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A B S T R A C T

This paper presents a theoretical review of rapid eye movement sleep with a special focus on pontine-

geniculate-occipital waves and what they might tell us about the functional anatomy of sleep and

consciousness. In particular, we review established ideas about the nature and purpose of sleep in terms

of protoconsciousness and free energy minimization. By combining these theoretical perspectives, we

discover answers to some fundamental questions about sleep: for example, why is homeothermy

suspended during sleep? Why is sleep necessary? Why are we not surprised by our dreams? What is the

role of synaptic regression in sleep? The imperatives for sleep that emerge also allow us to speculate

about the functional role of PGO waves and make some empirical predictions that can, in principle, be

tested using recent advances in the modeling of electrophysiological data.
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1. Introduction

This review brings together two important themes in neurobi-
ology; the role of sleep in supporting the neuronal processes that
underlie consciousness and current formulations of the Bayesian
brain based upon Helmholtz’s notion of unconscious inference
(Helmholtz, 1866/1962). The resulting synthesis reveals a remark-
able convergence between an established theory of sleep
phenomenology (Hobson, 2009) and recent formulations of brain
function in computational terms (Friston, 2010). Specifically, this
synthesis provides answers to some fundamental questions about
sleep: for example, why is homeothermy suspended during sleep?
Why is sleep necessary for Bayes-optimal perception and learning?
Why do we dream? Why are we not surprised by our dreams? Why
do our eyes move in paradoxical sleep? Why are pontine-
geniculate-occipital (PGO) waves so exuberant in rapid eye
movement (REM) sleep? What is the role of synaptic regression
in sleep? Why is aminergic neuromodulation so central to sleep
processes? And so on. Furthermore, it accounts for some basic
neurophysiologic aspects of sleep and makes some specific
predictions about the functional anatomy of sleep.

In what follows, we review the nature and purpose of sleep in
theoretical terms and compare the ensuing predictions with
neurobiological data. This review is based on the notion that the
brain constitutes a generative model of its sensorium (Dayan et al.,
1995): This model or virtual reality has been considered previously
in terms of protoconsciousness (Hobson, 2009). According to the
protoconsciousness hypothesis; the brain is genetically equipped
with a model that generates a virtual reality during sleep and is
entrained by sensory input during waking. The basic idea
developed here is that sleep is essential to optimize this generative
model for Bayes-optimal learning and inference during wakeful-
ness.

In brief, this optimization is similar to post hoc model selection,
applied by scientists after acquiring data. We imagine that sensory
data are sampled during wakefulness so that the brain’s model can
be optimized or learned. Sleep corresponds to the process of post
hoc model optimization that prunes redundancy and reduces
complexity. The evolutionary imperatives for minimizing com-
plexity may be especially acute for the complex brains of mammals
(and birds) that exhibit REM sleep. Crucially, the cycle of model-
fitting and pruning emerges through spontaneous and self
organized iterations that are mediated by modulatory (aminergic
and cholinergic) neurotransmission. We show that the ensuing
activation, input-gating and modulation (AIM) model (Hobson,
2009) entails optimization processes that are exactly consistent
with the principle of free energy minimization (Friston et al., 2006).
See Fig. 1 for a summary of sleep phenomenology and the AIM
model.

In Section 2, we consider some of the physiological funda-
mentals of sleep and emphasize the important role of modulatory
neurotransmitters. We then focus on the endogenous excitation of
the brain by the PGO waves of REM sleep and consider their
relationship to similar activity in waking. Section 4 presents a free
energy formulation of sleep in terms of model optimization, based
on the empiricism of the preceding sections—our focus here is the
optimization of sensorimotor models in the PGO system, during
REM sleep. The final section revisits some key empirical issues and
concludes with specific predictions about the differences in
effective connectivity among components of the PGO system in
waking and sleep. This paper establishes the underlying theory and
predictions that we hope will be addressed in empirical research
over the next few years.

2. Sleep and neuromodulation

In this section, we look at the central role of sleep in relation to
basic physiology and homoeostasis that underwrites the brain’s
ability to make conscious and unconscious inferences about the
world. In particular, we emphasize the three-way relationship
between homeothermy, sleep and consciousness and how these
processes depend upon classical modulatory neurotransmitter
systems. See Table 1 for a summary. For simplicity, we will ignore
differences among species and focus on the neurophysiology of
sleep in cats and humans.

It is clear from the experiments of Allan Rechtschaffen that REM
sleep is related to the homeostatic control of body temperature,
including the temperature of the brain (Rechtschaffen et al., 1989).
The coexistence of elaborate corticothalamic circuitry, conscious-
ness and homeothermy in mammals (and birds) is striking and
suggests more than a casual correlation. By protecting the very
brain structures that support it, homeothermy may be necessary
for normal consciousness. Even small variations of brain tempera-
ture are devastating to consciousness. Fever destroys our ability to
read, much less cogitate. Cold is equally disruptive: one thinks only
of how to get warm again.

Neurons that secrete norepinephrine, serotonin and histamine
are quiescent in REM (Hilakivi, 1987). Without them animals
cannot maintain either waking or active homeothermy. The
simplest explanation for the association among REM, homeother-
my and consciousness is that REM and temperature control share a
common mechanism; namely, aminergic neuromodulation (Doch-
erty and Green, 2010). It is remarkable that REM sleep is the only
state of mammalian existence that is not associated with
homeothermy (Parmeggiani, 2007). An equally interesting finding
is that temperature sensitive neurons in the hypothalamus become
temperature insensitive in REM (Parmeggiani, 2003). This finding
is consistent with the temperature dependent behavior of Michel
Jouvet’s pontine cats: these poikilothermic animals stop producing
REM if they are cooled and only recover REM when warmed.
Furthermore, when humans suppress REM via sustained alcohol
ingestion they can develop delirium tremens, in which tempera-
ture control is compromised (Hobson, 1999).

These observations indicate that the neural mechanisms
underlying REM and homeothermy are linked at a brain stem
level and that homeothermy is suspended during REM sleep. What
evolutionary pressure could entertain such a risky physiology?
Animals do not enter REM sleep if ambient temperature is too high,
too low or too unstable (McGinty and Harper, 1976). So why do
animals produce REM sleep at all and why does it preclude
homeothermy? Clearly, REM sleep must provide an adaptive
advantage for those animals that possess it. We will suggest that



Fig. 1. (a) Standard sleep polygraphic measurements. These traces show 90�100 min cycles of rapid eye movement (REM) and non-rapid eye movement (NREM) sleep. The

traces show cycles for three subjects, where the blue lines indicate periods of REM sleep. Reports of dreaming are most common from sleep onset stage I (when dreams tend to

be fragmentary), late-night stage II (when dreams tend to be thought-like) and REM (when they tend to be long, vivid, hallucinatory and bizarre). Deep phases of sleep (III and

IV) occur in the first half of the night, whereas lighter stages (stages I and II) predominate in the second half. (b) The states of waking and sleep. These states have behavioral,

polygraphic and psychological correlates that appear to be orchestrated by a control system in the pontine brainstem. In this panel, the neuronal clock that controls these

states is depicted as a reciprocal interaction between inhibitory aminergic neurons and excitatory cholinergic neurons: aminergic activity is highest during waking, declines

during NREM sleep and is lowest during REM sleep; whereas cholinergic activity shows the reverse pattern. Changes in sleep phase occur whenever the two activity curves

cross; these are also the times when major postural shifts occur. The motor immobility during sleep depends on two different mechanisms: disfacilitation during stages I–IV

of NREM sleep and inhibition of motor systems during REM sleep. The motor inhibition during REM sleep prevents motor commands from being executed, so that we do not

act out our dreams. (c) Human sleep and age. The preponderance of rapid eye movement (REM) sleep in the last trimester of pregnancy and the first year of life decreases

progressively as waking time increases. Note that NREM sleep time, like waking time, increases after birth. Despite its early decline, REM sleep continues to occupy

approximately 1.5 h per day throughout life. This suggests that its strongest contribution is during neurodevelopment but that it subsequently plays an indispensable role in

adulthood. (d) The evolution of REM sleep. Birds and mammals evolved separately after branching off from the ancestral tree. Both birds and mammals are homoeothermic,

and both have appreciable cognitive competence. With respect to the enhancement of cognitive skills by REM, it is significant that both birds and mammals are capable of

problem solving and both can communicate verbally. (e) AIM model. This panel illustrates normal transitions within the AIM state-space from waking to NREM and then to

REM sleep. The x-axis represents A (for activation), the y-axis represents M (for modulation) and the z-axis represents I (for input–output gating). Waking, NREM sleep and

REM sleep occupy distinct loci in this space. Waking and REM sleep have high activation but different I and M values. Thus, in REM sleep, the brain is both off-line and

chemically differentiated compared with the waking brain. NREM sleep is positioned in the centre of the space because it is intermediate in all quantitative respects between

waking and REM sleep.

Adapted from Hobson (2009).

Table 1
Waking and REM sleep dreaming and consciousness: contrasting phenomenological, physiological and thermoregulatory factors.

Waking REM sleep

Phenomenology Perception entrained by sensation Perception sequestered from sensation

Abstract concepts Concrete concepts

Orientation preserved Orientation lost

Emotions restrained Emotions enhanced

Memory intact Memory for remote events unavailable

Behavior Adaptive Inactivated

Physiology Brain activated Brain activated

Input–output gates open Input–output gates closed

Aminergic modulation Cholinergic modulation

Homoeothermy Intact (in mammals and birds with REM sleep) Suspended (with closure of input–output gates)

Free energy Free energy minimized: Free energy minimized:

by suppressing prediction errors—including interoceptive

(thermoreceptor) errors

by suppressing the complexity of predictions—with no

(thermoregulatory) adaptive responses

J.A. Hobson, K.J. Friston / Progress in Neurobiology 98 (2012) 82–9884
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this advantage rests on optimizing the brain’s generative model of
its world; and that this optimization necessarily entails suppres-
sing exteroceptive and interoceptive input.

