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BACKGROUND: Cytosine arabinoside-based chemotherapy coupled with anthracycline is currently the first-line treatment for acute
myeloid leukaemia (AML), but diverse responses to the regimen constitute obstacles to successful treatment. Therefore, outcome
prediction to chemotherapy at diagnosis is believed to be a critical consideration.
METHODS: The mRNA expression of 12 genes closely involved in the actions of cytosine arabinoside and anthracycline was evaluated
by real-time reverse transcriptase PCR (RT–PCR), in 54 diagnostic bone marrow specimens of M2-subtype AML.
RESULTS: Low expression levels of ribonucleotide reductase M2 (RRM2) and high expression levels of topoisomerase 2 beta (TOP2B)
were correlated with longer survival in a univariate analysis. Another interesting finding is that high ratios of TOP2B/RRM2 and TOP2B/
TOP2 alpha (TOP2A) in a combined analysis were also shown to have a prognostic impact for longer survival with improved accuracy.
Among the four markers, when adjusted for the influence of other clinical factors in multivariate analysis, the TOP2B/TOP2A ratio was
significantly correlated with treatment outcomes; patients with high ratios trended toward longer disease-free survival (HR, 0.24;
P¼ 0.002) and overall survival (HR, 0.29; P¼ 0.005).
CONCLUSION: Genes with distinct expression profiles such as TOP2B/TOP2A expression ratio at diagnosis can be employed for
outcome prediction after the treatment with standard regimens in AML patients with M2 subtype.
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Acute myeloid leukaemia (AML) is a heterogeneous haematologic
malignancy and is the most common type of the condition,
accounting for up to 60% of leukaemia cases. The French–
American–British classification subdivides AML into nine sub-
types (M0-M7 and M4Eo), which can be distinguished by their
lineages and the degree of differentiation of myeloid cells
(Löwenberg et al, 1999). Among these, the M2 subtype is the
top-ranked disease (B30%) in terms of incidence.

Nucleoside analogues or combination with anthracyclines have
been used for the majority of AML patients and are generally
regarded as the most effective therapies (Wiernik et al, 1992).
Although approximately two-thirds of the patients, at least, achieve
complete remission after receiving intensive induction regimens,
most of these patients suffer from relapsed diseases. Thus, a failure
of first-line chemotherapy in these patients can also attenuate the
antitumour effect of subsequent chemotherapeutics, owing to
substantial multi-drug resistance acquisition (Greenberg et al,
2004). At diagnosis, therefore, it is believed that the accurate
response prediction against initial regimens is an extremely

important consideration, and can provide another option for
AML treatment.

Once cytosine arabinoside, a pyrimidine analogue, enters into
the cells through specialised transporters such as human
equilibrative nucleoside transporters (hENT) and concentrative
nucleoside transporters (hCNT), it is finally converted into an
active drug by deoxycytidine kinase (dCK) (Stegmann et al, 1995;
Hubeek et al, 2005). Recent studies using clinical samples have
demonstrated that high levels of dCK and hCNT3 expression were
correlated with favourable responses among patients with AML
and CLL, respectively, who received nucleoside drug-based
chemotherapy (Mackey et al, 2005; Yamauchi et al, 2009).
Conversely, a reversal of drug metabolism by ecto-50-nucleotidase
(CD73), 50,30-nucleotidase (NT5C) and cytidine deaminase (CDA)
has been regarded as indicators of poor outcome in AML
treatment (Ujházy et al, 1996; Galmarini et al, 2004; Mahlknecht
et al, 2009). Anthracyclines such as idarubicin and daunorubicin,
supplemental drugs used in the treatment of AML, exert cytotoxic
effects by intercalating into DNA strand and inhibiting topoi-
somerase activities in cancer cells (Carella et al, 1990; Richardson
and Johnson, 1997). Although there have been attempts to
elucidate the relationship between topoisomerase II expression
and drug response in clinical AML samples (Kaufmann et al, 1994;
McKenna et al, 1994; Wang et al, 2009), it still remains unsettled.
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Another drug resistance mechanism in the chemotherapy contain-
ing nucleotide analogues is the reduction of intracellular drug
accumulation by ATP-binding cassette (ABC) transporters (Pogliani
et al, 2001; Steinbach et al, 2006). These findings imply that the genes
encoding for molecules associated with action mechanism and
delivery of the induction regimens are potential predictive parameters
of clinical outcomes in the standard chemotherapy for AML.

