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Abstract
Brain-Machine Interfaces (BMI) provide a framework to study cortical dynamics and the neural
correlates of learning. Neuroprosthetic control has been associated with tuning changes in specific
neurons directly projecting to the BMI (hereafter ‘direct neurons’). However, little is known about
the larger network dynamics. By monitoring ensembles of neurons that were either causally linked
to BMI control or indirectly involved, here we show that proficient neuroprosthetic control is
associated with large-scale modifications to the cortical network in macaque monkeys.
Specifically, there were changes in the preferred direction of both direct and indirect neurons.
Interestingly, with learning, there was a relative decrease in the net modulation of indirect neural
activity in comparison to the direct activity. These widespread differential changes in the direct
and indirect population activity were remarkably stable from one day to the next and readily
coexisted with the long-standing cortical network for upper limb control. Thus, the process of
learning BMI control is associated with differential modification of neural populations based on
their specific relation to movement control.

Multiple studies have shown that during natural motor control, neurons in motor areas
experience a change in their firing properties after visuomotor adaptation1–3 or adaptation to
a new dynamical environment4–8. While the observed changes in neural activity are closely
linked to improvements in performance, it remains difficult to place such modifications in
the context of the large cortical network for motor control. For instance, the specific neural
correlates of learning and memory formation may depend upon a neuron’s causal role in
movement control.

Brain-Machine Interfaces (BMI)9–23 offer the possibility of understanding the cortical
network dynamics associated with learning to move a novel actuator in awake-behaving
primates. During ‘brain control’, actuator movements are causally linked to an ensemble of
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neurons (i.e. ‘direct’ neurons), typically from the primary motor cortex (M1). Several
studies have shown that such direct neurons experience a change in their tuning properties
during the process of learning neuroprosthetic control12–13,21,23.

In contrast, the vast majority of neurons embedded in the larger M1 cortical network do not
have a direct ‘projection’ to the BMI. While little is known about the function of such
‘indirect’ neurons during ensemble control, they are hypothesized to play a supportive role
during the process of learning and recalling proficient brain control24. To characterize the
large-scale cortical dynamics associated with learning neuroprosthetic control, we recorded
ensembles of M1 neurons while only a subset were assigned to have a causal role during
control. Here we characterize the differential plasticity of neural properties depending on the
specific link to movement control.

METHODS
Surgery

Two adult male rhesus monkeys (Macaca mulatta) were chronically implanted bilaterally in
primary motor and premotor cortex with 3–4 arrays of 64 teflon-coated tungsten
microelectrodes (8×8 array separated by ~500µm; Supplementary Fig. 4) (Innovative
Neurophysiology, Durham, NC). Our recent publication describes the specific location of
implants in these two monkeys (Monkey P & R)23. All procedures were conducted in
compliance with the National Institutes of Health Guide for the Care and Use of Laboratory
Animals and were approved by the University of California at Berkeley Institutional Animal
Care and Use Committee.

Extracellular unit recordings
Unit activity was recorded using the MAP system (Plexon Inc, Dallas, TX). Activity was
sorted on-line prior to recording sessions (Sort-client, Plexon Inc, Dallas, TX). The new
experiments described in this manuscript exclusively used recordings from contralateral M1.
Near, far and direct units were from the contralateral M1. Two datasets from our recent
publication20 were also included in the analysis. While one dataset was from the ipsilateral
M1, the other was from the contralateral M1.

Consistent with reports in the literature 12,23,28–30, several months post-surgery, we found a
subset of units whose waveform shape, amplitude and relationship to other units on a
channel varied little from day to day (i.e. sorting template in Sort-client required no
modifications, see Fig. 5 a, b). The stationarity of such properties was the first criterion for a
putative stable unit. Offline, we confirmed stationarity using principal component analysis
(Wavetracker, Plexon Inc, Dallas, TX). We also examined the interspike-interval
distribution (ISI). A Kolmogorov-Smirnov test was used to compare ISI distributions. After
sorting, units with a clear refractory period (1.5 – 2 ms) were designated as putative single
units. We also estimated the preferred direction of stable units as an additional measure of
recording stability (see below).

