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Abstract
In spatial epidemiology, generalized additive models (GAMs) can be applied with bivariate locally
weighted regression smoothing terms (LOESS), smoothing over longitude and latitude, to evaluate
whether there is spatial variation in disease risk across a study region. Two hypothesis testing
methods applicable with GAMs with bivariate LOESS smoothes, an approximate chi-square test
(ACST) and the conditional permutation test (CPT), have inflated type I error rates. Using
simulated data we determined empirical adjustments to significance cutoffs for nominal type I
error rates of 0.01, 0.05, and 0.10. When applied with adjusted significance cutoffs, both ACST
and CPT were appropriately sized across region shapes, population densities, sample sizes, and
probabilities of disease.

Keywords
Conditional permutation test; Approximate chi-square test; LOESS smooth; Type I error rate;
Permutation test

1. Introduction
Generalized additive models (GAM), a generalization of generalized linear models (GLM),
can account for nonlinear associations between outcomes and predictors using
nonparametric smoothing functions of one or more covariates. In spatial epidemiology,
GAMs with a bivariate locally weighted regression smoothing term (LOESS) to smooth
over longitude and latitude can be applied to evaluate whether disease status varies across
geographic location (Aschengrau et al., 2008; Hoffman et al., 2010; Vieira et al., 2009;
Vieira et al., 2005; Webster et al., 2006). To test this hypothesis, researchers compare
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models with and without the LOESS smoothing term to determine whether its inclusion
substantially improves the model fit (Webster et al., 2006).

For GLMs, the difference in nested model deviance statistics has an asymptotic chi-square
distribution (Casella and Berger, 2002). For GAMs, however, the asymptotic chi-square
distribution is only approximate (Hastie and Tibshirani, 1990). An approximate chi-square
test (ACST) based on the GLM framework exists and the test statistic, degrees of freedom,
and p-value are provided in standard software packages (R, 2010; S-PLUS, 2007). ACST
has been applied in recent research studies (Guisan et al., 2002; Maravelias et al., 2000),
though a recent simulation study found that when applied with GAMs with a bivariate
LOESS smoothing term, the type I error rate was nearly 4 times the nominal level of 0.05
(Young et al., 2011).

Webster et al. (2006) proposed a conditional permutation test (CPT) to test for associations
between location and disease risk where, after selecting the span size, models with and
without the smoothing term were applied to the observed data and the difference in deviance
statistic was recorded. Geographic location was permuted, maintaining the link of any non-
smoothed covariates and the outcome. Models were applied to permuted datasets,
conditioning on the span selected for the observed data, and the differences in deviance
statistics were recorded. The observed statistic was compared to the permutation distribution
of difference in deviance statistics and, if the statistic fell in the upper α·100% of the
permutation distribution, the null hypothesis was rejected (Webster et al., 2006). In previous
research, CPT was also shown to have an inflated type I error rate when applied with a
nominal significance level of 0.05 (Young et al., 2011).

In a recent power comparison, ACST and CPT, applied with adjusted significance cutoffs,
were compared to other variations of permutation tests. ACST and CPT, with corrected type
I error rates, performed as well or better than other appropriately sized permutation methods
(Bliss et al., 2010). In a separate power comparison, the corrected CPT performed as well or
better than the spatial scan statistic (Kulldorff and Nagarwalla, 1995) under simple
alternative hypotheses (Young et al., 2011). For example, in a study region containing a
single circular cluster with 3 times the odds of disease compared to unexposed subjects and
a sample size of 1,000, ACST had 91.8% power, CPT had 92.3% power, and the scan
statistic had 96.3% power (Bliss et al., 2010; Young et al., 2011). For a point source in the
center of a circular study region, a linear association between risk of disease and distance
from the source, and an odds ratio of 3.0, CPT had 71.4% power while the scan statistic had
58.4% power (Bliss et al., 2010). The evaluation of the corrected ACST and CPT under the
null and alternative hypotheses has not considered irregular region shapes or nominal type I
error rates other than 0.05.