In this study, in an effort to address the clinical significance of
12 candidate genes that perform critical functions in the actions of
cytosine arabinoside and anthracycline, we evaluated their mRNA
levels in bone marrow (BM) samples from 54 diagnostic AML
patients with the M2 subtype. The findings of correlation analyses
of gene profiles with clinical outcomes may provide us with
valuable insights into possible strategies to improve treatment
outcomes in AML therapy.

MATERIALS AND METHODS

Clinical samples

BM aspirates of 54 adults newly diagnosed with the M2 subtype of
AML and 4 healthy donors were collected from Catholic University
Seoul St. Mary’s Hospital and Chonnam National University
Hwasun Hospital (Table 1). Written informed consents for the
cryopreservation and use for further research of all BM samples
were obtained from the patients. The Institutional Review Board of
Catholic University Seoul St Mary’s Hospital and Chonnam
National University Hwasun Hospital approved all research on
the human subjects participating in this study. The patient
population consisted of 28 males and 26 females with a median
age of 42.5 years (range, 20–72). Induction chemotherapies were
executed by using a combination of 1-b-D-arabinofuranosyl
cytosine (Ara-C, N¼ 14) or N4-behenoyl-1-b-D-arabinofuranosyl
cytosine (BH-AC, N¼ 35) combined with idarubicin. Four patients
received Ara-C alone and one did Ara-C with etoposide. Among
these, 33 patients (61.1%) received haematopoietic stem cell

transplantation (HSCT) after induction and consolidation chemo-
therapies. A total of 16 patients (29.6%) evidenced no cytogenetic
changes, and the others (70.4%) exhibited cytogenetical abnorm-
alities including t(8;21). Additionally, normal BM samples from
four healthy donors were used as references throughout the
experiments and data analyses.

RNA preparation and real-time PCR

All of the BM mononuclear cells (MNCs) from patients and from
healthy donors were kept at � 80 1C until use. Total RNA extracted
using a Qiagen RNA isolation kit (Hilden, Germany) was converted
to cDNA with a reverse transcription kit (Invitrogen, Carlsbad, CA,
USA). The cDNA was mixed with SYBR Green PCR Master Mix (PE
Applied Biosystems, Foster City, CA, USA) and the specific
primers (Supplemental Table S1) for 12 genes including CD73,
NT5C, CDA, dCK, hCNT3, hENT1, ribonucleotide reductase M1
(RRM1), RRM2, topoisomerase 2 alpha (TOP2A), TOP2 beta
(TOP2B), ABC subfamily A member 3 (ABCA3) and ABCB1. The
candidate genes and GAPDH were amplified in triplicate using an
ABI Prism 7900 Sequence Detection System (PE Applied
Biosystems) under the following conditions: 40 cycles of 95 1C
for 30 s, 60 1C for 30 s and 72 1C for 30 s. To normalise the raw data,
DCT was generated by subtracting the CT value for GAPDH from
the CT of 12 genes in an individual patient sample. The results were
subsequently adjusted to the average gene levels in four healthy
donors (control DCT� patient DCT¼DDCT). The results were
expressed in arbitrary quantitative PCR units (2� (DDCT)). In some
cases, these data were applied to gene-clustering analysis to
explore whether there was any unique pattern between the
individual gene expression.