2.1. Dreaming and consciousness

REM sleep is the brain state most associated with dreaming
(Stickgold et al., 2001). In dreaming, many aspects of primary
consciousness are heightened, among them a sense of first person
agency, internally generated percepts including movement in
fictive space and strong emotions; especially anxiety, elation and
anger (Hobson, 2009). Associations, especially remote ones, are
enhanced (Spitzer et al., 1991). Conversely, many aspects of
secondary consciousness are weakened in sleep: critical judgment,
self-reflective awareness, awareness of awareness, orientation,
and memory itself are all in abeyance (Hobson, 2009). The most
parsimonious way of accounting for these reciprocal changes in
phenomenology is to associate them with the known shift in
neuromodulatory balance—aminergic neuromodulation is down,
while cholinergic and dopaminergic activity is up (Hobson et al.,
2000; Solms, 1997). These neuromodulatory mechanisms are an
integral part of the protoconsciousness hypothesis: REM sleep
(with its dreaming) is fundamental to waking consciousness.

Primary consciousness has been proposed to reflect the
machinations of a virtual reality generator that underlies
protoconsciousness (Hobson, 2009). Crucially, this virtual reality
generator corresponds exactly with the generative models that
underlie Helmholtzian perspectives on brain function (Helm-
holtz, 1866/1962; Barlow, 1974; Gregory, 1980; Dayan et al.,
1995; Friston et al., 2006); and, in particular, the free energy
principle (Friston, 2010). For both protoconsciousness and
Fig. 2. (a) PGO waves and their relation to REM sleep and eye-movements. (A): NREM-R

from NREM to REM sleep, biphasic (PGO) waves in LGB first appear as large single events (

signs of REM sleep become more prominent: atonia (EMG), desynchronization of corti

primary waves: Once a REM period is established, predominant PGO wave amplitude

movements. When there is rightward movement of the eyes (EOG-R), the corresponding

leftward movement (EOG-L) waves are larger in left LGB (dots). (c) The neuronal firing 

contralateral geniculate bodies are shown below. It can be seen that the ipsilateral PGO w

movement direction. PGO waves form in the two geniculate bodies and PGO burst cell act

of spikes prior to the eye movement and prior to the PGO waves. When the eyes move in 

wave is twice the amplitude of its ipsilateral counterpart.
Helmholtzian theories, the existence of a predictive mechanism
reduces the amount of surprise involved in encounters with
external reality (Hobson, 2009; Friston, 2010) and, as we will see
later, both call on the same neuromodulatory mechanisms.
Hermann von Helmholtz first suggested that the brain must
predict the consequences of its sensorimotor activity, in the form
of unconscious inference (Helmholtz, 1866/1962). This speaks to
the fact that the brain is not a mere reflex organ; it is a synthesizer
of sensation, perception and behavior. We suggest that the brain
systems responsible for this synthesis are unveiled in REM sleep.
One of the most pertinent systems in this regard is the pontine-
geniculate-occipital system.

3. The PGO system

Since Helmholtz’s description of the abnormal percepts
produced when abducens palsy patients attempted to move their
paralyzed eye (Helmholtz, 1860/1962), we have known that there
must be feed-forward information from the eye movement
command system in the brain stem to visual centers in the
thalamus and cortex. The discovery of the PGO waves during REM
sleep in cats provided scientists with a model system for
understanding predictive processes in the brain. This section
reviews some of the key findings in this area, which are reviewed in
terms of predictive coding and free energy minimization in the
next section. In brief, the evidence suggests that the PGO network
conveys information about eye movements in both waking and
REM sleep: however, the enhanced excitability of this system in
REM sleep, together with the absence of external visual input,
denotes convincing evidence that the brain can generate internal
percepts in REM sleep.
EM transition showing PGO waves in LGB (types I and II). During transition periods

type I waves). Waves become clustered with decreasing amplitude (type II waves) as

cal EEG (Cx), hippocampal- (HIP), and REMs (EOG). (b) Side-to-side alternation of

s alternate from one geniculate to the other, according to lateral direction of eye

 PGO wave cluster is larger in right LGB (dots) than in left. Conversely when there is

of a PGO burst cell is shown in the top trace. The PGO waves of the ipsilateral and

aves are larger in amplitude. In (d) the brain is schematically depicted to reveal eye

ivity in the pons. When the eyes move ipsilaterally (left panel), the cell fires a cluster

the opposite direction (right panel), the burst cell is silent and the contralateral PGO
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3.1. A brief history of PGO waves

PGO waves are large (250 mV) biphasic EEG deflections
recorded from the pontine brain stem (P), the lateral geniculate
body (nuclei) of the thalamus (G) and the posterolateral cortex (0)
of the cat during REM sleep (Fig. 2). We now know that PGO-like
activation also characterizes REM sleep in humans and that all
sensory systems, not just vision, are affected (Hong et al., 2008). It
is significant that they were initially called activation waves and
likened to visually evoked potentials (Calvet and Bancaud, 1976).
However, although PGO waves can arise in response to external
stimuli, they are primarily of internal origin (Bizzi and Brooks,
1963; Brooks and Bizzi, 1963).

PGO waves were first observed in 1957 by Mikiten and Hendley
in the lateral geniculate body (LGB) of anaesthetized cats but their
natural physiology was only appreciated when Michel Jouvet
observed them in the REM sleep of cats in 1959. It was Jouvet who
named them PGO waves; and from the very start emphasized their
possible interpretation as internal signals of obvious significance
for dream theory. Were they, Jouvet wondered, the long-sought
dream stimuli? If so, might they have the power to unseat Freud’s
repressed infantile wishes as the instigators of dreams? For a
while, PGO waves were thought to propagate from the brain stem
to cortex via the thalamus but later work showed the pathways to
be independent (Hobson et al., 1969; Laurent et al., 1977). Thus the
notion of quasi-visual excitation gradually gave way to the
sensorimotor integration paradigm that we emphasize here.

Subsequent work on the PGO wave generation system has not
only supported Jouvet’s notion about a possible sensory simulation
role in relation to dreaming but greatly enriched our understand-
ing of prediction in the brain. In the early days of sleep research in
cats, it was not unusual to find that only one of two bipolar twisted
wire electrodes was placed accurately enough to reveal geniculate
waves. This meant that they were initially regarded as quantifiable
REM sleep signatures but were not considered sensorimotor
integration signals. It was only when both lateral geniculate body
electrodes, in the two sides of the thalamus, recorded bilateral
waves that a visible difference in amplitude was apparent: When
the eyes moved to the right, the PGO wave in the right LGB was
double the amplitude of the wave in the left and vice versa. The
same rule applied to the waves in posterolateral cortex. The brain
was obviously broadcasting sensory predictions with its motor
commands. This is the very essence of predictive processing, as
conceived by Helmholtz over 150 years ago (Helmholtz, 1866/
1962).

But are PGO waves genuinely internal predictions of upcoming
movement or are they merely the consequences of movement?
How are PGO waves generated neuronally? What is their timing in
relation to ipsiversive and contraversive eye movements? Answers
to these crucial questions awaited cellular analysis of the brain
stem: As part of an extensive set of studies of pontine brain stem
neuronal activity in sleep, Nelson et al. (1983) were able to identify
neurons in the parabrachial region of the far-lateral pons that they
called PGO burst cells, because they fired in clusters during REM
sleep. This firing preceded every high amplitude PGO wave in the
LGN and every ipsiversive eye movement. In short, they were able
to show that the ipsilateral geniculate PGO wave followed the
burst of pontine neuronal firing that anticipated the actual
movement of the eye. See Fig. 2.

3.2. The neuropharmacology of PGO waves

An appreciation of the PGO system in the context of Lorente de
No’s vestibulo-ocular reflex (VOR) concept was naturally pursued
by the vestibular physiologist Ottavio Pompeiano, who together
with Max Valentinuzzi analyzed PGO waves in decerebrate cats.
Pompeiano and Valentinuzzi demonstrated that the waves could
be potentiated by systemic physostigmine, indicating that
acetylcholine might play a role in their generation. That the
aminergic neuromodulator, serotonin, might hold PGO waves in
inhibitory check was suggested by Raymond Cespuglio, who
cooled the midline raphe system with a thermode and thereby
released torrents of PGO waves. A similar conclusion was reached
by Dana Brooks, whose parasagittal pontine brain stem knife cuts
released ipsilateral waves and eye movements. It thus looked as if
the PGO system, like REM itself, was cholinergic (on) and aminergic
(off).

Confirmation of the cholinergic enhancement and aminergic
inhibition of PGO waves and REM sleep rests on studies using drugs
that promote or impede neurotransmission in these systems; see
(Hobson, 2009). These studies illustrate the sophisticated chemical
control of REM by the brain. One surprising observation is the
absence of a functional deficit, even after prolonged suppression of
REM caused by drugs that inhibit MAO (monoamine oxidase) and
thus enhance aminergic inhibition by preventing the enzymatic
breakdown of NE and 5-HT. A possible explanation of this paradox
is that these drugs do the work of REM by artificially boosting the
aminergic system, normally rested in REM.

Another finding of great interest is the uncoupling of PGO
Waves and REM caused by the microinjection of cholinergic
agonists into the burst cell zone of the far-lateral pons (Silberman
et al., 1980; Datta et al., 1992). It is not surprising that this
experimental intervention immediately triggers ipsiversive eye
movements and large ipsilateral PGO waves, but it is remarkable
that no increase in REM is observed until 24 h later. This effect lasts
for ten days and cannot be due to the persistent presence of the
drug, leading to the hypothesis that cholinergic regulation of REM
is in the far-lateral pons, while the trigger zone is more paramedian
in a region itself devoid of cholinergic neurons.