The motivation for this research was a series of studies applying CPT to evaluate risks of
low birth weight, learning disability, and breast, bladder, kidney, lung, and pancreatic cancer
on Cape Cod, Massachusetts (Hoffman et al., 2010; Vieira et al., 2009; Vieira et al., 2005).
The Upper Cape is irregularly shaped with jagged edges, there is a larger population living
on the edge, near the ocean, than in the middle of the land mass. Additionally, the
Massachusetts Military Reservation is a sparsely populated area located in the middle of
Upper Cape Cod (Aschengrau et al., 2008). It may be that the deviance statistic value is
affected by varied region shapes, distributions of subjects, sample sizes, and incidence of
cases. As the deviance statistic is of interest for both the CPT and ACST, it is unclear
whether these features will also affect the type I error rates of the tests.

ACST and CPT require significance cutoff adjustments and, while other cluster detection
methods exist (e.g. spatial scan statistic (Kulldorff and Nagarwalla, 1995), kernel smoothing
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(Hazelton and Davies, 2009), Bonetti’s M statistic (Bonetti and Pagano, 2005), Cuzick and
Edward’s Tk statistic (Cuzick and Edwards, 1990), etc), GAMs are of particular interest
because of their application to generalized outcomes, the availability of regression-based
inference, and the ability to control for many covariates in a single model without
stratification of data. Further, the superior performance of ACST and CPT when compared
to some hypothesis testing methods makes the determination of significance cutoff
adjustments under a variety of scenarios an important contribution to current literature. In
this study we evaluated the type I error rates of ACST and CPT when applied to four sets of
synthetic data. We examined common variations in patterns of population distribution,
deviations of region shape, sample size, and probability of disease. We recognize that we
cannot examine the infinite number of possible scenarios; however we selected scenarios for
examination in this study that commonly appear in public health research. Using simulated
data we determined the implications of variations in commonly varying factors on the type I
error rates of ACST and CPT. We determined appropriate significance cutoff adjustments
for a range of nominal type I error rates.

2. Methods
2.1 Simulated Data

Synthetic data had a dichotomous outcome and probabilities of “disease” of 0.01, 0.05, 0.10,
0.20, and 0.50 to emulate epidemiologic cohort studies of both rare and common outcomes
and case-control studies with 1 to 1 matching. Data were simulated under the global null
hypothesis with no association between the outcome and geographic location. For each
scenario, 1,000 datasets were simulated, using each of the following numbers of
observations: 400, 1,000, 1,515 (the size of the Cape Cod Family Health Study), 1,600,
3,000, and 6,400. The sample sizes were selected to provide a range similar to the sizes of
previous epidemiological studies that used GAMs as a statistical analysis technique
(Aschengrau et al., 2008; Hoffman et al., 2010; Vieira et al., 2009; Vieira et al., 2005). As
similar results were observed across scenarios, for simplicity, we present results for
probabilities of disease 0.01, 0.10, and 0.50 and for sample sizes 400, 1,600, and 6,400.
Additional results are available upon request.

2.2 Synthetic Study Regions
Circular—Observations were uniformly distributed across a circular study region with a
radius of 1 unit. These data were simulated in an identical fashion to Young et al. (2011), a
simulation study evaluating the test sizes of ACST and CPT for a nominal type I error rate
of 0.05.

City—The longitude and latitude followed independent normal distributions with means at
the origin and variances of 0.5 to form a high density center and sparser density edges. Lake:
Data were uniformly distributed across the study region with the exception of a “lake”,
represented by a circular area with radius 0.10, centered in the unit-square study region.

Cape Cod—Locations of 1,515 subject residences, obtained from the Cape Cod Family
Health Study where subjects lived in one of five towns on Upper Cape Cod, Massachusetts
(Aschengrau et al., 2008), were used as an example data for the evaluation of the hypothesis
testing methods. All subject characteristics were stripped from the data, leaving only the
longitude and latitude of geographic location of residence. Disease status was randomly
assigned for each simulated dataset with probabilities of 0.05, 0.10, 0.20, and 0.50. (A 1%
probability of disease was excluded as models could not converge given the complexity of
the Cape Cod data and the small expected number of cases.) Cape Cod has an irregular
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shape, a dense population near the region edges, and areas of sparse data in the center of the
map (Figure 1).