Correlation analysis of gene expression with
clinical outcomes

The mean expression values for each gene in four healthy donors
were set as the cutoff point 1.0 and the gene levels in patient
samples were expressed as relative values compared with the mean
values of each gene from healthy donors. We then dichotomised
total study population of 54 members into two groups for 12
individual genes by the cutoff value. Populations with expression
level lower and higher than 1.0 were named the low and high
groups, respectively. We defined DFS and OS as the time from first
remission to relapse or death and the time of diagnosis to death or
date of last follow-up, respectively. Using both populations clustered
according to the levels of each gene and their clinical information,
Kaplan–Meier estimate constructed survival curves for DFS and OS.
Differences in the clinical outcomes and statistical significance
between both groups were then determined using a univariate
analysis with log-rank test. In combined analysis using the expres-
sion ratios of the two genes, especially, the patients were grouped
by the median value of the gene ratio. Cox proportional hazards
model was employed to investigate the influence of clinical factors
against the prognostic gene markers. The details of this are provided
in the figure legends. All statistic analyses were done by MS Office
Excel program and SPSS 12.0 software (Chicago, IL, USA). A level of
Po0.05 was regarded as statistically significant in this study.

Cell lines and maintenance

Human leukaemia cell OCI/AML-2 (AML-2) was cultured in alpha-
MEM media (Gibco, Grand Island, NY, USA) supplemented with
10% FBS and antibiotics. We generated and maintained AML-2/
IDAC cells double-resistant to Ara-C and idarubicin as previously
described (Song et al, 2009a).

Methylation-specific PCR (MSP) analysis

Cell lines were rinsed twice in PBS, and their gDNA were isolated using
AccuPrep Genomic DNA Extraction kit (Bioneer, Daejeon, Korea).

Table 1 Patient characteristics

Category Value

Total specimens, no. 54
Age, median year (range) 40 (20–72)
Sex, no. (%)

Male 28 (51.8)
Female 26 (48.2)

BM blasts, median % (range) 42.5 (2–92)

FAB subtype, no. (%)
M2 54 (100)
Others 0 (0)

Cytogenetics, no. (%)
Normal 16 (29.6)
Abnormal 38 (70.4)

t(8;21) 24 (44.4)
Othersa 14 (26.0)

HSCT, no. (%)
Yes 33 (61.1)
No 21 (38.9)

Disease-free survival, day (range) 0–1370
Overall survival, day (range) 9–1510

Abbreviations: BM¼ bone marrow; HSCT¼ haematopoietic stem cell transplanta-
tion. aOther cytogenetics include t(1;4), þ 8/t(1;11)/t(6;9)/t(11;12)/t(12;22)/del(5q)/
del(9q)/del(16q)/add(2)/inv(16)/ � 10, � 13, � 15, � 19/þ 8/þ 14,þ 20/13
cenhþ abnormalities.
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Sodium bisulfite-converted DNA was then obtained from 0.5 mg of
the gDNA using an EZ DNA Methylation kit (Zymo Research,
Irvine, CA, USA). Total DNA of 15 ng were used for MSP
corresponsive to CpG islands. The primer pairs were designed
using MethPrimer software (Li and Dahiya, 2002), and are as
follows: RRM2, Fw: 50-ttagtttggtcgataaggagaatac-30 and Re: 50-taa
aaaaacaatacgactttaacgc-30 for methylation (305 to 566 from
transcription start site, TSS), and Fw: 50-tagtttggttgataaggagaata
tgg-30 and Re: 50-aaaaaaacaatacaactttaacacc-30 for unmethylation
(306 to 565 from TSS); TOP2B, Fw: 50-gatagtatggcgttgattgatagc-30

and Re: 50-tacttcaaaaacaaccttaacctcg-30 for methylation (� 679 to
� 476 from TSS), and Fw: 50-tggatagtatggtgttgattgatagt-30 and Re:
50-cttcaaaaacaaccttaacctcact-30 for unmethylation (� 681 to � 78
from TSS); TOP2A, Fw: 50-ggttggagtgtagtggagtaattac-30 and Re:
50-aacacattaaaaaaccgaaacga-30 for methylation (� 792 to � 64 from
TSS), and Fw: 50-aggttggagtgtagtggagtaattat-30 and Re: 50-caacacat
taaaaaaccaaaacaaa-30 for unmethylation (� 793 to � 63 from TSS).
The products were analysed by agarose gel electrophoresis.