3.3. PGO waves and prediction

The specificity of the REM sleep-PGO wave association was
challenged by Adrian Morrison (Bowker and Morrison, 1976), who
observed that unpredicted stimuli in waking were associated with
robust PGO waves. Repeated stimuli (which were no longer
surprising) failed to elicit these waves. Morrison held that PGO
waves reflected the shift in attention needed to analyze an
unpredicted (surprising) stimulus: He showed that he could elicit
‘‘startle waves’’ in sleep but they were less likely to habituate when
successive stimuli were presented than in waking. Although
Morrison did not interpret his results this way, sleep could be said
to involve dishabituation of the startle response. Such dish-
abituation is maximal in REM sleep: put another way, REM sleep is
associated with dishabituation of PGO-system activity. This
explanation resonates with the physiology of aminergic neuro-
transmission: demodulation leads to cholinergic potentiation
(Hobson, 2009) and hints at a function of surprise or prediction
error reduction for REM that will become central in the next
section.

Are dreams then our subjective awareness of unbridled startle
system activity? If so, why do we rarely experience subjective
surprise when dreaming? (Merritt et al., 1994) This question is
particularly pertinent to the surprise reduction supposed to be
afforded by the PGO system in sleep. Are we made incapable of
surprise in dreams because our percepts are the result of top-
down predictions in the thalamocortical system? Or is dream
memory so impaired that we do not notice novelty? This question
cries out for investigation. Our working hypothesis is that dreams
ought to be more surprising than they are. Since dream
bizarreness reduces to orientation discontinuity and incongruity
– and includes cognitive uncertainty, which is not as unpalatable
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as it would be in waking – we need to explain why we are almost
never as startled as we would be if we were exposed to such
unpredictable stimuli in waking.

The important observations of Nelson et al. (1983) described
above indicate that the ipsilateral geniculate receives a signal that
the eyes are about to move before they have actually done so. The
information is thus fed forward (and not back) in compliance with
Helmholtz and the later notion of efference copy (von Holst and
Mittelstaedt, 1950). Nelson et al. also demonstrated that while the
excitability of PGO burst cells was about six times greater in REM
sleep than in waking, the feed-forward timing relationship
between cell firing and eye movement remained unchanged. This
meant that predictions about the consequence of eye movements
was indeed generated in both states of brain activation and that the
generator was much more active when off-line (in REM) than when
on-line (in waking).

Subsequent work on the pontine parabrachial region has
revealed its significant complexity (Datta and MacLean, 2007) but
its functional role does not change with respect to our theoretical
treatment. In short, the notion that REM sleep engenders a virtual
reality is not only supported but reinforced by neurophysiologic
data. The virtual reality system is not only active in REM sleep but it
is powerfully amplified. This conclusion provides a possible
answer to Leonardo da Vinci’s provocative question: Why does

the eye see a thing more clearly in dreams that it does when we are

awake? (Hobson and Wohl, 2005). It seems possible that our visual
brains are more strongly excited during sleep than in waking—
generating virtual predictions are freed from the task of explaining
ambiguous and noisy sensations. Besides its obvious import for a
scientific theory of surrealism, it would appear that our nocturnal
visions (which we call dreams) are evidence of an epigenetically
grounded auto-activation system that is designed to simulate
reality. This system is far more robust than subjective experience
indicates, because our memory of dreams is evanescent at best.
This raises the question of why our dream recall is so
impoverished: Perhaps we evolved not to remember our dreams
because dreams are the subjective epiphenomena of the nocturnal
products of our virtual reality generator and contain no new
information.

Until recently, we have had no way of appreciating what
function such a mindless activation of the brain might mean. Now,
we suggest that REM sleep is a state of the brain that enables
essential housekeeping functions, upon which waking conscious-
ness depend. This theory specifies the direct cognitive benefits of
REM—just as temperature control is abetted by a state of
poikilothermy, so memory function may be enhanced by an
amnesic state. The abundant evidence for a functional link
between REM sleep and learning in waking is beyond the scope
of this review. The interested reader is referred to recent reviews of
this intriguing hypothesis (Stickgold and Walker, 2007; Diekel-
mann and Born, 2010). We will focus on the more basic question—
how can the brain learn when a sleep?

3.4. Summary

We have seen that there is an intimate relationship between
REM sleep, homeothermy and consciousness that rests on
neuromodulatory mechanisms. This relationship poses an impor-
tant question: what is the evolutionary advantage of REM sleep
that permits the suspension of homeothermy and that requires the
suspension of sensory processing? Important clues lie in the
phenomenology of the PGO system that bears all the hallmarks of a
predictive system: PGO waves fulfill the requirements of both
oculomotor command signals and corollary discharge that allow us
to predict the visual consequences of eye movements. Their
similarity with the electrophysiological correlates of startle
responses again speak to a predictive role: a role that reinforces
a view of the brain as a predictive organ that can generate virtual
realities (hypotheses) to test against sensory evidence.

The paradox we have to address is that these predictive PGO
discharges appear to be augmented during REM sleep, by
cholinergic mechanisms, while aminergic neurotransmission gates
the sensations that are predicted. How could this paradoxical state
of affairs confer evolutionary advantage? We have alluded to the
answer in terms of optimizing the brain’s model of its world to
provide better predictions. In the next section, we review a more
formal account of prediction and perception in the brain. This
account shows how optimization processes can persist in the
absence of sensory input and why this requires the suspension of
sensory processing; including the processing of interoceptive
signals that elicit homoeothermic responses.

4. A free energy formulation of sleep

This section considers sleep in terms of free energy minimiza-
tion (Friston, 2010). We first review the link between free energy
minimization and perception and then consider the difference
between perception during waking and sleep. Finally, we consider
how these different modes of perception emerge and are
maintained in terms of plausible neurobiological mechanisms.
The result is a formal description of neuronal dynamics and
plasticity during waking and sleep and their quintessential
differences. We will see that these differences can be attributed
to a single mechanism, whereby internal brain dynamics become
sequestered from the sensorium through neuromodulatory gating.
The final section revisits the phenomenology of PGO waves in the
light of this gating to make some empirical predictions. What
follows can be regarded as a free energy formulation of the AIM
model (Hobson, 2009).

4.1. The free energy principle

The free energy principle is based upon the idea that biological
systems resist a natural tendency to disorder (Ashby, 1947) by
acting on their environment to minimize something called surprise.
Surprise (also known as surprisal or self-information) comes from
information theory and quantifies the improbability of sensations,
under a model of the world entailed by the brain (Friston, 2010).
Because the average of surprise over time is entropy, minimizing
surprise enables biological systems to resist the second law of
thermodynamics, which says that their entropy or disorder should
increase with time. In other words, minimizing surprise allows
biological systems to navigate the world in an orderly and
predictable way. However, it is impossible to minimize surprise
directly. This is where free energy comes in: free energy is always
greater than surprise, which means that minimizing free energy
implicitly minimizes surprise and endows organisms with a
homoeostasis -so that they resist environmental perturbations to
the external (e.g., vestibulo-ocular reflexes) and internal milieu
(e.g., temperature control) (Ashby, 1947; Bernard, 1974).

The free energy principle formalizes our intuition about what
the brain is doing by regarding neuronal activity, neuromodulation
and neuronal plasticity as processes that minimize surprise or
prediction error. This formulation reveals two important things
about sleep: first, it discloses the precise functional or computa-
tional role for neuromodulation and, second, it shows that
optimization can proceed in the absence of sensory input. This
suggests a simple and essential role for sleep, in terms of
optimizing the brain’s model of its world. In brief, we will see
that surprise or free energy corresponds to the difference between
bottom-up sensory inputs and top-down predictions of those
inputs. This difference is known as prediction error, which means



Box 1. Free-energy

Fðs; mÞ ¼ DKLðQð#jmÞjjPð#jsÞÞ � ln PaðsjhÞ
¼ DKLðQð#jmÞjjPð#jhÞÞ � EQ ðln Paðsj#ÞÞ

Free energy and perception: Free energy is a function of a

probability density function Qð#jmÞ that describes or approx-

imates posterior beliefs about the causes #ðtÞ of sensory data

sðtÞ. These beliefs are encoded by sufficient statistics mðtÞ that

correspond to (changing) physical brain states. In the above

equation, h denotes the form or structure of the brain’s gener-

ative model that is needed to evaluate free energy. The first

equality shows that free energy is always bigger than surprise

�ln PaðsjhÞ, because the first (Kullback-Leibler divergence)

term is always greater than zero. This term is the difference

between the approximate and true posterior beliefs, such that

when free energy is minimized, Qð#jmÞ becomes the true

posterior Pð#jsÞ over the causes of observed sensory input.

This corresponds to Bayes-optimal perceptual inference, un-

der a generative model of the world (Helmholtz, 1866/1962;

Barlow, 1974; Gregory, 1980; Dayan et al., 1995; Friston et al.,

2006).

Generative models and action: To compute the free energy

one needs the probability density functions Paðsj#Þ and Pð#jhÞ.
These are known as the likelihood and priors in statistics.

Together, they comprise a generative model Paðs; #jhÞ ¼
Paðsj#ÞPð#jhÞ that expresses, probabilistically, how various

causes in the world conspire to produce sensory data. These

causes can be varied in nature; here we consider a (minimal)

partition that distinguishes between states of the world that

change quickly and causal regularities that change slowly.