Syntax to produce synthetic data in R (R, 2010) for the circle, city, and lake scenarios is
available upon request. Data for the Cape Cod Family Health Study is not publicly available;
however shape files for the region are available upon request.

2.3 Hypothesis Tests
Models were applied with bivariate LOESS smoothing terms to account for geographic
location of residence. GAMs were applied with span sizes ranging between 0.05 and 0.95.
Akaike Information Criterion (AIC) goodness of fit statistics were recorded and the span
corresponding to the minimal model AIC was selected. Larger span sizes (near 1)
correspond to smoother maps, indicative of little spatial variation in the outcome and are
expected for data under the null hypothesis (Hastie and Tibshirani, 1990).

Approximate Chi-Square Test (ACST): For GLMs, the difference in nested model deviance
statistics has an asymptotic chi-square distribution. That is,

where L1 is the deviance statistic of the model of interest, L0 is the deviance statistic from a
simplified model, nested within L1, and df(·) are the degrees of freedom for the respective
models (Casella and Berger, 2002). While the asymptotic distribution is known to be only
approximate in the additive framework, the ACST assumes that the difference in deviance
statistic followed an asymptotic chi-square distribution (Hastie and Tibshirani, 1990). For
each dataset, GAMs were applied and the difference in deviance statistic was compared to a
chi-square distribution. The statistic, degrees of freedom, and p-value were produced by
standard software (R, 2010; S-PLUS, 2007).

Conditional Permutation Test (CPT): After selecting the span size, two GAM models, one
with and one without the smoothing term, were applied to observed data. The difference
between model deviance statistics was recorded. Geographic location was permuted,
maintaining the link of case/control status and non-smoothed covariates, to generate 999
permuted datasets. GAMs were then applied to permuted data using the span size selected
for the observed data. The difference in deviance statistics between the application of GAMs
with smoothing terms to permuted data and the model without the smoothing term were
recorded. The statistics were ranked from lowest to highest values and the p-value for the
hypothesis test was the rank of the observed data when compared to the conditional
permutation distribution divided by 1,000 (Webster et al., 2006).

2.4 Type I Error Rates and Significance Cutoff Adjustments
Nominal type I error rates, the desired probability of false positives, α, when evaluating
hypothesis tests applied to data generated under the null hypothesis, were 0.01, 0.05, and
0.10. The goal of this study was to determine an adjusted significance cutoff, a value α*

where the probability that hypothesis test p-value is less than α* is less than, or equal to the
nominal type I error rate (P(p − value<α*|null hypothesis true)≤α). The circular study region
was used as a “training set” to empirically determine appropriate adjusted significance
cutoffs. The ACST and CPT were first applied using the nominal cutoffs. The resulting type
I error rates were observed and reported. Adjusted significance cutoffs were determined
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through an empirical systematic procedure to produce type I error estimates falling at or
below the nominal levels. Procedure:

1. For the circular study region with a sample size of 1,000, type I error rates were
observed using the nominal significance cutoffs.

2. We determined the maximum type I error rate inflation (observed type I error
divided by nominal level) across three probabilities of disease (0.01, 0.10, and
0.50). The initial candidate value to obtain the empirical type I error rate was the
nominal value divided by the inflation factor.

3. The type I error rate using the candidate cutoff value was observed. The cutoff was
then adjusted by a small margin (+/− 0.001 for CPT, +/− 0.0001 for ACST due to
differential precision of p-values) until the 95% confidence interval for the
observed type I error rate included the nominal type I error rate for at least two of
the three probabilities of diseases.

At least three candidate values were examined for each nominal significance level.
Preference was given to larger values and values rounded to the nearest 0.005 for CPT and
0.0005 for ACST.

Using the adjusted significance cutoffs, ACST and CPT were applied to each of the
remaining scenarios and the observed type I error rates (P(p− value<α*|null hypothesis true)
≤α) were recorded.