Electromyography (EMG)
Surface gold disc electrodes (Grass Technologies) were mounted on medical adhesive tape
and placed on the skin overlying muscle groups. Muscle groups tested included pectoralis
major, biceps, deltoid, triceps, trapezius, and forearm extensors and flexor muscles. EMG
signals were amplified 10,000× (Grass Technologies). Offline, signals were high-pass
filtered, rectified, and smoothed by convolution with a 25 ms triangular kernel (MATLAB
Software, R2009b). Directional activation was estimated using the activity in a 300 ms
window after movement onset.
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Experimental setup and behavioral training
Monkeys were trained to perform a center-out delayed reaching task using the Kinarm
exoskeleton (BKIN Technologies, Kingston, ON). The behavioral task consisted of hand
movements from a center target to one of eight targets distributed over a 14 cm diameter
circle (i.e. Manual Control). Target radius was 0.75 cm. Trials were initiated by entering the
center and holding for a variable period (500–1000 ms). The GO cue (center changed color)
was provided after the hold period. A liquid reward was provided after a successful reach.
Visual feedback of hand position was provided by a cursor precisely co-located with the
center of the hand (radius of 0.5 cm).

Decoding parameters from neural ensembles
We used linear regression to map neural activity to kinematic parameters23,26. This was
performed using functions available in the MATLAB software (R2009b). For a subset of
experiments (brain control task #2), the neural activity ‘predicted’ joint position. These
values were then converted into Cartesian coordinates. The cursor position was updated on
the Kinarm projection screen at 10 Hz. We also tested direct prediction of hand velocity in
Cartesian coordinates (brain control task #1, shown in Fig. 1a). Neural activity was streamed
over a local intranet via the PLEXNET client-server application (Plexon Inc, Dallas, TX)
and converted into 100 ms bins of spiking activity.

The number of neurons incorporated ranged from 10 to 45. This variability was a function of
several factors. Primarily, we were limited by availability of well-isolated neurons. The
yield slowly decreased over time after implantation. The second limitation was the stability
of an ensemble. Prior to each experiment, we monitored the activity in one array over days
to identify possible stable units. While such monitoring increased the probability of
recording a stable ensemble, it did not guarantee stability. Thus, there were numerous failed
experiments resulting from an inability to record the ensemble over the desired time period.
The other factor was the need to monitor both direct and indirect neurons during the course
of learning brain control.

We ensured that well-isolated units were part of both the direct and indirect populations.
Supplementary Figure 8 compares the properties of the two groups from one experiment
(same experiment as shown in Fig. 2a). Using the linear decoder described above, we also
compared the ability of randomly selected neurons from either the direct or indirect
population to predict limb movement parameters. After running a 100 such comparisons, we
found that the mean correlation between the actual and predicted limb positions was very
similar (direct population: R=0.77 ± 0.06 and indirect population: R=0.74 ± 0.05, mean ± 2
sd).

Online brain control
As noted above, these animals had been previously trained to perform brain control task
#223. The task structure for brain control Task #1 was new to them. New brain control
experiments were performed over short periods of time (typically 3–6 days). There was
consistent evidence of improvements in performance with practice (also see Supplementary
Fig. 2). Animals were permitted to use a ‘fixed decoder’ (i.e. held constant after initial
training on day #1) and stable recordings from a neural ensemble23,27. Each ‘experiment’
consisted of a new set of stable neurons and a decoder that was fixed after training on day
#1. Each experiment consisted of multiple daily ‘sessions’.

During brain control task #1, the animal kept his right upper limb in the exoskeleton. As
shown in Figure 1, the animals were required to move their hand to the center target to start
a trial and to keep it in the center target at all times. A new cursor (under brain control)
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appeared at the start of the trial. The animals were required to move the cursor to the target
by modulation of motor cortex activity (under velocity control). Hand position was
continuously monitored during brain control. The trial was aborted with any change in hand
position. To start a new trial, the animal had to move out of the center target and reposition
his hand. Thus, in essence, the ‘brain controlled cursor’ was reset to the center target for
each trial. During selected sessions, we concurrently performed video and surface EMG
recordings from proximal and distal muscle groups (Supplementary Fig. 1). As also shown
in Supplementary Figure 3, Monkey R was trained to perform this task in a single trial
randomized fashion (switching between manual control and brain control trials).

For brain control task #2, the cursor was continuously under brain control. The task-related
hand was removed from the exoskeleton and restrained on the side during brain control. The
cursor was under continuous volitional control. Subjects were required to self-initiate each
trial by moving the brain controlled cursor to the center. A trial was considered incorrect if
the cursor failed to reach the target within 10 seconds after a GO cue. To start a trial, the
cursor had to be held over the center target for 250–300ms. The ‘chance’ level of self-
initiation was ~0.5 per minute. This value was determined through experiments where the
task was performed by spontaneous neural activity (i.e. the computer monitor was turned off
while the cursor was controlled by spontaneous activity). In contrast, while engaged in the
task, each subject self-initiated trials at a rate of 3–10/min.