Semi-quantitative RT–PCR analysis

Total RNA from cell lines was converted to cDNA using a
CycleScript Reverse Transcriptase kit (Bioneer). After mixing
the cDNA with specific primers for RRM2, TOP2A and TOP2B,
PCR was carried out. GAPDH was used as an internal control.
The product band intensity was estimated using Image J software
(http://rsbweb.nih.gov/ij/) and normalised using GAPDH. The
quantitative results were then displayed in terms of relative
expression to the wild-type control cells. The result analysis was
performed using Student’s t-test.

RESULTS

Patient population and clinical features

We obtained 54 BM MNCs from patients with the M2 subtype of
AML at diagnosis; their details are described in Table 1. A total
of 16 patients exhibited normal karyotype and 24 patients had
t(8;21). Each of the others evidenced cytogenetically distinct

abnormalities. For remission induction, a majority of the patients
received standard chemotherapy with Ara-C (N¼ 14) or BH-AC
(N¼ 35) coupled with idarubicin. Four of the remaining patients
were treated with Ara-C alone, and one received a regimen of Ara-
C plus etoposide. After induction and subsequent consolidation
chemotherapies, 33 patients (61.1%) received HSCT. Median DFS
and OS periods for all populations were 521 (95% CI, 99–943) and
737 (95% CI, 222–1252) days, respectively. In a univariate analysis,
we noted that HSCT resulted in prolonged patient survival
(Po0.05). Patients with t(8;21) also evidenced better responses
than the population with normal or other cytogenetics. The
correlation between other clinical features (age, sex, RI regimen
and blast % in BM) and treatment outcomes did not reach
statistical significance at the specified level (Table 2).

Transcriptional levels in AML samples and their
correlation with clinical outcomes

Expression profiles for 12 genes were analysed in a total of 54
samples to identify a prediction marker for treatment outcome at
diagnosis. Relative expression levels from real-time PCR analysis
of 12 genes were displayed in box plots (Figure 1B). In order to
characterise the relationship of the gene expression pattern with
clinical outcomes, we clustered the patients into two groups
according to the mRNA levels of each of the genes relative to the
levels of healthy control subjects. The prognostic impacts of
individual genes between the low and high groups were evaluated
via a univariate analysis by Kaplan–Meier estimation and log-rank
test, and summarised (Table 2). In this analysis, we noted that the
high RRM2-level group (N¼ 18) evidenced 2.85-fold (95% CI,
1.22–6.62; P¼ 0.002) and 2.69-fold (95% CI, 1.17–6.20; P¼ 0.005)
increases in the hazard ratio (HR) for DFS and OS, respectively,
relative to the low group (Figure 2). High TOP2B at the
transcriptional level was also associated with longer DFS
(P¼ 0.023) and OS (P¼ 0.024) in the AML patients. Because the
two clinical factors, cytogenetics abnormality and SCBT, already
evidenced an association with treatment outcome, we investigated
whether there was a correlation between both factors and
biological markers (Supplemental Table S2). In the study, no

Table 2 Univariate analysis of treatment outcome using 12 genes and clinical factors by log-rank test