3. Results
3.1 Type I Error Rates for Nominal and Adjusted Significance Cutoffs

When applied to the circular study region with the nominal significance level, ACST and
CPT had inflated type I error rates. Across probabilities of disease and sample sizes, ACST
had type I error rates five times, three times, and over twice the respective nominal levels of
0.01, 0.05, and 0.10 (Table 1). CPT had type I error rates of twice the nominal of 0.01 and
0.05 and between 1.5 and two times the nominal significance α level of 0.10 (Table 2).
Using the circular study region as a training set and the procedure described in Section 2.4,
adjusted significance cutoffs were determined empirically. The adjusted significance cutoffs
for ACST were 0.001, 0.0125, and 0.025 for nominal levels of 0.01, 0.05, and 0.10,
respectively. For CPT, the adjusted cutoffs were 0.004, 0.025, and 0.055.

The adjusted significance cutoffs corrected the ACST type I error rates across nearly all
probabilities of disease, sample sizes, and study region shapes. Of the 81 combinations of
parameters presented here (three nominal type I error rates, three region shapes, three
probabilities of disease: 0.01, 0.10, 0.50, and three sample sizes: 400, 1,600, 6,400) 12
(14.8%) had type I error rates with 95% confidence intervals falling below the nominal
value while an additional 12 (14.8%) had inflated type I error rates. Most often (17/24) this
occurred for a sample size of 400, perhaps indicating less reliable results for small sample
sizes; however the upper and lower confidence limits for the deflated and inflated type I
error rates did not fall far from the nominal levels (Table 3). Figure 2 displays the observed
type I error rates of ACST when applied to the data in the circular study region with a 0.10
probability of disease and sample sizes varying from 400 to 6,400. Observed type I error
rates were consistent across sample sizes (Figure 2). Similar results were observed for other
probabilities of disease and region shapes.

When applied to the irregularly shaped and non-uniformly distributed sample of 1,515 on
Cape Cod, Massachusetts, the corrected ACST was appropriately sized for all significance
cutoffs and probabilities of disease presented here (Table 5). Similar results were observed
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for other probabilities of disease with one scenario (probability of disease of 0.05, nominal
type I error rate of 0.01) having slightly deflated type I error. (Results are available upon
request.)

The corrected CPT was also appropriately sized for nearly all probabilities of disease,
sample sizes, and region shapes. In 9 (11.1%) of the 81 combinations of parameters
presented here, CPT had a slightly inflated type I error rate, most often occurring for a
sample size of 400 (6/7 occurrences). In one instance (1.2%), the observed type I error rate
was deflated (Table 4). Figure 3 displays the observed type I error rates of CPT when
applied to the data in the circular study region with an outcome probability of 0.10 and
sample sizes varying from 400 to 6,400. Figure 3 displays nearly straight lines for the three
nominal type I error rates illustrating consistent values across sample sizes. Similar results
were observed for other probabilities of disease and region shapes. When applied to the
Cape Cod, Massachusetts sample of 1,515, appropriate type I error rates were observed for
all presented scenarios (Table 5). Similar results were observed for other probabilities of
disease with one slightly inflated type I error rate observed for a probability of disease of
0.20 and a nominal type I error rate of 0.05. (Results available upon request.)

3.2 Deviance Statistics
For some probability distributions, well-known critical values can be used in place of
significance cutoffs. For example, the probability of a z-statistic having an absolute value of
at least 1.96 is equal to 0.05. For z-statistics, a decision rule can be based on the value of the
test statistic (|z| > 1.96) or on the corresponding p-value (p< 0.05). The critical values for t-
statistics vary depending on the test statistic degrees of freedom. Such critical values are not
available for the difference of deviance statistic in application of CPT.

Distributions of observed differences in deviance statistics were similarly right-skewed
across region shape, sample size, and probability of disease (Figures 4–6). Though not
visually obvious, there is substantial variation between the tail lengths and numbers of
observations falling in the right-tails of the permutation distributions. The distributions vary
by region shape, population density, sample size, and probability of disease making the
determination of a single critical value impossible. For a sample size of 1,600, adjusted
cutoffs for a nominal α of 0.01 ranged between 16.8 and 18.9, for α of 0.05, cutoffs ranged
between 12.9 and 15.0, and for α of 0.10, adjusted cutoffs ranged between 11.1 and 13.2
(Table 6).