Furthermore, we make a distinction between states and their

precision. The resulting three quantities are states, precisions

and parameters: # ¼ ðx; g; uÞ, where precision corresponds to

the inverse variance of random fluctuations of states. Poste-

rior beliefs or expectations about these quantities are repre-

sented by physical brain states: m ¼ ðmx; mg ; muÞ. Usually,

expectations about states are thought to be encoded by

synaptic activity, expectations about precision are encoded

by synaptic gain and expectations about parameters are

encoded by synaptic efficacy or connection strengths (see

Fig. 3). Action, denoted by aðtÞ, redeploys sensory epithelia

and therefore determines sensory samples; this dependency

is denoted by the subscript in the expression for the likeli-

hood: Paðsj#Þ.
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minimizing free energy is basically the same as suppressing
prediction error. Prediction errors can be minimized by either
changing the sensory input to match predictions or vice versa.
These two processes correspond to action and perception,
respectively. Crucially, the brain’s internal model of the world
can only minimize prediction errors if it provides accurate and
parsimonious explanations of sensory input. It is the optimization
of the brain’s model per se, in terms of its parsimony or complexity,
which we associate with sleep.

Free energy is a very important quantity in this review because
it allows us to link ideas about homoeostasis and surprise with
statistical concepts like inference and complexity. This means we
can contextualize the empirical observations of the previous
sections in terms of statistical computations that are implemented
by the brain. Box 1 defines free energy mathematically. Put simply,
free energy is a quantity that the brain can minimize to reduce
surprise. Unlike surprise itself, free energy can be measured by the
brain because it is a function of sensory data and internal brain
states. These internal states, like neuronal activity and connections
strengths, represent the hidden states or causes in the world
generating sensations. Changing these representations so that they
produce the smallest free energy (prediction error) corresponds to
Bayes-optimal perceptual inference (Helmholtz, 1866/1962;
Barlow, 1974; Gregory, 1980; Dayan et al., 1995; Friston et al.,
2006). Bayesian inference of this sort can be summarized as using
sensory information to update prior beliefs about the state of the
world (that are held before seeing sensory inputs) to produce
posterior beliefs (that emerge after seeing inputs). In our context,
these beliefs correspond to the most likely state of the world that is
encoded by neuronal activity and connectivity.

Clearly, prediction errors rest on the degree to which sensory
predictions are violated. These predictions depend on a generative

model that simulates how various quantities in the world conspire
to produce sensory data. It is called a generative model because it
can be used to generate sensory data, given the quantities that
cause those data (for example a particular object in the field of
view). Crucially, these quantities can change quickly (states of the
world) or slowly (parameters describing causal regularities or
contingencies that govern changes in states). Furthermore, there
is a distinction between the (deterministic) state of the world and
the (stochastic) certainty or precision with which it is expressed.
This means the brain has to represent states, parameters and
precisions: Beliefs about states are usually associated with
synaptic activity, beliefs about parameters correspond to synaptic

efficacy or connection strengths and beliefs about precision are
encoded by synaptic gain (see Fig. 3). Having established how the
brain may model different quantities in the world, we can now
examine the different ways in which free energy can be minimized
in waking. We will then show how REM sleep can, perhaps
paradoxically, minimize free energy in the absence of sensory
input.

4.2. Perceptual synthesis and prediction

The brain can only minimize free energy or prediction error
with respect to its internal states and action. Here, action
corresponds to the motion or configuration of effectors; for
example, the activity of alpha motor neurons in the spinal cord,
which are active in waking but inhibited in REM sleep (Evarts,
1964; Evarts and Thach, 1969; Pompeiano, 1967). Action redeploys
sensory epithelia and therefore determines which sensory inputs
are sampled. This means that prediction error can be minimized in
two ways, one can either act to ensure that sensory samples
conform to predictions or one can change predictions to match
sensory samples: These two processes can be regarded as action

and perception, respectively. Intuitively, this process of navigating
the world can be thought of as recurrent hypothesis testing
(Helmholtz, 1866/1962; Gregory, 1980), by confirming or dis-
confirming predictions from a virtual reality generator, whose
predictions are continuously updated and entrained by prediction
errors. To understand this intuitively, imagine feeling your way
around a dark room: your careful palpation of surfaces is informed
at every point by some internal scene that is constructed inside
your head. This virtual reality guides, and is guided by, sensory
feedback. Later, we will use the same metaphor to understand
vision and saccadic eye movements as visual palpation of the
world (O’Regan and Noë, 2001).

When we dream, we create an image of the world entirely
within our own brains that is unfettered by sensory feedback. To
generate these images or predictions we must have a near infinite
storehouse of virtual reality, because our dreams are so richly
textured from a perceptual point of view. For example, the dream
of a farm by its owner might represent that farm in a myriad
different ways, none of which conforms to the actual farm or to any
farm ever witnessed in waking. The dreamer is nonetheless
satisfied that the farm so fraudulently represented is his, because
there are no sensory prediction errors to indicate that his virtual
reality is anything but veridical: it is a farm and its condition can be
checked. We hypothesize that the reason such polymorphic



Fig. 3. This is a schematic summarizing a generative model of sensory data as a probabilistic graphical model, where the arrows denote statistical dependencies. This is just a

formal way of writing down various quantities in a model and how they depend on each other. A generative model can be regarded as a prescription of how to generate a

virtual reality and specifies the sorts of quantities required: Some quantities are variables that depend upon time, whereas others specify the causal architecture of the model.

These are usually considered to be real valued parameters u 2 R of equations describing the motion of hidden states xðtÞ 2 R and the mapping from hidden states to sensory

states sðtÞ 2 R (see Fig. 4). The text in the figure describes the nature of these quantities and how they may be encoded with biophysical or internal brain states. Hidden states

correspond to states of the world that generate sensory data; for example, the motion of a visual object and the nature of ambient light that conspire to produce some visual

impressions. The switching variables h 2 f0; 1g at the top can be regarded as priors or constraints on the parameters that determine whether a particular connection or causal

dependency among states exists or not.
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imagery is not experienced as fictive is because the intrinsic
defects in memory are not corrected by sensory input.

4.2.1. The good, the bad and the complex

However, in waking, internal predictions are held to account by
sensory input, which has to be predicted accurately without
explaining too much detail or sensory noise. In other words, the
best predictions are accurate but parsimonious explanations for
sensations. Mathematically, this means the predictions should
minimize complexity. Crucially, the imperative to minimize
complexity follows from the imperative to minimize surprise by
minimizing free energy. This can be seen by expressing free energy
as complexity plus sensory surprise. See Box 2. Complexity is the
difference between posterior and prior beliefs. Complexity reports
the degree to which prior beliefs have to be abandoned to predict
sensory samples accurately. Mathematically, this corresponds to
the degrees of freedom or number of parameters that are called
upon to explain data. A good model has low complexity and only
updates a small number of parameters to provide a parsimonious
explanation for observed data. This will be familiar to many as
Occam’s razor and is the essence of scientific reductionism:
explaining the maximum number of facts with the minimum
number of assumptions.

Crucially, prior beliefs about the model’s parameters can be
regarded as being encoded by the presence or absence of synaptic
connections in the brain. This means that complexity can be
suppressed by removing redundant synaptic connections and can
proceed in the absence of sensory data during sleep (Tononi and
Cirelli, 2006). In other words, the brain can continue improving its
generative model by reducing its complexity without any new
sensory information. Although this may seem counterintuitive,
there are many examples of this in the statistics literature, where it
is referred to as model selection (Friston and Penny, 2011).

Put simply, given a posterior belief (acquired during waking), it
is possible to optimize a generative model in a post hoc fashion,
after all the data have been observed (during sleep). There are
several examples of optimizing models by pruning connection
weights in the statistics literature (Williams, 1995; Ponnapalli
et al., 1999). These schemes basically remove connections if their
strength is insufficient to justify keeping them: see Friston and
Penny (2011) for a treatment of this in the context of Bayesian
model optimization, which can be considered a generalization of
automatic relevance determination (MacKay, 1995). We consider
post hoc model selection an important metaphor for the
optimization of generative models (virtual realities) during sleep.
In short, the brain’s model corresponds to the myriad of synaptic
connections encoding causal regularities in the world. During
waking, associative plasticity builds an accurate but overly
complex model that is simplified by synaptic pruning during
sleep (Tononi and Cirelli, 2006). The nice thing about formulating
things in terms of free energy is that one can regard experience-
dependent synaptic plasticity during waking as optimizing
posterior beliefs, while sleep can be regarded as optimizing prior
beliefs through synaptic pruning. Indeed, this separation into two
phases of optimization underlies the wake-sleep algorithm in
machine learning that minimizes free-energy to provide a
parsimonious and unsupervised model of data (Hinton et al.,
1995).

So why is it important to minimize complexity? Intuitively,
a model with low complexity will provide parsimonious



Box 2. Models and complexity

Fðs; mÞ ¼ DKLðQð#jmÞjjPð#jsÞÞ � ln PaðsjhÞ
¼ DKLðQð#jmÞjjPð#jhÞÞ � EQ ðln Paðsj#ÞÞ

The second equality above says that free energy is complexity

plus sensory surprise. Sensory surprise is just the improbabil-

ity of sensory samples, under posterior beliefs about how

those samples were generated. The first (complexity) term

is the divergence between posterior beliefs and prior beliefs:

it is called complexity because it reports the degree to which

prior beliefs have to be abandoned to predict sensory samples

accurately and minimize sensory surprise. Complexity corre-

sponds to the degrees of freedom or number of parameters

that are called upon to explain data. A good model has

low complexity and uses a small number of parameters

to provide a parsimonious explanation for observed data

(cf., Occam’s razor). One can unpack the complexity term as

follows:

DKLðQð#ÞjjPð#ÞÞ ¼ DKLðQðx; gÞjjEQðuÞPðx; gjuÞÞ þ DKLðQðuÞjjPðujhÞÞ
This decomposes complexity into a complexity over time

varying states (and their precision) and a complexity over

parameters. Crucially, prior beliefs about states are controlled

by posterior beliefs about parameters; while prior beliefs

about the parameters PðujhÞ are controlled by quantities h that

can be regarded as the presence or absence of a synaptic

connection. The key point here is that complexity can be

suppressed by changing prior beliefs (technically, these can

be empirical priors that depend upon model parameters or full

priors that depend on the model per se; these are the first and

second terms above). Intuitively, this means one can improve

models by removing redundant parameters to optimize prior

beliefs. In our context, this corresponds to pruning redundant

synaptic connections.
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explanations for sensory input that will generalize to different
situations. It is this ability to generalize that renders a model a
veridical representation of the world and enables surprises to be
avoided through action. In summary, changes in synaptic efficacy
and the expression or regression of synapses underlie the
housekeeping and consolidation functions discussed in the
previous section. As with all other brain functions, synaptic
homeostasis (Gilestro et al., 2009) can be regarded as an
optimization process; and can be formulated in a principled
and quantifiable way, as minimizing the complexity of generative
models employed by the brain. To see what this might look like
empirically, we need to consider how the brain minimizes free
energy, first when awake and then when asleep.