Data analysis
The majority of analysis was performed on ‘Late’ sessions (defined as sessions ≥ day 3 in an
experiment). Sessions from Day #1 and #2 were labeled ‘Early’.

Preferred Direction
Directional tuning was estimated by comparing the mean firing rate as a function of target
angle during movement execution. In manual control, the time to target was relatively
constant (~700ms). In brain control, this period was variable and decreased with learning.
For the analysis, a 500 ms window was used (starting 200 ms prior to movement). As shown
in Supplementary Figures 6 and 7, our results did not depend on the specific time window.

The tuning curve was estimated by fitting the firing rate with a sine and a cosine as:

(1)

where θ corresponds to reach angle and f corresponds to the firing rate across the different
angles. Linear regression was used to estimate the B coefficients. The preferred direction
was calculated using the following: preferred direction = tan−1 (B2/B3), resolved to the
correct quadrant44. For units with changes in preferred direction, we ensured that regression
captured ≥ 50% of the variance. Thus, the unit shown in Fig. 5b was not included in the
analysis of preferred direction changes.

Modulation Depth
Modulation depth was calculated as the peak-to-peak amplitude of the tuning curve. For
Figure 2c, we ensured that the tuning fit was appropriate for the manual control trial. The
modulation depth of the brain control was computed regardless of the fit. This ensured that
units no longer modulated in brain control were included (e.g. Fig. 5b). The MDratio was
calculated by dividing the modulation depth under two conditions (e.g. comparison of brain
control/manual control). To compare multiple experiments and experimental conditions, we
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normalized each experiment to the mean MDratio for direct neurons. We also tested a non-
parametric metric (difference between highest and lowest firing rate). We reached the same
conclusion of a relative decrease for the indirect population.

Changes in directional tuning
A bootstrap resampling procedure was used to test significance of modulation depth and
preferred direction changes 23,28. By repeating this 2000 times, we created a distribution
corresponding to the null hypothesis (i.e. no change in preferred direction). The confidence
intervals were based on the specified ‘p value’ using a percentile bootstrap. Comparison of
modulation depth and firing rates were performed in an analogous manner.

Changes in mean preferred direction and mean modulation depth
A bootstrap statistic was also used to compare differences between populations (e.g. Fig.
2b). The experimental values for each population were sampled with replacement 2000
times. By taking the mean of each resample, we created a distribution of values. For
comparison between conditions, we sampled one value from the respective zero mean
distributions to create a distribution of absolute differences. We did not note any bias and
the corresponding distributions were symmetric (Fig. 2b).

We also tested an alternative tuning measure23. Specifically, we reexamined the tuning
analysis based on the actual path of the cursor (as opposed to the intended direction). A
similar percentage of units experienced a change in preferred direction (path taken: 69 ± 8%
vs intended direction: 67 ± 12% mean ± std, n=10 sessions, p > 0.05). Moreover, a related
hypothesis is that changes in individual preferred directions could also manifest as changes
in ensemble firing patterns. A preliminary analysis of the reversible changes in firing
patterns when switching from manual control to brain control are shown in Supplementary
Figure 945−46.

Modifications during a session
Neurons with a significant change were selected. To estimate values over the course of
MC1/BC/MC2 trials, a moving window of trials (2 sets of trials to each of 8 targets) was
used. Each individual parameter was then plotted over time (Fig. 4a & c). To calculate the
baseline preferred direction change, we first determined the mean preferred direction during
MC1 for each neuron. This value was subtracted from all values during MC1/BC/MC2.
Thus, the baseline was ‘zeroed’ for ease of comparison. As we were interested in examining
the rapidity and stability of shifts, we took the absolute value of this. The traces in Figure 4b
& d were the overall average.