4. Discussion
When applied with the nominal significance cutoffs, ACST and CPT had inflated type I
error rates. Empirical adjustments were determined using a circular study region and were
subsequently applied to the remaining study regions. For nominal type I error rates of 0.01,
0.05, and 0.10, adjusted significance cutoffs for ACST (0.001, 0.0125, and 0.025) and for
CPT (0.004, 0.025, and 0.055) provided appropriately sized tests across study region shapes,
population densities, sample sizes, and probabilities of disease. When applied to example
data from Cape Cod, Massachusetts with irregular edges, dense population near the edges,
and sparse population in the center, both ACST and CPT were appropriately sized. For small
sample sizes, some deflated type I error rates were observed, likely due to the low number of
expected events in the study region. In a few instances for moderate and large sample sizes
the observed type I error rates were either inflated or deflated due to random error.

The ACST is computationally efficient, relying on an approximate asymptotic distribution
and may be useful for model building strategies as standard software provides the ACST
statistic, degrees of freedom, and p-value (R, 2010; S-PLUS, 2007) after only short
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computations. The ACST has been used extensively in research studies without type I error
rate adjustments (Examples: Maravelias et al., 2000 and Guisan et al., 2002). The
availability of this hypothesis test along with the inflated type I error rates when applied
with nominal significance cutoffs is concerning. When applied with models including
bivariate LOESS smoothing terms, a reduced significance cutoff may adjust the test to an
appropriate size regardless of the region shape, sample size, or probability of disease;
however notices of inflated type I error rates are not provided with standard software. In a
previous study, it was shown that the type I error rate of ACST when applied with univariate
smoothes was also inflated (Young et al., 2011); however determining appropriate
significance cutoff adjustments for univariate or other smoothing techniques is left for future
research.

Permutation tests provide desirable, albeit more computationally intensive, alternatives to
ACST as they can identify geographic locations of variation in risk in addition to global
hypothesis tests. Webster et al. (2006) applied point-wise permutation tests to point-wise
predicted values obtained on a fine grid overlaying the study region. From this they were
able to identify geographic locations of increased and decreased risk and to produce maps
displaying variations in risk across the study region (Webster et al., 2006). Such methods are
not available for ACST.

CPT was appropriately sized across all region shapes, sample sizes, and probabilities of
disease when applied with a reduced significance cutoff. Compared to other permutation
tests, it is more computationally efficient and has high power estimates, even after
appropriate type I error rate adjustments (Bliss et al., 2010). Of note, these cutoff
adjustments are only necessary when the observed p-value falls close to the nominal level.
The CPT type I error rate when applied with other smoothing techniques has yet to be
evaluated and is left for future research.

Deviance statistic distributions were visually similar across region shape, sample size, and
probabilities of disease; however the right-tail lengths and proportions of observations
falling in the upper tails varied between simulation parameter values. As the deviance
statistic is a measure of model fit, its value is affected by the region shape, sample size,
probability of disease, and selected span size (Young et al., 2011). Model complexity and
covariate distributions will also likely affect the deviance statistic distributions making it
impossible to determine a single critical value to be applied across all models as is available
for z- and t-statistics.

ACST and CPT have been evaluated under a limited number of region shapes, population
densities, sample sizes, and probabilities of disease. We examined common variations that
exist in real data (such as a non-uniform population density and areas of sparse data) to
determine the influence of variations of these factors on the type I error rates of ACST and
CPT including the use of Upper Cape Cod as an example of an irregular study region shape
with non-uniform population density. While we did not examine an exhaustive list of
factors, we believe that the parameters considered were substantially varied and that the
consistent results across combinations of the parameters supports the significance cutoff
adjustments proposed in this research. It is possible that the significance cutoff adjustments
are not adequate for all possible scenarios, including multiple cities, multiple areas of sparse
data, different numbers of covariates, and other irregularities. Examination of the type I
error rate under a greater variety of scenarios is left for future research; however we have
developed general software for researchers to apply to any spatial data to evaluate the type I
error rates of ACST and CPT. The software is available in an online appendix and future
updates will be available at http://www.busrp.org/.
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5. Conclusion
In practice, geographic region shape and population density are neither simple nor uniform
and large sample sizes cannot be guaranteed. Cape Cod, Massachusetts provided an example
study region with highly irregular boundaries, an uneven population distribution, and the
highest density population near the edges. Across nominal type I error rates, disease
incidences, and irregularities in region shape and population density, both ACST and CPT
can be appropriately applied in spatial epidemiologic studies using adjusted significance
cutoffs.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The approximate chi-square test for GAMs has an inflated type I error rate