4.3. Predictive coding in the brain

There are many ways to model neuronal processing and
plasticity as minimizing free energy. The most popular is to regard
the brain as performing some form of predictive coding (Mumford,
1992; Rao and Ballard, 1999; Friston, 2008). In neurobiological
implementations of these schemes (Mumford, 1992), posterior
beliefs or predictions about states of the world are represented by
the activity of deep pyramidal cells at different levels in sensory
cortical hierarchies, while prediction errors are reported by
superficial pyramidal cells. Hierarchical signaling between super-
ficial and deep pyramidal cells optimizes predictions by minimiz-
ing prediction errors. This process rests upon recurrent forward
and backward message passing, where bottom-up prediction
errors drive neuronal representations at higher levels of the
hierarchy to provide better top-down predictions; thereby
suppressing prediction error at lower levels. This means that
neuronal activity self-organizes to encode a posterior belief about
the states of the world that is optimal in the sense of minimizing
prediction error throughout the hierarchy. This corresponds to
Bayes-optimal inference about how sensations are caused and is an
instance of the Bayesian brain hypothesis (Kersten et al., 2004).
Fig. 4 shows an example of this message passing scheme, which we
will return to later in the context of sleep.

4.3.1. Predictive coding and action

Crucially, prediction errors at the lowest (sensory) level are the
only prediction error that can be suppressed by action. In other
words, the only way that action can minimize free energy is by
cancelling kinesthetic or proprioceptive prediction errors. This is
exactly consistent with classical motor reflex arcs; in which top-
down predictions elicit a prediction error in (alpha) motor
neurons that contract extrafusal muscle fibers. This elicits
reafference from (stretch receptors in) intrafusal muscle spindles
until reafference matches descending predictions. An important
observation here is that motor command signals descending from
the cortex to the spinal-cord (or pontine nuclei) are predictions of
a top-down sort that engage classical reflex arcs to ensure
predictions are fulfilled. For example, in oculomotor control,
descending predictions from the oculomotor system not only
inform the visual system the about upcoming visual consequences
of eye movement (cf., corollary discharge) but actually cause that
movement. The resulting scheme is called active inference, in
which action is seen as an attempt to minimize surprise by
sampling predicted kinesthetic sensations (Friston et al., 2010).
This is exactly the functional anatomy implied by the neurophys-
iology of the PGO system.

Consider how active inference works in the context of the PGO
system during saccadic eye movements. Imagine a visual target
appears in the peripheral visual field. This will evoke sensory
predictions in the lateral geniculate body that will be passed to
occipital cortex. These prediction errors will drive deep pyramidal
cells in the cortex that encode an orienting saccade to the target.
Crucially, the saccade has both visual and proprioceptive
consequences that are encoded in the top-down predictions to
the LGB and pontine cranial nerve nuclei, respectively. The
proprioceptive predictions will elicit proprioceptive prediction
errors and an appropriate saccadic eye movement. Coincidentally,
top-down predictions to the early visual system will predict that
the target will appear in the fovea and, upon completion of the
saccade, will be in place to match visual input and thereby
suppress visual prediction error. Electrophysiologically, this
process would be observed as transient, stimulus-bound predic-
tion errors throughout the PGO system that correspond to startle
responses that portend an orienting saccade. We will see later that
the same processes are manifest in dreaming; but visual prediction
errors are subject to modulatory gating, leaving proprioceptive
prediction errors to drive rapid eye movements. In the dream
example above, the farmer is not just constructing a farm scene but
how he interacts with his virtual reality to generate both visual and
oculomotor predictions.

Active inference provides an embodied view of perception, in
which the brain actively samples the sensorium using both
exteroceptive and proprioceptive predictions. A useful way to
think about active inference is that the brain uses amodal
representations that are inherently embodied; for example, ‘I
am foveating a face’. This representation generates predictions of
both the visual and proprioceptive consequences of foveating a
face that are fulfilled in an internally consistent way. This is closely
related to the notion of seeing as ‘visual palpation’ (O’Regan and
Noë, 2001). This example is particularly relevant because many
dream faces do not accurately represent the dream characters to
which they are assigned (Kahn et al., 2000), anymore than the farm
scene corresponds to the dreamer’s real farm.



Fig. 4. This schematic details a neuronal architecture that optimizes the conditional or posterior expectations about hidden variables in hierarchical models of sensory input of

the sort illustrated in Fig. 3. These schemes are based on minimizing the free energy in Box 1 using a gradient descent and can be regarded as a generalization of predictive

coding. The particular example here focuses on the PGO system: It shows the putative cells of origin of forward driving connections that convey prediction errors from a lower

area to a higher area (red arrows) and nonlinear backward connections (black arrows) that construct predictions (Mumford, 1992; Friston, 2008). These predictions try to

explain (cancel) prediction-error in lower levels. In these schemes, the sources of forward and backward connections are superficial and deep pyramidal cells (triangles),

respectively, where units representing predictions and prediction error are drawn in black and red, respectively. If we assume that synaptic activity encodes posterior

predictions about states, then perceptual inference can be formulated as a gradient descent on free energy: this provides the differential equations shown on the right. Under

Gaussian assumptions, these posterior expectations can be expressed compactly in terms of precision weighted prediction-errors: ðjðiÞx ; jðiÞv Þ on the motion of hidden states

and causes at the ith level of the cortical hierarchy. Here, we have supplemented hidden states with hidden causes that, in hierarchical models, link hierarchical levels. The

ensuing equations suggest two neuronal populations that exchange messages; with state-units (black) encoding conditional predictions ðm̃ðiÞx ; m̃
ðiÞ
v Þ and error-units (red)

encoding prediction-error. In hierarchical models, error-units receive messages from the state-units in the same level and the level above; whereas state-units are driven by

error-units in the same level and the level below. These provide bottom-up messages that drive conditional expectations towards better predictions to explain away

prediction-error. Top-down predictions correspond to gð m̃ðiÞx ; m̃ðiÞv ; uÞ and are specified by the generative model, while the dynamics of hidden states are described by the

equations of motion f ð m̃ðiÞx ; m̃ðiÞv ; uÞ. This scheme suggests the only connections that link levels are forward connections conveying prediction errors to state-units and

reciprocal backward connections that mediate predictions. Note that the prediction errors that are passed forward are weighted by their conditional precisions, ðmðiÞg Þ, that we

have associated with the activity of aminergic and cholinergic neuromodulatory systems. Technically, the scheme in this figure corresponds to generalized predictive coding

because it is a function of generalized variables, which are denoted by a � such that every variable is represented in generalized coordinates of motion: for example,

m̃ ¼ ðm; m0; m00; . . .Þ. See (Friston, 2008) for further details. In this schematic, occipital cortex sends top-down predictions to visual cortex, which then projects to the lateral

geniculate body. However, occipital cortex also sends proprioceptive predictions to the pontine nuclei, which are then passed to the oculomotor system to cause movement

through classical reflexes. Predictions from the pontine nuclei are also passed to the lateral geniculate body. These predictions can be thought of as corollary discharge. Every

top-down prediction is reciprocated with a bottom-up prediction error to ensure predictions are constrained by sensory information.
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We will see later that this loss of representational accuracy is
completely understandable, because there are no visual prediction
errors in sleep to constrain representations. A salient example of
top-down predictions being under constrained by sensory
information is the illusion of a complete object in response to
incomplete cues; such as a colleague who suddenly appears under
his hat on the rack outside an office (Hobson, 2011). In short,
bimodal top-down predictions to visual and proprioceptive
streams can be thought of in terms of the distinction between
descending motor signals and corollary discharge. We will return
to this theme later when considering saccades in rapid eye
movement sleep, which we propose are elicited not by (geniculate)
visual prediction errors but by (pontine) proprioceptive prediction
errors.

4.3.2. Predictive coding and precision

A key attribute of prediction errors is their precision. Precision
determines the influence or potency of prediction errors. Precision
can be regarded as an estimate of the signal-to-noise or certainty
about predictions. The mathematical form of predictive coding
(Fig. 4) suggests that precision is encoded by the postsynaptic gain
of cells encoding prediction error. This means that cells with a high
gain broadcast a precise prediction error that has more influence
on higher levels of processing. This gain or precision has to be
optimized in the same way as any other posterior belief and
highlights the important role of the classical neuromodulators. For
example, we could associate the aminergic projections from the
locus coeruleus with an important source of gain control in the
early visual pathway and, implicitly, a representation of the
precision of sensory signals. Indeed, Aston-Jones et al. (1991) have
suggested that norepinephrine increases the signal to noise ratio of
neuronal firing to mediate attention, in a way that is exactly
consistent with theoretical predictions (Feldman and Friston,
2010). Conversely, one might assign cholinergic projections from
the nucleus basalis to a role in representing the precision of
prediction errors at higher levels in the cortical hierarchy. Another
key neuromodulatory mechanism is the effect of DA-1 agonists on
top-down processing (Noudoost and Moore, 2011), which again
fits comfortably with precision in predictive coding (Friston et al.,
2012). The relative precision of prediction error units at different
levels of a hierarchy has a profound influence on the inferential
dynamics and resulting predictions (Geisler and Albrecht, 1992; Yu
and Dayan, 2005). Precision or neuromodulation plays a central
role in our theoretical model of sleep because it has a profound
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influence on the optimization of synaptic activity, gain and
efficacy.

