modulus was determined
by applying 5 sinusoidal cycles of compression at 1 Hz (1% strain amplitude) [31]. After
testing, each construct was weighed and digested in papain before analysis of DNA, sulfated
glycosaminoglycan (sGAG), and collagen content [15]. DNA content was analyzed using
the Picogreen dsDNA assay kit (Molecular Probes, Eugene, OR), sulfated
glycosaminoglycan (sGAG) using the 1,9-dimethylmethylene blue (DMMB) dye binding
assay, and the orthohydroxyproline (OHP) was measured and converted to collagen as
previously described [32–34].
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Histological analysis
To assess viability, samples were halved diametrically and stained with calcein AM and
ethidium homodimer (LIVE/DEAD kit; Invitrogen). Additional constructs were fixed in 4%
paraformaldehyde, paraffin embedded, and sectioned (8 μm). Sections were stained for
collagens (picrosirius red) and proteoglycan (alcian blue) before imaging at 100X
magnification.

Statistical Analysis
Statistical analyses were performed using SYSTAT (v13, San Jose, CA). Three-way
ANOVA was used with formulation (1, 3, 5% MeHA, and Ag), seeding density (20 or 60
M/mL), and time (0, 4, and 8 weeks) as independent variables. Two-way ANOVA was used
with time (3, 6, and 9 weeks) and culture condition (dynamic and static) as independent
variables. Fisher’s post hoc tests were used to make comparisons between groups, with
p<0.05 indicating significant differences. Experiments were repeated in full at least once,
with consistent findings between replicates; data from one replicate are presented here.

Results
Construct formation and mechanical properties with increasing seeding density

Increasing the initial MSC seeding density from 20 (20M) to 60 million cells/mL (60M)
increased viable cell density (Fig. 2A, Day 1 images shown). Increased cell number did not
compromise viability at any HA concentration at later time points (not shown). While an
increase in cellularity was achieved, our starting hypothesis was not borne out by
experimental findings. Namely, the compressive properties of higher macromer density (i.e.,
3% and 5%) HA constructs did not increase with an increase in MSC seeding density. While
the modulus (EY) of 20M 3% HA constructs increased to 51 kPa by 8 weeks, tripling the
seeding density to 60M did not change construct properties (56 kPa) (Fig. 2B). In 5% HA
gels, EY reached 66 kPa at 20M and 72 kPa at 60M (Fig. 2B). However, EY of 1% HA
constructs reached 121 kPa at 20M, and was nearly 3-fold greater (313 kPa) at 60M (p<0.05;
Fig. 2B). Consistent with our previous findings [22], Ag control constructs did not increase
at higher seeding densities, reaching 138 and 126 kPa at 20M and 60M, respectively (Fig.
2B). The dynamic modulus followed a similar trend for all groups (where 3% and 5% HA
constructs increased with time, but did not increase further at higher MSC seeding densities,
Fig. 2C). The dynamic modulus of 20M 1% HA constructs reached 1.10 MPa while their
60M counterparts reached 1.97 MPa at 8 weeks (p<0.05; Fig. 2C). Ag controls increased
with time and seeding density, reaching 0.78 MPa (20M) and 1.11 MPa (60M) after 8 weeks
(p=0.001).

Biochemical content and distribution with increasing seeding density
Consistent with these observed changes in functional properties, sGAG content in 20M 1%
HA constructs reached 3.5% wet weight (%ww) while 60M constructs reached 4.8% ww, a
value similar to native bovine cartilage (Fig. 3A) [35]. The 3% HA constructs reached 1.8%
ww (20M) and 2.1% ww (60M) sGAG content, while the 5% HA constructs reached 1.2%
ww (20M) and 1.4% ww (60M) sGAG content (Fig. 3A). sGAG content in the 2% Ag
constructs reached 1.9% ww (20M) and 3.0% ww (60M). Collagen content showed differing
trends; in 60M 1% HA constructs, collagen reached 1.0% ww, a level significantly less than
in the 20M constructs (1.8% ww, p<0.001, Fig. 4A). Similarly, 60M 3% HA reached 0.6%
collagen while 20M constructs reached 0.9%. Conversely, 20M and 60M 5% HA and 2%
Ag constructs were equivalent at 0.7% and 1.2% collagen, respectively (Fig. 4A).