• The conditional permutation test for GAMs has an inflated type I error rate

• Significance cutoff adjustments are empirically derived for both tests

• The corrected tests had appropriate sizes across region shapes and sample sizes
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Figure 1.
Map of Cape Cod, Massachusetts and distribution of geographic locations of example data
on Upper Cape Cod
Figure 1a) displays a map of Upper Cape Cod, Massachusetts. Figure 1b) illustrates the
distribution of geographic locations (with jigger) of observations in the example data across
Upper Cape Cod.
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Figure 2.
Observed type I error rates and 95% confidence intervals of approximate chi-square test
(ACST) when applied with an adjusted cutoff to a circular study region with a probability of
disease of 0.10
Figure 2 displays the observed type I error rate and 95% confidence intervals of the
approximate chi-square test when applied with an adjusted cutoff to data from the circular
study region with a probability of disease of 0.10 and sample sizes ranging from 400 to
6,400. Similar plots were observed for other probabilities of disease and region shapes and
are available upon request.
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Figure 3.
Observed type I error rates and 95% confidence intervals of conditional permutation test
(CPT) when applied with an adjusted cutoff to a circular study region with a probability of
disease of 0.10
Figure 2 displays the observed type I error rate and 95% confidence intervals of the
conditional permutation test when applied with an adjusted cutoff to data from the circular
study region with a probability of disease of 0.10 and sample sizes ranging from 400 to
6,400. Similar plots were observed for other probabilities of disease and region shapes and
are available upon request.
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Figure 4.
Distribution of observed deviance statistics across region shapes, N = 1,600, P(Disease) =
0.10
Figure 2 displays the distribution of observed deviance statistics across region shapes for a
sample size of 1,600 and a probability of disease of 0.10. Similar trends were observed for
other sample sizes and probabilities of disease and plots are available upon request.
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Figure 5.
Distribution of observed deviance statistics across probabilities of disease, N = 1,600,
circular study region
Figure 3 displays the distribution of observed deviance statistics across probabilities of
disease for a sample size of 1,600 when applied to data in the circular study region. Similar
trends were observed for other sample sizes and region shapes and plots are available upon
request.
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Figure 6.
Distribution of observed deviance statistics across sample sizes, P(Disease) = 0.10, circular
study region
Figure 4 displays the distribution of observed deviance statistics across sample sizes for a
probability of disease of 0.10 when applied to data in the circular study region. Similar
trends were observed for other probabilities of disease and region shapes and are available
upon request.
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Table 1

Approximate chi-square test applied with nominal significance levels to simulated data in circular study region

N = 400 α = 0.01
Type I Error (95%CI)

α = 0.05
Type I Error (95%CI)

α = 0.10
Type I Error (95%CI)

P(Disease)=0.01 0.034 (0.023,0.045) 0.151 (0.129,0.173) 0.269 (0.242,0.296)

P(Disease)=0.10 0.059 (0.044,0.074) 0.188 (0.164,0.212) 0.288 (0.260,0.316)

P(Disease)=0.50 0.062 (0.047,0.077) 0.179 (0.155,0.203) 0.272 (0.244,0.300)

N = 1,000 α = 0.01
Type I Error (95%CI)

α = 0.05
Type I Error (95%CI)

α = 0.10
Type I Error (95%CI)

P(Disease)=0.01 0.036 (0.024,0.048) 0.156 (0.134,0.178) 0.250 (0.223,0.277)

P(Disease)=0.10 0.048 (0.035,0.061) 0.156 (0.134,0.178) 0.256 (0.229,0.283)

P(Disease)=0.50 0.060 (0.045,0.075) 0.170 (0.147,0.193) 0.269 (0.242,0.296)

N = 1,600 α = 0.01
Type I Error (95%CI)

α = 0.05
Type I Error (95%CI)

α = 0.10
Type I Error (95%CI)

P(Disease)=0.01 0.045 (0.032,0.058) 0.181 (0.157,0.205) 0.283 (0.255,0.311)