Mathematically, the advantage of formulating these optimiza-
tion processes in terms of free energy minimization is that we can
see how they depend upon each other. The upper panel of Fig. 5
lists the optimization processes using a standard mathematical
procedure called variational Bayes (Roweis and Ghahramani, 1999;
Beal, 2003): see figure legend for technical details. The key point to
take from this list is that the optimization processes map neatly
onto key neuronal processes: optimization of action corresponds
to motor control and behavior; the optimization of posterior
beliefs about states of the world (encoded by synaptic activity)
corresponds to perceptual inference; the optimization of posterior
beliefs about precision (encoded by synaptic gain) corresponds to
attentional processes and salience, while optimizing posterior
beliefs about parameters (encoded by synaptic efficacy) underlies
perceptual learning and memory.

The processes in Fig. 5 have been expressed as functions of
sensory surprise and other probabilities. We have done this to
show that optimal action is the only variable that depends
exclusively upon sensory surprise. This is very important because if
the precision of sensory prediction errors is suppressed by
aminergic gating during sleep, then there are no sensory surprises.
This means there is no optimal action; however, every other
optimization process or update can still proceed in the absence of
Fig. 5. This figure shows how the reciprocal interactions between cholinergic and amin

modulation plays a critical role in gating or enabling precise sensory information to

information, the brain’s optimization processes are no longer informed by precise senso

during waking (upper panel) and sleep (lower panel) are based on free energy minimiz

energy principle requires all internal brain states encoding posterior beliefs or condition

are based upon a standard variational Bayesian procedure (Beal, 2003) that allow us unp

Fig. 3) there is a corresponding update. These updates are computed using conditional exp

sensory prediction error times its precision. Sensory surprise is effectively turned 

Neurobiologically, we assume this is mediated by circadian fluctuations in aminergic

neurobiological processes that can be associated with each of the updates. These are large

on sensory surprise (that is absent during sleep). We have included priors governing the 

energy of these priors is formally identical to model selection using the Savage-Dickey 

prunes redundant model parameters (synaptic connections) to reduce model complexit

same light, because these effectively minimize the complexity of empirical priors on h
precise sensory information. We now look more closely at what
this means in terms of neuronal activity and plasticity during sleep.

4.4. Predictive coding when asleep

Our explanation for the sleep-wake cycle can be summarized as
follows: the brain has epigenetically specified beliefs that the
precision of its sensory input will show slow (diurnal) fluctuations.
Neurobiologically, this suggests the existence of slow fluctuations
in modulatory neurotransmitters (that are entrained by sensory
cues), which encode sensory precision. These fluctuations basically
reflect the prior belief that the amount of precise information in the
sensorium will fluctuate; for example, during darkness or when
the eyes are closed. As a result, when we go to bed and close our
eyes, the postsynaptic gain of sensory prediction error units
declines (through reduced aminergic modulation) with a recipro-
cal increase in the precision of error units in higher cortical areas
(mediated by increased cholinergic neurotransmission). This
Bayes-optimal sensory gating is consistent with the fact that
aminergic projections terminate in superficial layers that are
populated by superficial pyramidal cells reporting prediction
errors.

The ensuing sleep state is one in which internal predictions are
sequestered from sensory constraints. In other words, top-down
predictions will fall upon deaf ears (or blind eyes) because the
ergic systems entrain perceptual processes during the sleep wake cycle. Aminergic

 drive action and perception. When this modulatory gating suppresses sensory

ry prediction errors and change quantitatively. The implicit optimization processes

ation, using the generative models described in the previous two figures. The free

al expectations to minimize free energy. The particular updates shown in this figure

ack the various processes involved. For every quantity in the generative model (see

ectations denoted by EQ ½��. Here, LðsÞ ¼ �ln Paðsjx; g; uÞ is sensory surprise and is just

off during sleep because the precision of sensory prediction errors is reduced.

 neurotransmission (pink circles). The text describes, briefly, the biophysical and

ly the same in sleep and wake, with the exception of action that depends exclusively

presence or absence of a particular connection in these updates. Minimizing the free

density ratio: see (Friston and Penny, 2011) for details. Effectively, this removes or

y and minimize free energy. The optimization of the parameters can be seen in the

idden states.
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sensory prediction error units have been rendered insensitive
through aminergic gating. On the sensory side, this means that the
discrepancy between top-down predictions and (the absence of)
sensory signals received will not be registered. On the motor side,
proprioceptive prediction errors will be silenced and there will be
no drive to motor neurons. In short, although the brain can
continue to generate successions of sensorimotor predictions (i.e.,
dreams), they are not disclosed in terms of early sensory cortical
responses or motor behavior. However, the brain can continue to
optimize itself by changing its synaptic connections.

Mathematically, changing connection strengths in this fashion
optimizes the empirical priors on the dynamics of hidden states,
while changing the pattern of synaptic connections optimizes the
priors on parameters: see Box 2 and (Kiebel and Friston, 2011) for a
discussion of synaptic reorganization and free energy minimiza-
tion. Optimizing connections in this way minimizes the complexity
of the model and makes it a better description of causal structure in
the waking sensorium. Note that the mechanisms behind
perceptual learning or synaptic plasticity and regression are
exactly the same as those employed during waking. The only
Fig. 6. This figure illustrates, schematically, the functional anatomy of visually guide

summarize the implicit functional differences in terms of active inference. During 

consequences of eye movements are sent to pontine and visual centers, respective

proprioceptive prediction error), while the latter anticipate the changes in retinal input. In

is that the brain thinks its predictions in the visual domain are perfect, because they do n

The lower panels show the implicit functional anatomy based on previous figures: this us

or striate cortex, occipital cortex (that stands in for all high-level cortical areas) and the p

pontine reticular formation). Each component of the network is drawn using the principal

(black) for forward and backward connections in the cortex Cholinergic (blue) and amin

cells that report prediction error and send forward connections. Aminergic projections ha

geniculate body and visual cortex. During sleep, these cells are effectively silenced (d

geniculate and occipital structures. It is this restriction we associate with the difference b

saccades during wakefulness. As in Fig. 4, forward connections conveying prediction erro

predictions are shown in black. LC: Locus Coeruleus and NBM: Nucleus Basalis of Mey
difference is that the neuronal activity encoding posterior beliefs
about the current state of the world now comes to represent prior
beliefs, which dictate the content of our dreams. In short, sleep
provides an opportunity to eliminate the complexity and
redundancy accumulated by experience-dependent learning
during the day.

Clearly, the simple distinction between sleep and waking in
Fig. 5 does not allow us to consider the potentially important
distinctions between various sleep stages; particularly between
slow wave sleep (SWS) and REM sleep (Datta, 2010). Physiological
evidence suggests that both synaptic regression and plasticity
contribute to synaptic homoeostasis and do so differently in slow
wave and REM sleep: for example, REM sleep is often associated
with elevated markers of long-term plasticity and may represent a
window of opportunity for hippocampal-dependent consolidation
of synaptic connections in distant sites (Ribeiro et al., 2002).
Furthermore, long-term potentiation (LTP) is positively correlated
with both REM and SWS in the dorsal hippocampus, where
synaptic transmission is positively correlated with REM and
negatively correlated with SWS (Ravassard et al., 2009). Although
d eye movements during waking (left) and REM sleep (right). The upper panels

wakefulness, top-down predictions about the proprioceptive and exteroceptive

ly. The former elicit eye movements through classical reflex arcs (to suppress

 sleep, there is a selective loss of precision on visual prediction errors. All this means

ot need correcting. This allows for perception without sensation; that is, dreaming.

es a simplified network that comprises the lateral geniculate body (LGB), early visual

ontine nuclei controlling eye movements (the cranial nerve nuclei and paramedian

 output cell populations; for example, superficial (dark red) and deep pyramidal cells

ergic (pink) projections control the postsynaptic sensitivity of superficial pyramidal

ve been deployed here such that they selectively gate early visual cells in the lateral

enoted by open triangles in the right panel), restricting dynamics to the pontine,

etween PGO waves in sleep and visually evoked responses associated with orienting

rs are shown in dark red, while backward connections from state-units that furnish

nert.
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the focus of this paper is on REM sleep and dreaming—the
theoretical arguments about minimizing complexity can, in
principle, be applied to both SWS and REM sleep; however, the
underlying synaptic reorganization may show important quanti-
tative differences, in terms of the brain systems involved and the
representations that are implicitly refined (e.g., declarative versus
procedural).

The lower panel of Fig. 5 summarizes the optimization
processes during sleep and their relationship to the same processes
during wakefulness. Formally, the only difference is that sensory
surprise disappears because it has been inactivated by (aminergic)
neuromodulation. Although this account provides a principled
rationale for sleep in terms of the optimization of internal models
and their priors, it does not account for the emergence of eye
movements and the accentuation of dream reports during sleep.

5. PGO waves revisited

If sleep rests upon the suppression of sensory prediction error
and the implicit suppression of alpha motor neuron drive, why are
eye movements observed during REM sleep? Clearly, the scope of
model optimization (through synaptic homoeostasis and regres-
sion) would be enlarged if it could include the oculomotor system.
But why is the oculomotor system engaged during sleep and not
other motor systems? One simple answer is that eye movements
have no effect on body posture, in contrast to other striatal muscle
systems. In other words, eye movements do not call on
sensorimotor integration or coordinated locomotion. This means
that saccades and other ocular movements can be engaged with
impunity and enjoy the benefits of sleep-dependent model
optimization, without engaging full active inference.