Disease-free survival Overall survival

Variables Group (N) HR (95% CI) P-value HR (95% CI) P-value

CD73 H (21) vs L (33) 0.77 (0.36–1.64) 0.500 0.71 (0.34–1.50) 0.391
NT5C H (48) vs L (6) 0.57 (0.13–2.59) 0.322 0.67 (0.20–2.23) 0.509
CDA H (6) vs L (48) 1.29 (0.40–4.11) 0.630 1.11 (0.37–3.33) 0.842
dCK H (33) vs L (21) 1.07 (0.51–2.26) 0.965 0.98 (0.46–2.09) 0.852
hCNT3 H (39) vs L (15) 0.73 (0.31–1.70) 0.416 0.69 (0.29–1.63) 0.349
hENT1 H (36) vs L (18) 1.75 (0.80–3.83) 0.202 1.25 (0.53–2.90) 0.621
RRM1 H (11) vs L (43) 1.62 (0.61–4.32) 0.247 1.56 (0.59–4.10) 0.303
RRM2 H (18) vs L (36) 2.85 (1.22–6.62) 0.002 2.69 (1.17–6.20) 0.005
TOP2A H (26) vs L (28) 1.48 (0.71–3.07) 0.278 1.29 (0.62–2.68) 0.487
TOP2B H (15) vs L (39) 0.36 (0.17–0.76) 0.023 0.35 (0.16–0.74) 0.024
ABCA3 H (52) vs L (2) 0.41 (0.05–3.53) 0.187 0.57 (0.09–3.61) 0.430
ABCB1 H (30) vs L (24) 0.78 (0.37–1.62) 0.484 0.73 (0.35–1.53) 0.386

Age X60 (13) vs o60 (41) 1.87 (0.75–4.70) 0.099 1.94 (0.77–4.92) 0.090
Sex Female (26) vs Male (28) 0.63 (0.30–1.32) 0.201 0.69 (0.33–1.43) 0.316
HSCT No (21) vs Yes (33) 2.13 (0.96–4.69) 0.031 2.09 (0.95–4.60) 0.041
Cytogenetics 0.056

t(8;21) (24) vs Normal (16) 0.39 (0.16–0.95) 0.012 0.39 (0.16–0.96) 0.022
Others (14) vs Normal (16) 0.54 (0.22–1.32) 0.165 0.54 (0.22–1.32) 0.182

RI regimen IDAþ BH-AC (35) vs IDAþAra-C (14) 1.32 (0.59–3.01) 0.512 1.47 (0.66–3.29) 0.373
BM blast, % X50 (26) vs o50 (28) 0.80 (0.39–1.66) 0.540 0.71 (0.34–1.48) 0.347

Abbreviations: BM¼ bone marrow; CI¼ confidence interval; H¼ high expression; HR¼ hazard ratio; HSCT¼ haematopoietic stem cell transplantation; L¼ low expression;
RI¼ remission induction.
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significant correlation of gene markers with cytogenetics was
observed, and HSCT only showed a weak correlation with TOP2A
(correlation coefficient, 0.296).

Next, gene-clustering analysis was conducted in order to
evaluate the correlations among expression patterns of each
specific gene. The results visualised a conflict of mRNA expression

between TOP2B and RRM2 genes. In addition, TOP2B evidenced a
noticeable trend of counter-expression against its 170 kDa iso-
form-encoding TOP2A gene in the AML samples (Figure 3A).
Therefore, we attempted to divide the 54 patients into two groups
according to a reference TOP2B/RRM2 ratio value of 1.0 (range,
0.015–19.021). Kaplan–Meier estimation curves for DFS and OS

Relative expression

0.01

CD73

CDA

NT5C

dCK

hCNT3

hENT1

RRM1

RRM2

TOP2A

TOP2B

ABCA3

ABCB1

Healthy donor

hCNT3
hENT1

dCK

DNA
synthesis Nucleus

NT5C

Ara-C/BH-AC

Inactive CMP form

Inactive CDP form

Active CTP form

CDA

Deamination

Cell death

Nucleoside
(Ara-C/BH-AC)

TOP2A
TOP2B

ABCA3
ABCB1

Anthracycline
(Idarubicin)

Idarubicin
Ribo-

nucleotide
(de novo)