Results
Two macaque monkeys were trained to perform center-out reaching movements using a
robotic exoskeleton that constrained movements to the horizontal plane (i.e. Manual
Control). Following implantation of microelectrodes, a small ensemble of neurons, typically
from the contralateral M1, was randomly selected to be ‘directly linked’ to BMI control. The
remaining neurons were recorded but not linked to the BMI (i.e. indirect neurons). The
spiking activity of the ‘direct’ ensemble was transformed to motor commands with a linear
decoder optimized to predict upper limb movements11,13,18,23,25. The animals learned brain
control using stable recordings of the direct ensemble across days and a decoder that was
held constant after the initial training23,26–27. Stability of recordings across days was
assessed by stationarity of spike waveforms and the interspike interval (ISI)
distribution23,28–31. As an additional measure, we frequently monitored the directional
modulation of each unit during manual control sessions.
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The animals were trained to perform two tasks in brain control during separate experiments.
Task 1 was structured to equate initial conditions for manual and brain control and to
minimize changes in posture and workspace (Fig. 1a) 32–33. The right upper limb remained
in the exoskeleton under both conditions (Fig. 1a). During manual control, the animal made
physical movements to initiate and complete trials. During brain control, in contrast, the
animal first made physical movements to the ‘Center’ target. After a variable ‘Hold’ period,
a brain control trial started. During brain control of the computer cursor, the animal was
required to hold its arm stationary with the hand in the center target. Arm kinematics were
monitored continuously and the trial was aborted if any motion occurred. We also performed
electromyogram (EMG) recordings to rule out muscle contractions during brain control
(Supplementary Fig. 1). We ensured that the trajectories were comparable using ‘guide’
lines (Fig. 1a). If the cursor moved outside the lines, the trial was aborted. In contrast to
Task 1, the second task was similar to past experiments11–13,19,23, where the animal’s arm
was taken out of the exoskeleton and restrained during brain control.

The animals typically developed proficient brain control over time (usually days ≥ 3 in each
experiment, Supplementary Fig. 2). It is important to note that while both of these animals
had extensive experience with brain control, they required practice to achieve skilled control
with a new set of neurons and a given decoder. Task performance during ‘late’ sessions (i.e.
≥ day 3 of practice) was 86 ± 2 % mean ± sem in Monkey P and 83 ± 2 % in Monkey R,
with a mean time to target of 2.4 ± 0.3 s and 2.8 ± 0.25 s respectively in Monkey P (16 ‘late’
sessions from 4 experiments) and R (9 ‘late’ sessions from 3 experiments).

Modification of preferred directions
We first analyzed changes in the preferred direction of direct neurons during Task 1 (Fig.
1b). We found that a significant proportion experienced a change in preferred direction
during brain control in comparison to manual control (56 ± 8% mean ± sem with a
significant change; 3 sessions with 10 neurons each from 1 experiment in Monkey P and 3
sessions with 15 neurons each from 1 experiment in Monkey P; bootstrap analysis with
p<0.05 and a correction for multiple comparisons was used). When animals were further
trained to rapidly switch between brain control and manual control on a single trial basis
(Supplementary Fig. 3), there was still a significant shift in preferred directions (11 of 20
neurons modified, 2 sessions in Monkey R). Moreover, consistent with past
experiments12–14, similar modifications were present during Task #2 (61 ± 5% mean ± sem,
8 sessions from 4 experiments, 10–45 neurons per session, p< 0.05 bootstrap analysis).
Thus, changes in limb posture and workspace do not exclusively account for the changes in
preferred direction after transition to brain control. For subsequent analysis, we combined
the datasets from the two tasks.

We next analyzed the indirect neurons (Fig. 1c). Interestingly, in both animals we found that
indirect neurons also experienced a similar change in their preferred direction (Monkey P:
n=6 sessions with 18–25 units per session, 60 ± 6% mean ± sem; Monkey R: n=4 sessions,
63 ± 10% mean ± sem with 10–18 units, p< 0.05 bootstrap analysis). To assess specific
differences among population of neurons, we subdivided the indirect neurons (Fig. 2a).
Indirect neurons recorded on a BMI channel (i.e. microwire with a direct neuron) were
labeled as ‘near’ (see Supplementary Fig. 4). The remaining indirect neurons were labeled as
‘far’ (i.e. recorded on a microwire ~500–700µm from a BMI channel). We did not find a
significant difference between the percentage and the extent of changes in the preferred
direction of these two groups (p > 0.05, bootstrap analysis). Together, our results indicate
that there were large scale changes in the preferred direction of both direct and indirect
neurons after the transition to brain control.
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While the analysis described above focused on individual units, we also examined changes
at the population level. For the direct group, while a majority of the individual shifts in
preferred direction (ΔPD) were significant, the sum of the positive and negative shifts
resulted in a non-significant net shift (Fig. 2a). There were no significant differences
between the direct, near and far populations (Fig. 2a, p > 0.05, bootstrap analysis). A similar
finding was also evident when considering all neurons in both animals (Supplementary Fig.
5). Thus, it appears that there is a relative remapping of the preferred directions without any
significant systematic rotational shifts for each neural population.