Fig. 6 illustrates the proposed differences between eye move-
ments in waking and sleep using a schematic simplification of the
visual and pontine systems. Many details and neuronal systems
have been omitted (such as the frontal eye fields, superior
colliculus, etc.) but this simplified network allows us to think
about the genesis of eye movements in terms of neuronal dynamics
and how they may depend upon the gating of visual information.
The left panels picture the state of the brain during waking. Here,
aminergic neuromodulation from the locus coeruleus enables
retinal input to excite (prediction error) responses in the principal
cells of the lateral geniculate body that are then passed forward to
striate cortex. As noted above, the ensuing prediction errors engage
a recursive hierarchical reorganization of synaptic activity; so that
top-down predictions from the extrastriate cortex (e.g., lateral
occipital cortex) suppress the prediction errors and, coincidentally,
send proprioceptive predictions to the oculomotor system. These
predictions then elicit a saccade to foveate the inferred visual
object. In short, perceptual inference and subsequent action are
driven by precise sensory prediction errors.

In contrast, during sleep, retinal input (even if present) does not
have access to the visual cortex and perceptual dynamics rest
solely on prior beliefs prescribed by synaptic connections that have
been optimized while awake. Given the empirical evidence that
PGO waves originate in the pontine system, one might imagine
that these circuits rehearse their prior expectations that eye
movements will occur sporadically and recurrently. There are
several models of this form of itinerancy that, in a biological
setting, can be regarded as central pattern generators. We have
previously used these to explain perceptual inference on
sequences of auditory information (Kiebel et al., 2009) and the
generation of sequential motor behavior, like handwriting (Friston
et al., 2011).

Sequences of autonomous proprioceptive predictions in the
pons will have two consequences: First, they will elicit prediction
errors in the cranial nerve nuclei (e.g., the abducens nucleus) that
drive eye movements observed during REM sleep. Second, pontine
prediction errors will be passed forward to higher (lateral occipital)
cortex to drive the perceptual representations that best predict
them. In other words, in sleep, proprioceptive prediction errors
drive cortical representations to provide a plausible explanation
for why the eyes moved, in terms of foveating a salient object.
These objects may constitute our visual dream content and are
experienced in a way that is free from sensorial constraints (visual
prediction errors). From the point of view classical motor control
theory, these would constitute corollary discharge [of the sort
illustrated in Fig. 6 from the pontine units to the lateral geniculate
nucleus].

The perceptual consequences of pontine activity can therefore
be seen as playing out in the cortex, engendering conceptual
narratives (elicited by forward connections to higher cortical
areas) and perceptual representations of an increasingly elemental
nature (elicited by backward connections to lower cortical areas)
all the way down to the primary visual cortex. This process will
continue until predictions encounter prediction error units that
have been rendered insensitive through aminergic gating. Clearly,
the emergence of PGO waves during REM sleep presupposes that
the oculomotor system acquires a selective neuromodulatory
boost during periods of REM sleep that we presume is mediated by
cholinergic afferents. This fits nicely with the six-fold increase in
the excitability of midbrain PGO burst cells in REM sleep, relative
to waking (Nelson et al., 1983). In summary, perceptual inference
can be regarded as a response to exteroceptive (visual) prediction
errors during wakefulness, while the same responses are elicited
by proprioceptive (oculomotor) prediction errors during sleep. Put
simply, waking percepts are driven by the need to explain
unpredicted visual input, while dreaming percepts are driven by
the need to explain unpredicted oculomotor input. This interpre-
tation follows directly from the notion of the brain as a generative
model of its sensorium that necessarily entails bimodal predictions
of exteroceptive and proprioceptive sensations to synthesize its
virtual reality (Hobson, 2009).

In terms of electrophysiological responses, the only difference
between waking and sleep would be an absence of visually evoked
activity in the visual cortex during sleep. This is because the visual
cortex is insensitive to top-down or backward afferents and does
not receive bottom-up or forward inputs from the gated principal
cells in the LGB. This is consistent with the electrophysiological
phenomenology of visually evoked startle responses and PGO
waves: startle responses and PGO waves are distinguished by the
presence and absence of early visual cortical sources. In the context
of electrophysiological studies, it is important to note that the cells
thought to encode prediction errors (superficial pyramidal cells)
are also thought to produce local field potentials and non-invasive
electromagnetic signals. Before turning to some specific predic-
tions that follow from this model, we revisit the issue of startle and
surprise from Section 3.

5.1. Startle versus surprise

Our view of sleep allows us to resolve the apparent paradox
between being startled and surprised. Furthermore, it explains
why PGO waves show no habituation during sleep, in contrast to
visually evoked startle responses during waking. The startle
response is elicited by an unpredicted visual stimulus in waking
and rests upon precise sensory prediction errors. In sleep, the
precision of sensory prediction errors is suppressed and therefore
startle responses per se are precluded. In sleep, the brain continues
to elaborate saccadic predictions that are fulfilled in terms of eye
movements. However, these percepts do not elicit sensory surprise
(startle) because they are not constituted by precise sensory
prediction errors.



J.A. Hobson, K.J. Friston / Progress in Neurobiology 98 (2012) 82–98 95
In this context, one can see how startle responses habituate: for
example, during the repeated presentation of a peripheral visual
stimulus, perceptual learning enables to the brain to predict its
occurrence, such that prediction errors are attenuated and cease to
elicit an orienting response. This sort of sensory learning has been
considered in depth from the point of view of predictive coding,
using the mismatch negativity in the auditory domain (Garrido
et al., 2009). However, during sleep no such sensory learning is
possible because there is no new sensory information and
predictions are based purely on empirical priors. In this sense,
PGO waves in sleep can be regarded as the neural correlates of
percepts that are exempt from the habituation due to sensory
learning.

5.2. Sleep and thermoregulation

The formulation above provides a simple explanation for the
association between sleep and temperature control: if aminergic
modulation suppresses the sensitivity of principal cells reporting
interoceptive prediction errors, then it will preclude the signaling
of thermoreceptors along unmyelinated C-fibers and delta-fibers
from various tissues in the body. Recall that temperature sensitive
neurons in the hypothalamus become temperature insensitive in
REM (Parmeggiani, 2003). In short, the brain will be impervious to
fluctuations in temperature and will not respond to suppress
thermal prediction errors, resulting in a suspension of homeother-
my. So what evolutionary imperatives endorse this risky physio-
logical state? The answer that emerges from our review is that
sleep is a natural optimization process that is disclosed by the
nightly removal of precise sensory information; in other words, the
brain can take itself off-line with impunity, so that synaptic
plasticity and homoeostasis (Gilestro et al., 2009) can reduce the
complexity it has accrued during wakefulness.

The imperative to reduce complexity during sleep may be
greater for the complicated brains of mammals (and birds). The
failure to restore complexity to minimal levels would, in principle,
mean that experience-dependent learning during the day would
not be finessed; leading to a colloquial and context-bound model of
the world that becomes increasingly complex and redundant. In
statistics, the equivalent pathology is known as ‘over-fitting’ and
leads to suboptimal models that fail to generalize beyond the data
on which they were trained. In short, taking the brain off-line to
prune exuberant associations established during wakefulness may
be a necessary price we pay for having a sophisticated cognitive
system that can distil complex and subtle associations from
sensory samples.

5.3. Consciousness and complexity

Although our focus here is on the physiology of the PGO
system, it might be useful to speculate on the selective effects of
neuromodulation on different aspects of consciousness. The
picture that emerges is that perceptual inference and awareness
depend on which levels of the cortical hierarchy enjoy the
greatest precision (the gain of principal cells reporting prediction
error). In this context, the differential effects of various
modulatory neurotransmitter systems can be explained by the
anatomical specificity of their projection fields. It may be the
case that aminergic (norepinephrine, serotonin and histamine)
projections preferentially target early sensory structures, while
cholinergic projection systems boost the precision of high order
sensory and association cortices (including the hippocampus). In
this sense, aminergic neuromodulation may control the acuity of
sensations, while cholinergic neurotransmission biases towards
perceptual synthesis, of the sort associated with primary
consciousness.
Finally, it may be that mesocortical and mesolimbic dopami-
nergic projections, which are more limited to anterior (prefrontal)
systems, may accentuate the precision of executive processing that
underlies secondary consciousness; that is theory of mind,
planning self-awareness and so on (Kilner et al., 2009; Noudoost
and Moore, 2011). In summary, the dissociable effects of different
modulatory neurotransmitters on conscious processing in the
brain may be reducible to the anatomical specificity and the
selective biasing of message passing in hierarchical infrastructures.
Clearly, there is a wealth of psychopharmacological evidence that
speaks to these issues, which we will consider in a subsequent
paper. We conclude with some empirical predictions that follow
from the theoretical arguments reviewed in this section.

6. Some empirical predictions

We now conclude by looking at some empirical predictions that
emerge from our review of REM sleep and the PGO system in the
light of generalized predictive coding and free energy minimiza-
tion. There are several rather specific predictions about the
functional anatomy of REM sleep that are informed by predictive
coding architectures and the optimization of generative models
that support consciousness. We will briefly consider predictions
about the phenomenology, neuroanatomy, neurophysiology and
neuropharmacology of REM sleep.