RRM1
RRM2

CD73

1010.1

Figure 1 Distribution of mRNA expression levels for 12 genes in 54 patients. (A) Schematic flow of therapeutic actions of nucleosides and anthracycline.
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showed meaningful differences between both groups (Figure 3B).
The HRs of the high group against the low group were 0.40 (95%
CI, 0.19–0.85; P¼ 0.010) and 0.41 (95% CI, 0.19–0.85; P¼ 0.014) for
DFS and OS, respectively, in a univariate analyses conducted using
log-rank tests. In a similar manner, the total patient sample was
again dichotomised into two groups by a reference TOP2B/TOP2A
value of 1.0 (range, 0.005–9.027), allowing both groups to be clearly
distinguished in Kaplan–Meier Survival estimations (Figure 3C).
The differences between the two groups subdivided by TOP2A
alone did not reach the threshold for statistical significance
(Table 2). When the mRNA level for TOP2A was combined with
that of TOP2B, however, the univariate analysis generated great
impact and reliable significance for good response with a lowered
HR of o0.3 (95% CI, 0.14–0.62 for DFS and 0.13–0.60 for OS;
Po0.001 for both).

We further conducted multivariate analyses to explore the
influence of clinical factors in regard to the prognostic properties
of four gene markers, which were identified in the univariate
analyses (Table 3). A Cox proportional hazards model adjusted for
age, HSCT and cytogenetic abnormalities indicated that a high
TOP2B/TOP2A ratio was an independent favourable prognostic
factor for both DFS (HR, 4.17; P¼ 0.002) and OS (HR, 3.4;
P¼ 0.005), as shown in Figure 4, whereas the predictive likelihoods
of the others fizzled out in this analysis. Cytogenetic status, among
the clinical features applied, was identified as an independent risk
factor for DFS (P¼ 0.020), but not for OS.

Expression of RRM2, TOP2B and TOP2A in drug-sensitive
and -resistant AML cell lines

In an effort to confirm whether the interesting expressions in the
other candidates as well as the marker genes in the BM blasts
of patients was also observed in drug-resistant cell models, we
conducted real-time PCR analysis in Ara-C and idarubicin-resistant

AML-2 cell lines. The drug-resistant AML-2/IDAC cells evidenced
higher transcriptional levels of RRM2 and TOP2A than were
observed in parental AML-2 cells, whereas TOP2B was down-
regulated in AML-2/IDAC cells. These are quite consistent with
the results observed in AML patients (Figure 5A). Additionally,
an unusual downexpression of dCK was showed in AML-2/IDAC
cells, reconfirming our previous finding that the extremely
decreased expression of dCK gene is a main reason of Ara-C
resistance in this cell model (Song et al, 2009b). When verified by
semi-quantitative PCR and gel electrophoresis, the expression
patterns of RRM2, TOP2B and TOP2A genes in the cell lines
were in an agreement with those from real-time PCR (Figure 5B).
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created the survival curves for disease-free survival and overall survival. Statistical difference (s.d.), HR and P-value for survival curves were calculated via
log-rank test.

Table 3 Multivariate analysis of clinical outcome by Cox proportional
hazards model

Disease-free survival Overall survival

Variables HR (95% CI) P-value HR (95% CI) P-value

TOP2B/TOP2A ratio
High (X1.0, N¼ 21) 1 1
Low (o1.0, N¼ 33) 4.17 (1.73–10.10) 0.002 3.4 (1.5–8.1) 0.005

Cytogenetics 0.035
Normal (N¼ 16) 1
t(8;21) (N¼ 24) 0.45 (0.17–1.15) 0.094 — —
Others (N¼ 14) 1.35 (0.51–3.61) 0.544 — —