Consistent with biochemical measures, proteoglycan staining in 60M 1% HA was more
intense than in the 20M group, while collagen staining was more intense for 20M samples
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(Fig. 3B and 4B). No differences in staining were observed in 3% or 5% HA, and increasing
MSC seeding density did not result in less aggregation of accumulated matrix proteins (Fig.
3B and 4B). Similar to 1% HA, the 60M 2% Ag control constructs were stained more
intensely for proteoglycan than their 20M counterparts (Fig. 3B).

Maturation of high density constructs with orbital shaking
Gentle mixing of the culture medium had a profound effect on the maturation of high MSC
density 1% HA constructs. Both the equilibrium and dynamic moduli of these constructs
doubled with dynamic culture, reaching over 1 MPa and 6 MPa, respectively, by 9 weeks
(Fig. 5A). sGAG and collagen content reached 4.8% (sGAG) and 4.5% (collagen), levels
30% and 29% greater than ‘static culture’ controls (Fig. 5B). Histological analyses
confirmed high levels of proteoglycan and collagen deposition in all groups, with slightly
higher collagen staining intensity in the ‘dynamic culture’ constructs (Fig. 5C).

Discussion
Engineered articular cartilage may be ideal for the restoration of focal defects, but only if it
has the capacity to achieve mechanical properties matching that of native tissue. The
objective of this study was to determine if increasing the seeding density of MSCs in HA
hydrogels would enhance construct maturation, and whether the density of the surrounding
polymer chains would influence this process. We hypothesized that a greater MSC density
would be particularly important in higher macromer density HA (3% and 5%) gels, where
spatial distribution of large macromolecules is limited. This limited diffusivity of formed
matrix has been noted in other hydrogel systems as well (e.g., in fibrin/alginate composite
constructs of increasing concentration [36]). Contrary to our original hypothesis, increased
MSC density in 3% and 5% HA constructs did not improve matrix distribution,
accumulation, or the development of functional properties. Our previous work showed that
higher macromer concentrations of HA are less permissive to formed matrix distribution
[26] and the current findings indicate that even a 3-fold increase in MSC density does not
enable the formation of a functionally contiguous matrix in these higher macromer
concentration hydrogels. Conversely, a higher initial MSC density (60M) in low macromer
concentration (1%) HA constructs did increase the functional properties, with a nearly 3-fold
increase in equilibrium properties to 313 kPa (Fig. 2B) after 8 weeks of culture.
Interestingly, and in keeping with previous work, agarose constructs were independent of
seeding density [22]. These results highlight the fundamental differences between HA and
agarose hydrogels, and establish that functional gains can be achieved with higher seeding
densities, but that these changes are highly dependent on the material formulation employed.