6.1. Dream phenomenology

If dream content is the brain’s attempt to find plausible
explanations for fictive visual searches of its environment, why is it
is often so far from being veridical? If the brain’s generative model
is a near optimal model of the real world, why do dreams entertain
scenarios that are so far from reality and pedestrian experience?
From a functional perspective, to minimize the complexity of
generative models it is necessary to explain (fictive) percepts in a
parsimonious and as general a way as possible. Clearly, the
generality of these explanations can only be established over a
diverse range of dream content—otherwise the brain would fall
into the trap of overfitting its internal model to a limited, and
possibly idiosyncratic, repertoire of perceptual states. In other
words, finding order in the real world may not be the same as
finding order in the virtual world (Llewellyn, 2011). This suggests
an optimal balance between rehearsing what has already been
learned about the world and exploring new hypotheses and
possibilities that could be experienced. This may, in part, explain
the curious nature of dream content and be related to the creative
and synthetic capacity of the brain that can be harnessed in
wakefulness (Hobson and Wohl, 2005). Interestingly, the implicit
neuromodulatory differentiation between waking and sleep
consciousness may be impaired in neuropsychiatric conditions
characterized by disorganization of the psyche (Llewellyn, 2011). It
is perhaps worth noting, that the bizarreness of dream content is
largely relational nature. In other words, it is the continuity and
associations among percepts that appears to be violated; however,
we only dream about things we could perceive, even if they could
not exist in the context established the dream.

If REM sleep favors primary versus secondary aspects of
consciousness, then dreaming should be characterized by a surplus
of non-veridical predictions and a paucity of appropriate cognitive
identifications (in relation to waking perception). We mean this in
the sense that if there is cholinergic modulation of the precision of
prediction errors in sensory hierarchies – that is not matched by an
equivalent increase in the precision at higher (prefrontal) levels –
cognitive and conceptual explanations will be driven primarily by
fictive and unconstrained perceptual representations. This appears
to be the case: Dream content is ‘bizarre’ because discontinuity and
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incongruity are entertained in the face of physical impossibilities.
Dream percepts therefore cannot be reconciled with the waking
percepts identified by the dreamer in generating his report
(Hobson et al., 2000). This defective rationalization of dream
phenomenology can be identified and measured by comparing it to
reflective thought in waking (Hobson, 2011).

6.2. Neuroanatomy

One clear anatomical prediction is that there should be direct
and reciprocal connections between the cortex and pontine nuclei.
This is because cortical predictions about oculomotor propriocep-
tion should be delivered directly to the pontine nuclei and these
connections should be reciprocated (with forward connections
conveying prediction error). In short, although there are direct
connections from the pontine system to the lateral geniculate
(Calvo et al., 1992), there should also be direct connections to the
cortical regions involved in the elaboration of PGO waves. A direct
projection from pons to cortex has, in fact, been demonstrated
(Laurent et al., 1977) and a cortico-pontine pathway can be
inferred from experiments showing that REM sleep eye move-
ments are ‘simplified’ following lesions of the visual cortex
(Mouret et al., 1965).

6.3. Neurophysiology

In terms of electrophysiology, one would predict that the event
related potentials measured with electroencephalography (or
event related fields with magnetoencephalography) that are time
locked to saccadic eye movements in wake and sleep are generated
using the same system but with one important difference: the
postsynaptic gain of superficial pyramidal cells (or more generally
the principal cells elaborating forward-type connections) in the
lateral geniculate body and primary visual cortex should be
reduced. In other words, one local change in synaptic gain that is
restricted to the early visual pathway (that we presume is
mediated by a change in aminergic neuromodulation) should be
sufficient to explain the distributed responses observed empiri-
cally during eye movements in sleep and wake. Recent develop-
ments in the modeling of electrophysiological responses now
allow us to test this hypothesis using biophysically informed
models of how electromagnetic signals are generated. This is called
dynamic causal modeling (David et al., 2006) and allows one to
compare different models of distributed electromagnetic signals
that are generated by the PGO system. In this instance, one should
be able to compare dynamic causal models of event related
responses time-locked to the onset of saccadic eye movements (in
waking and REM sleep).

For example, comparing models with and without direct and
reciprocal connections between (hidden) subcortical pontine and
cortical sources would constitute a test of the anatomical
prediction above. There is already a literature on the use of
dynamic causal modeling to make inferences about forward and
backward connections (Garrido et al., 2007) and these techniques
have been applied recently to look at backward connections from
the frontal cortex in patients with impaired conscious level (Boly
et al., 2011). Electrophysiological predictions about synaptic gain
can be tested using dynamic causal models that allow for condition
(wake versus sleep) specific changes in the postsynaptic gain of
principal cells within specific sources (Kiebel et al., 2007). In this
context, synaptic gain is modeled explicitly as a key component of
intrinsic connectivity within sources of electromagnetic signals.
The prediction here is that gain will increase during REM sleep in
extrastriate and other cortical sources responsible for the
generation of orienting saccadic eye movements (lateral occipital,
parietal and frontal eye fields) but will decrease selectively in
sources comprising the early visual pathways (lateral geniculate
nuclei and striate cortex). Note that the nice thing about the PGO
system, from the point of view of dynamic causal modeling, is that
it is a very well-characterized system (Datta et al., 1998) in which
the (hypothetical) source of proprioceptive prediction errors –
driving geniculate and occipital responses – can be measured
empirically from eye movements.

6.4. Neuropharmacology

Finally, one might anticipate that the same profile of changes in
postsynaptic gain should be seen under pharmacological manip-
ulations that emulate the aminergic suppression of sensory
prediction errors. In other words, visually cued saccadic eye
movements should come to resemble PGO waves, with pharma-
cological reductions in aminergic neurotransmission. In principle,
this hypothesis can be tested using dynamic causal modeling in
combination with pharmacological manipulations of noradrener-
gic and serotonergic neurotransmission. The technology to do this
has been established using animal models and a series of
developmental and pharmacological manipulations (Moran
et al., 2008).

While this review has focused on animal models, the advent of
brain imaging technology and advances in dynamic causal
modeling now make it possible to study things like the PGO
system in (un-anaesthetized) humans, while awake and asleep.
The future of dream and consciousness science is thus bright. Data
already in hand indicates that not only the visual system has
predictive powers: other sensory systems exhibit it too (Hong
et al., 2008), indicating that the idea of the brain as a model of the
world is a theory whose time for scientific validation has come.

7. Conclusion

We have reviewed the empirical nature of sleep with a special
focus on neuromodulation and the PGO system. We then
considered sleep in terms of model optimization, under the free
energy principle. The basic idea here is that the brain uses sleep to
optimize its generative model of the world during wakefulness.
This is akin to post hoc model selection, in which redundant
parameters are removed to minimize model complexity and
provide a more parsimonious internal model.

Whether model optimization of this sort is sufficient to explain
why sleep is subject to evolutionary pressure is not an easy
question to answer; however, this perspective provides a
principled explanation for the utility of sleep that underwrites
the homoeostatic and autopoietic imperatives for biological
organisms. Furthermore, it becomes especially relevant for the
complex brains that support sleep. Notably, the mechanisms of
model optimization are exactly the same as those proposed by the
AIM model: Namely, an inactivation of sensory afferents that rests
upon input gating, which is mediated through modulatory
neurotransmitter systems. It is interesting that the abstract
treatment provided by the free energy approach and the
empirically grounded AIM model converge on exactly the same
conclusions.

Having said this, there are many issues that are unresolved by
the brief theoretical treatment presented in this review. As noted
above, associating synaptic plasticity and regression with model
optimization does not speak to the established differences
between slow wave and REM sleep at a neurophysiological or
cognitive level. For example, the association between SWS and
procedural memory and a more complicated relationship between
REM and declarative memory suggests a regional specificity for
putative synaptic optimization—a specificity that may be related to
the distinction between hippocampal-dependent and independent
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consolidation (Ravassard et al., 2009; Ribeiro et al., 2002). We have
focused on REM sleep and the phenomenology of PGO waves and
dreaming. The mechanics of predictive coding provide a compel-
ling three-way link between the physiology of PGO waves, rapid
eye movements and the fictive percepts of dreaming. By
association, this suggests that the sort of complexity minimization
seen in REM sleep may pertain to systems involved in perceptual
categorization (and declarative memory). Conversely, in SWS
synaptic changes may conform to the same basic principles but in
systems concerned more directly with motor control and
procedural representations.

What is the basic explanation of sleep on offer here? As put
nicely by one of our reviewers: ‘‘On the one hand, there is a
requirement that the senses are shut down so complexity can be
minimized. On the other hand, there is the idea that the senses are
shut down because there is a learnt regularity about precision –
namely that it drops at night – and that the brain simply continues
free energy minimization under these conditions. Perhaps these
ideas can be combined but, at least initially, they are different: the
former says there is evolutionary pressure to sleep, the latter that
sleep is a contingent upshot of the fact our free energy
minimization happens on a planet that spins.’’

The reviewer favored the latter explanation and we tend to
agree: free energy minimization is all about making the brain a
good model of its environment. This means that the brain – and
indeed the phenotype – cannot be divorced from its environment.
In this setting, natural selection can be regarded as selecting
phenotypes (models) with the lowest free energy—or maximizing
free fitness in evolutionary theory (Sella and Hirsh, 2005). This
means that there is no necessary requirement to suppress sensory
input to minimize free energy (or complexity); however, certain
species have found a local optimum in a free fitness landscape (see
Fig. 1d) that exploits night-time to focus on minimizing
complexity. In this view, sleep is an opportunistic – and highly
effective – process that allows the brain to concentrate on
statistical housekeeping and can be regarded as an example of
meta-selection—the selection of selective processes. In short,
evolution has selected brains that sleep and sleep selects the
synaptic connections that constitute brains, where both evolution
and sleep minimize free energy or maximize free fitness.

Finally, we have discussed the implications of our theory for the
study of wake and dream state phenomenology and made some
specific predictions that can be tested with the modeling of
electrophysiological responses associated with saccadic eye
movements in waking and sleep. In future work, we hope to
address these predictions using dynamic causal modeling of
noninvasive electromagnetic recordings. We also hope to demon-
strate the computational principles outlined in this paper using
simulations of sleep based upon the same models of active
inference we have used previously to simulate action observation.
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