Abbreviations: CI¼ confidence interval; HR¼ hazard ratio. Gene markers and
clinical factors, for example, RRM2, TOP2B, TOP2B/RRM2, TOP2B/TOP2A, age,
cytogenetics and HSCT, which displayed P-value o0.2 in univariate analysis, were
considered in this analysis. Exceptively, we included TOP2A in the variables even
though a predictive significance of this gene was not satisfied to our criteria in
univariate analysis. Shown are the variables remaining only in a final model of the
Cox proportional hazard model with a stepwise forward method.
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Next, we evaluated the DNA methylation status of the genes for
RRM2, TOP2B and TOP2A in order to determine whether the
differently observed mRNA expressions were modulated by some
epigenetic modification inherent to drug-resistant AML cells. As
anticipated, we observed that CpG island methylation for RRM2
and TOP2A was slightly reduced in the AML-2/IDAC cells, but CpG
island methylation for TOP2B was higher, relative to that observed
in the wild-type cells (Figure 5C). These results were quite similar
to the observations noted with the clinical specimens, specifically
that most patients with poor prognoses evidenced higher RRM2
and TOP2A, but lower TOP2B.

DISCUSSION

Discovering a novel marker that can be applied to the categorisa-
tion between patient populations with diverse outcomes against
routine induction regimens at diagnosis is very important.
Additionally, a more specialised study employing a patient subset
with a specific subtype is clearly necessary, owing to the high
heterogeneity of AML. In this study, we searched key determinants
allowing for the prediction of treatment outcomes in AML patients.
The results from univariate analysis showed that TOP2B/RRM2
and TOP2B/TOP2A ratios, as well as individual RRM2 and TOP2B
expressions, are statistically reliable predictors for DFS and OS.
When applied to multivariate analysis including other clinical
factors, as described in Table 3, we concluded that a segregation of
patients based on the ratios of the two TOP2 isoforms was the
optimal means of predicting treatment outcomes; this also implies
an independence of the marker as a prognostic determinant
against chemotherapy.

The most interesting finding in this study is that it may prove a
possibility to predict treatment responses by evaluating TOP2B
and TOP2A expression levels, showing the conflicting expression
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trends between the two genes. Although we anticipated finding
overexpression of both genes in the patient group with the shorter
survival rate, the majority of cases (43 of 54 patients, 79.6%)
evidenced a differential pattern, with more than a 1.5-fold
difference in mRNA expression levels noted between the two
genes. Thus, we concluded that the prediction of DFS rate via the
ratio of TOP2B/TOP2A as opposed to that of TOP2B alone is more
accurate, and maximises the difference between the two patient
populations (12.9 vs 5.2) in the univariate analysis. The TOP2
isoforms have been identified as essential nuclear enzymes, which
potentially encourage the rapid replication of tumour cells by
modifying DNA structures (Vos et al, 2011), but their expression
and roles in sensitivity against anthracycline-containing regimens
are controversial as ever. Most studies have focused on TOP2A and
reported involvement of tumour chemoresistance to DNA-dama-
ging agents in AML as well as other tumours (Chekerov et al, 2006;
Chen et al, 2009; Coss et al, 2009). Some groups suggested no
significant correlation between topoisomerase levels and treatment
outcome at diagnosis (Kaufmann et al, 1994; McKenna et al, 1994).
Another recent study indicated that a break of double-strand DNA
by TOP2B, as opposed to that by TOP2A, is more closely
associated with the development of secondary malignancy after
treatment with TOP2-targeting drugs such as etoposide and
doxorubicin (Azarova et al, 2007). With regard to the case of
cancer cells that escape from or resist anticancer drugs, one
possibility is that reduced topoisomerase II levels occasionally
allow the cells to survive from cytotoxic attack by maintaining
their quiescence (Friche et al, 1991; Chen et al, 2011). Apart from
relationship studies between topoisomerase expression and drug
response, it has been reported that TOP2A activity but not TOP2B
in AML blast was decreased by treating with daunorubicin and
idarubicin, indicating that a primary target of anthracycline is
TOP2A (Gieseler et al, 1996). Microarray-based approach of
diagnostic AML with normal cytogenetics showed that TOP2B
expression was much higher in patients showing continuous CR
than in refractory or relapsed patients after CR, although the
researchers did not evidence a direct correlation between TOP2B
expression and sensitivity to the induction chemotherapy (Vey
et al, 2004). Therefore, our results imply the existence of a
mechanism whereby high TOP2B assists rapid proliferation of
leukaemia cells and induces a high degree of susceptibility to
chemotherapy, thereby indicating that TOP2B as well as TOP2A
manage in drug sensitivity against anthracyclines by distinct
independent ways. Another possible explanation is that TOP2B/
TOP2A ratio might be not relevant to a susceptibility against
antitumour agents but to a biological feature of AML with good or
poor outcome, empathising the value of the parameter as a
predictive marker only. However, the functional and differential
roles of both topoisomerases remain to be clearly elucidated. The
reason for the differential regulation of their expression in AML
cells will require elucidation in future studies.