In this work, we used a modified version of hyaluronic acid (HA) to form the stable,
covalently crosslinked backbone of the hydrogel. HA plays a critical role in anchoring large
proteoglycans in the cartilage extracellular matrix [37, 38]. Cells also interact directly with
HA through CD44 receptors, and this interaction can modulate cell migration, proliferation,
differentiation, and HA degradation [39]. Interestingly, HA added to human MSCs in
alginate increases cartilage matrix production [20], suggesting a direct biologic role for this
molecule as well. Human MSCs possess abundant CD44 receptors and undergo
chondrogenesis to a greater extent in these crosslinked HA networks compared to similarly
crosslinked (but bioinert) poly(ethylene glycol) (PEG) gels [25]. Like PEG, agarose is a
bioinert microenvironment that permits MSC chondrogenesis, but does not provide natural
adhesion sites and is not degradable and so precludes cell-mediated remodeling. This may in
part explain why increasing MSC density in HA constructs leads to greater functional
properties than agarose constructs.
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The ability for cells to remodel their microenvironment within the HA constructs is
particularly relevant when considering the biochemical and biomechanical differences
between the 20M and 60M 1% HA groups. The equilibrium modulus was ~3-fold greater in
the 60M group, while the sGAG concentration was only ~25% greater, and the collagen
concentration was lower, ~50% of the 20M constructs (Fig. 2–4). This disparity between
mechanical properties and biochemical constituents indicates that other factors may be
responsible for the significant increase in function observed. As cartilage develops, collagen
becomes more organized [35] and is better crosslinked, resulting in increases in cartilage
mechanical properties [40]. Likewise, expression analyses showed that MSCs differentiate
towards a chondrocyte phenotype in agarose, but that hundreds of genes remain
differentially expressed between the two cell types [16]. Therefore, the observed increase in
mechanics in low macromer density HA constructs may result from cell-mediated matrix
remodeling, or a contribution from other matrix constituents that were more highly
expressed in this natural HA microenvironment. Further analysis is warranted to identify
these key mediators of mechanical function.

The ability to remodel the surrounding matrix may also be critical for enhanced mechanical
function with increasing MSC density. Along these lines, increasing initial MSC seeding
density increased chondrogenesis on a per cell basis in a gelatin foam material, though
mechanical properties were not assessed in that study [21]. Similarly, Wang and colleagues
seeded umbilical cord MSCs at 5, 25, and 50 million/mL in a non-woven polyglycolic acid
mesh and reported that matrix accumulation and mechanical integrity increased as a function
of density [41]. Maher et al seeded 30 and 60 million MSCs/mL in a self-assembling peptide
hydrogel to promote integration in a gap model of cartilage repair. They reported that
hydrogel seeded at a higher MSC density formed a more cartilage-like material and
increased the integration strength [42]. Similar to the HA gel employed in the present work,
these studies were conducted in materials that are permissive to matrix remodeling and/or
degradation, which may offer insight into why they benefit from high MSC density unlike
agarose or other non-degradable materials. Current studies, using degradable linkages [25]
within our HA network will further analyze this important parameter.

It has also been noted that MSCs are particularly sensitive to nutrient supply [43]. To
address this concern, we cultured our best performing high density constructs (1% HA, 60
million cells/mL) in medium with continual agitation. This simple modification to the
culture environment resulted in profound increases in bulk mechanics and matrix
accumulation. Under these conditions, equilibrium properties reached levels in excess of 1
MPa, and sGAG content of 4.8% of the construct wet weight. These values match or exceed
native tissue levels, and represent the highest ever achieved in this HA system. While this
exact technique has not reportedly been used in conjunction with any other MSC-based
cartilage tissue engineering approach, perfusion and rotating wall bioreactors have been
utilized to increase nutrient transport for chondrocyte-based systems [44, 45]. Vunjak-
Novakovic et al observed significant increases in all biochemical and mechanical metrics
when chondrocyte seeded fibrous polyglycolic acid scaffolds were cultured in a rotating
wall bioreactor [46]. Conversely, work by Sheehy et al reported an adverse effect on the
growth of MSCs in agarose gels in a rotating wall bioreactor over 3 weeks [47]. In alginate,
Hannouche et al and found that MSC chondrogenesis was delayed compared to the same
MSCs in a collagen hydrogel [48] under rotational culture. These observations indicate that
material environments not only differentially regulate MSC differentiation and matrix
assembly, but also their response to dynamic culture conditions. Indeed, even in the case of
dynamic compression, MSCs do not initially respond favorably to this stimulus when
encased within an agarose hydrogel, but given time to mature and synthesize pericellular
matrix, a robust response follows [49]. Conversely, in HA gels, it appears that compressive
loading can be initiated at the outset of culture without any deleterious early effects, and in
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the long term this loading can promote more robust growth [50]. In the present study,
dynamic culture was initiated at the time constructs were formed, though the degree of
mixing was likely less than would occur in a rotating bioreactor system. The relationship
between material microenvironment and dynamic fluid environments requires additional
study to optimize this growth potential, and to understand the mechanisms governing this
response.