P(Disease)=0.10 0.046 (0.033,0.059) 0.142 (0.120,0.164) 0.237 (0.211,0.263)

P(Disease)=0.50 0.047 (0.034,0.060) 0.156 (0.134,0.178) 0.235 (0.209,0.261)

N = 6,400 α = 0.01
Type I Error (95%CI)

α = 0.05
Type I Error (95%CI)

α = 0.10
Type I Error (95%CI)

P(Disease)=0.01 0.053 (0.039,0.067) 0.160 (0.137,0.183) 0.238 (0.212,0.264)

P(Disease)=0.10 0.044 (0.031,0.057) 0.147 (0.125,0.169) 0.237 (0.211,0.263)

P(Disease)=0.50 0.056 (0.042,0.070) 0.177 (0.153,0.201) 0.258 (0.231,0.285)
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Table 2

Conditional permutation test applied with nominal significance levels to simulated data in circular study
region

N = 400 α = 0.01
Type I Error (95%CI)

α = 0.05
Type I Error (95%CI)

α = 0.10
Type I Error (95%CI)

P(Disease)=0.01 0.028 (0.018,0.038) 0.077 (0.06,0.094) 0.159 (0.136,0.182)

P(Disease)=0.10 0.027 (0.017,0.037) 0.1 (0.081,0.119) 0.182 (0.158,0.206)

P(Disease)=0.50 0.031 (0.02,0.042) 0.1 (0.081,0.119) 0.185 (0.161,0.209)

N = 1,000 α = 0.01
Type I Error (95%CI)

α = 0.05
Type I Error (95%CI)

α = 0.10
Type I Error (95%CI)

P(Disease)=0.01 0.023 (0.014,0.032) 0.091 (0.073,0.109) 0.156 (0.134,0.178)

P(Disease)=0.10 0.025 (0.015,0.035) 0.094 (0.076,0.112) 0.173 (0.150,0.196)

P(Disease)=0.50 0.027 (0.017,0.037) 0.109 (0.090,0.128) 0.180 (0.156,0.204)

N = 1,600 α = 0.01
Type I Error (95%CI)

α = 0.05
Type I Error (95%CI)

α = 0.10
Type I Error (95%CI)

P(Disease)=0.01 0.017 (0.009,0.025) 0.097 (0.079,0.115) 0.187 (0.163,0.211)

P(Disease)=0.10 0.021 (0.012,0.030) 0.088 (0.070,0.106) 0.147 (0.125,0.169)

P(Disease)=0.50 0.023 (0.014,0.032) 0.094 (0.076,0.112) 0.169 (0.146,0.192)

N = 6,400 α = 0.01
Type I Error (95%CI)

α = 0.05
Type I Error (95%CI)

α = 0.10
Type I Error (95%CI)

P(Disease)=0.01 0.028 (0.018,0.038) 0.098 (0.080,0.116) 0.167 (0.144,0.190)

P(Disease)=0.10 0.026 (0.016,0.036) 0.092 (0.074,0.110) 0.171 (0.148,0.194)

P(Disease)=0.50 0.032 (0.021,0.043) 0.105 (0.086,0.124) 0.194 (0.169,0.219)
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Table 5

Corrected approximate chi-square and conditional permutation tests applied to simulated data in Cape Cod
study region

Approximate chi-square test (N = 1,515)
Type I Error (95%CI)

P(Disease)
α = 0.01 α = 0.05 α = 0.10

α* = 0. 001 α* = 0.0125 α* = 0.025

 0.10 0.007 (0.002,0.012) 0.062 (0.047,0.077) 0.097 (0.079,0.115)

 0.50 0.007 (0.002,0.012) 0.063 (0.048,0.078) 0.100 (0.081,0.119)

Conditional permutation test (N=1,515)
Type I Error (95%CI)

P(Disease)
α = 0.01 α = 0.05 α = 0.10

α* = 0.004 α* = 0.025 α* = 0.055

 0.10 0.010 (0.004,0.016) 0.061 (0.046,0.076) 0.106 (0.087,0.125)

 0.50 0.013 (0.006,0.020) 0.060 (0.045,0.075) 0.110 (0.091,0.129)
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