Differential modification of modulation depths
We next examined for changes in modulation depth. For each neuron, we calculated the
ratio of modulation depths between brain control and manual control (BC:MC MDratio). We
initially focused on sessions with proficient task performance (i.e. ≥ day 3 of practice
defined as ‘Late’). During these brain control sessions, indirect neurons were less modulated
than during manual control (Fig. 1c and Fig. 2b,c). Similar to past reports22–23,34, there was
some heterogeneity in the direct population responses. In contrast, both of the indirect
populations experienced a consistent net relative reduction in MDratio (Fig. 2b).

We compared population means across multiple experiments. The mean BC:MC1 MDratio
was 1.2, 0.6, 0.5 respectively for the direct, near and far populations (Fig. 2b). The median
values were respectively 1.2, 0.5, and 0.5. Only the near and far groups demonstrated a
significant decrease. Superimposed are the bootstrap distributions of each group. In addition,
when we varied the time window for measurement of directional tuning, there were no
significant changes in our conclusions (Supplementary Figs. 6 and 7).

Across six experiments in both animals, we observed a consistent difference between the
relative mean modulation depths of the direct and indirect neuronal populations (Fig. 2c,
BC:MC1 Late, 10 sessions from 6 experiments in Monkey P and R). Surprisingly, the units
with close proximity to direct neurons behaved similarly to more distant neurons. These
differences emerged upon stabilization of task performance (Fig. 2c, BC:MC1 Early versus
BC:MC1 Late, p < 0.05 for near and far populations, 9 sessions taken from 6 experiments in
both Monkey P and R). Together, our results indicate that differential modulation of the
neuronal populations was specifically present during proficient neuroprosthetic control and
not during the initial learning period.

In addition, as evident in the examples illustrated in Figure 1 (also see Supplementary Fig.
4), there were changes in the mean firing rate of individual neurons when comparing manual
control to brain control. They appeared to be independent of the changes in modulation
depth (e.g. compare near and far neurons in Supplementary Fig. 4). While some neurons
experienced a combined decrease in the mean firing rate and the modulation depth (e.g. Fig.
1c left panel), other neurons experienced a change in the modulation depth while the mean
firing rate remained unchanged (e.g. Supplementary Fig. 4). At the population level,
however, there were no significant systematic differences in the mean firing rate between
manual control and brain control for either the direct or the indirect populations (n=6
experiments, p > 0.05 bootstrap analysis).

State-dependent modification of neural properties
As described above, the subjects performed manual control both before and after brain
control. Thus, comparison of modulation depth during MC1 and MC2 could assess for any
lasting effects of the modifications during brain control. For example, studies of motor
learning have documented the neural correlates of a ‘memory trace’ after motor learning4.
Interestingly, there was no significant difference between the direct, near and far groups for
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this comparison (p>0.05, bootstrap analysis, Fig. 2c, MC1:MC2 MDratio). This indicates that
the population modulation depth during manual control, both before and after the brain
control, was very similar. Moreover, MC2:MC1 MDratio was significantly different from the
BC:MC1 Late relationship for both the near and far neurons (p < 0.05, bootstrap analysis, 8
sessions taken from 6 experiments). This further implies that the population modulation
depth reverts back to its original properties during the manual control task.

We subsequently assessed for differences at the level of individual units. The vast majority
of units did not experience a significant change in preferred direction between MC1 and
MC2 (Fig. 3a). Also shown is an example of a unit with a small, but significant, change.
Figures 3b and c show respective examples of the distribution of individual changes in
preferred direction and modulation depth (comparison of 64 neurons during a daily MC1 and
MC2 session in Monkey P). All three neural populations were combined as no significant
differences were evident for each separate comparison. In general, we found that the vast
majority of neurons reverted back to their task-related firing patterns during MC2 in
comparison to MC1 (89 ± 5% mean ± std and 83 ± 4.5% mean ± std without significant
changes in preferred direction and modulation depth respectively, n=6 experiments). We
also did not find evidence of significant differences for manual control sessions associated
with ‘early brain control’ (87 ± 8% mean ± std and 80 ± 3% mean ± std without changes in
preferred direction and modulation depth, n=6 experiments). Moreover, the presence of a
unimodal distribution of changes (i.e. Fig. 3b and c) perhaps suggests a small degree of
instability of the neuron-behavior relationship during the two sessions7,28,35–36.
Alternatively, these changes could reflect subtle changes in task performance.