Conclusions
HA hydrogels formed at a macromer concentration of 1% offer a permissive
microenvironment to encapsulate MSCs at a high density (60 million/mL), resulting in
constructs with a compressive modulus of 313 kPa at 8 weeks, ~50% greater than our best
MSC-based results reported to date [22]. Dynamic culture accelerated the maturation of
these high MSC density 1% HA constructs, with native tissue mechanical (~1MPa) and
sGAG (4.8%) levels reached within 9 weeks of in vitro culture. These findings represent a
significant step towards the development of functional MSC-based engineered tissue for
cartilage repair.
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Figure 1.
Diffusion of formed cartilage matrix is limited within HA hydrogels of higher macromer
density (left). Increasing MSC seeding density may accelerate and improve matrix
connectivity (right) and so enhance the functional development of tissue engineered
cartilage.
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Figure 2.
(A) Calcein AM fluorescence 1 day after encapsulation confirmed differences in cell
seeding density while demonstrating high initial viability in both 20M (top) and 60M
(bottom) seeding density groups (100X magnification; 100 μm scale bar). (B) Equilibrium
(EY) and (C) dynamic modulus (|G*|) of MSC-laden methacrylated HA (MeHA) and
agarose (Ag) hydrogels at seeding densities of 20 million MSCs/mL (20M) and 60 million
(60M) MSCs/mL after 1 (white), 28 (grey), and 56 (dark grey) days of in vitro culture in a
chemically defined chondrogenic medium with TGF-β3 (10 ng/mL). (n=4 constructs per
group; bars indicate p<0.05)
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Figure 3.
(A) Concentration of sulfated glycosaminoglycan (sGAG) as a percent of the construct wet
weight (%ww) in MSC-laden methacrylated HA (MeHA) and agarose (Ag) hydrogels at
seeding densities of 20 million MSCs/mL (20M) and 60 million (60M) MSCs/mL after 1
(white), 28 (grey), and 56 (dark grey) days of in vitro culture in a chemically defined
chondrogenic medium with TGF-β3 (10 ng/mL). (n=4 constructs per group; bars indicate
p<0.05) (B) Alcian blue staining of proteoglycans after 56 days in MSC-laden HA and Ag
constructs at 20M and 60M seeding densities. (100X magnification; 200 μm scale bar)
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Figure 4.
(A) Collagen concentration as a percent of the construct wet weight (%ww) in MSC-laden
methacrylated HA (MeHA) and agarose (Ag) hydrogels after 56 days at seeding densities of
20 million MSCs/mL (20M) and 60 million (60M) MSCs/mL after 1 (white), 28 (grey), and
56 (dark grey) days of in vitro culture in a chemically defined chondrogenic medium with
TGF-β3 (10 ng/mL). (n=4 constructs per group; bars indicate p<0.05) (B) Picrosirius red
staining of collagen in day 56 sections of MSC-laden HA and Ag constructs at 20M and
60M seeding densities. (100X magnification; 200 μm scale bar)
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Figure 5.
(A) Equilibrium (EY) and dynamic modulus (|G*|) of static and dynamic culture of 1%
methacrylated HA (MeHA) constructs seeded at 60 million MSCs/mL after 3 (white), 6
(grey), and 9 (dark grey) weeks of in vitro culture. (B) sGAG and collagen concentration
after 3 (white), 6 (grey), and 9 (dark grey) weeks. (n=4–5 constructs per group; bars indicate
p<0.05) (C) Proteoglycan (left) and collagen staining (right) of week 9 constructs. (100X
magnification; 200 μm scale bar)
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