Previous in vivo and in vitro studies have demonstrated that
nucleoside drug metabolism-related genes may have an important
role in responses against the drugs and can be used as a prognostic
indicator not only in leukaemias. One study using samples of
Ara-C-treated AML patients indicated that high dCK and low
NT5C expression were noted in the group with longer survival
rates (Galmarini et al, 2003). Additionally, the roles of dCK, CDA
and hENT1 were addressed in several studies employing in vitro
leukaemia cell models (Ge et al, 2004; Cai et al, 2008; Song et al,
2009b). In our study, despite its identification as a pivotal key
enzyme, dCK was not statistically correlated with DFS (P¼ 0.965)
or OS (P¼ 0.852), according to univariate analyses. We also
detected no meaningful significance in survival analyses using
other candidates. The discrepancy between our results and those of
previous studies may be attributable to the specialised role of dCK
in the activity of anticancer drugs, and to the fact that other studies
have employed differently subtyped AML populations. Indeed, to

screen outcome predictors, other research groups have employed
mixed populations of AML patients treated with non-unified
regimens, whereas in this study we used more focused populations
in the aspect of disease type and chemotherapy regimen. Additionally,
our previous in vitro study showing that dCK performed a critical
function in Ara-C resistance, but not in idarubicin resistance, of
AML cells bolsters this discrepant observation (Song et al, 2009b).

We also attempted to address the regulation mechanisms
underlying the differential expression of marker genes between
AML patients with good or poor outcomes. DNA methylation is a
well-established mechanism of gene regulation in AML (Figueroa
et al, 2010). One study using 42 AML samples suggested that a
poor prognosis by overexpression of ABCB1 was correlated with
hypomethylation in its promoter region (Nakayama et al, 1998). In
order to confirm any correlation between methylation status of the
selected genes and drug resistance, we employed a drug-resistant
in vitro leukaemia model. As described in a previous report, an
AML-2/IDAC (double-resistant to Ara-C and idarubicin) cell line
was originated by way of a chronic drug exposure of the drug-
sensitive parental AML-2 cells (Song et al, 2009a). We hypothesised
that RRM2 and TOP2A expression would be downregulated in drug-
resistant cells, whereas TOP2B expression would be upregulated.
As anticipated, altered gene expressions were noted in AML-2/IDAC
cells, as compared with the AML-2 cells (Figures 5A and B). We also
determined that the differential expression of the genes can be
regulated by the DNA methylation status in the CpG islands
(Figure 5C). Although AML-2 cells are not fully representative of
the clinical AML blasts used in this study because both resistant
cell lines were already exposed to the drugs, these results are
reflective of a connection between the RRM2, TOP2A and TOP2B
genes with the drug-resistant phenotype in AML cells. Additionally,
this cell line may prove useful as a good model for in vitro attempts
to define the contribution of the markers in response to treatment.

In summary, the results of this study demonstrated that the
expression ratio of the TOP2B and TOP2A genes was correlated
with treatment outcomes in AML patients treated with cytosine
arabinoside-based chemotherapy in an independent manner. The
finding may prove useful in the prediction of treatment responses
in M2-subtype AML patients, and also expands the range of possible
treatment choices for improved therapeutic efficacy. However, addi-
tional confirmatory studies in validation sets will be required in order
to actualise the possible benefits illustrated by the results of this study.
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