What are the neural dynamics of switching (i.e. MC1 → brain control → MC2)? We
measured the directional modulation relationship across sessions. For each transition,
relatively rapid changes in preferred direction and modulation depth were evident for direct
units (Fig. 4a, b). Similar dynamics were evident for indirect neurons, albeit with a reduction
of modulation (Fig. 4c, d). Moreover, the properties of both direct and indirect neurons
remained relatively stable during each state.

Stability of indirect neural properties across days
To further test the link between indirect units and brain control, we examined their
properties across consecutive days of proficient brain control. For instance, if the properties
of the indirect population remain constant across days of proficient brain control, it suggests
that they play an active role. We selected a population of stable indirect neurons, all of
which had stable waveform shapes, ISI distribution and preferred direction during manual
control (Fig. 5a). The activities of these neurons were compared across two consecutive days
of brain control (Task Performance, Day 3: 97% and Day 4: 98%). There was no significant
difference in either preferred direction or modulation depth for these examples (p > 0.05,
bootstrap analysis). There were also neurons that were robustly modulated during manual
control but consistently not modulated during each daily brain control session (Fig. 5b). In
general, individual indirect neurons maintained a relatively fixed neuron-behavior
relationship for consecutive days of brain control (comparison of n=3 experiments, % of
neurons with stable parameters: preferred direction 87 ± 4% and modulation depth 81 ± 2%,
n= 16–20 indirect neurons). Strikingly, this was not significantly different from the neuron-
behavior relationship for manual control described in the previous section (p > 0.05,
bootstrap analysis).

We also compared the distribution of changes across days for both direct and indirect
neurons at the population level (Fig. 5c). Interestingly, the indirect neuron distribution was
also not significantly different from that for direct neurons (indirect −19 ± 12° and direct
−15 ± 9°, mean ± std, p > 0.05). Across multiple experiments we also found that the
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population dynamics were very similar across consecutive days (indirect 0.6 ± 11° and
direct –4 ± 10°, mean ± std, n=3 experiments). This was also evident for the MDratio
distributions (indirect 1.0 ± 0.14 and direct 1.07 ± 0.15, mean ± std, n=3 experiments).
Together, this indicates that indirect neurons maintained a relatively fixed neuron-behavior
relationship during brain control. The similarity with the direct neurons further suggests that
the indirect population may play an active role during brain control.

Discussion
This study demonstrates that large-scale modifications of the motor cortex network are
associated with learning neuroprosthetic control. We consistently observed that learning
brain control was linked to modifications of both direct and indirect neurons. While a similar
fraction of both neural populations experienced a change in preferred direction, there were
clear differences in their relative modulation. Thus, the process of learning neuroprosthetic
control differentially modifies groups of neurons based on their causal relation to
movements. Interestingly, these large-scale changes were remarkably stable over time and
readily coexisted with the cortical activity patterns associated with actual upper limb
movements.

Large-scale modifications associated with learning
One goal of the field of BMI is to allow skilled control of an external artificial actuator
while minimizing the learning required12,23,37. A related hypothesis is that by tapping the
existing cortical network for manual control, brain control can be achieved in a rapid and
intuitive manner. In support of this possibility are studies demonstrating that: (1) motor
cortex spiking can be dissociated from movements21,38, (2) that imagined movements result
in patterns of activity in the absence of movement18, and (3) that an arbitrary activity pattern
may be achieved through learning21,23. Past research has evaluated brain control with
‘biomimetic decoders’ that capture the relationship between neural activity and a movement
parameter11–13,18. Multiple studies, however, have reported that learning is required to
achieve skilled control12–13,18,23,26.

We also observed a requirement for learning when a new set of neurons and a decoder were
introduced23,27. Moreover, we noted shifts in the preferred direction of both direct and
indirect neurons. Our results also show for the first time that the surrounding indirect
neurons are differentially modified. Interestingly, this was evident only after stabilization of
performance and not during the initial learning process. Stability of recordings and the
decoder are likely to be important for skill acquisition and the observed neural
modifications23,27. It is important to note, however, the majority of BMI studies have not
used such conditions, instead relying upon decoders that are retrained daily12–13,27,39. It
remains unclear how the indirect neurons are modified under those conditions.

What is the role of indirect neurons? The stability of indirect neural properties suggests an
active supportive role in neuroprosthetic control. Our analysis of individual neurons
indicates that such stability is present over long daily sessions as well for sessions on
subsequent days. Interestingly, the stability of both direct and indirect neural properties is
quite similar. This implies that even while the decoders cannot ‘translate’ indirect neural
activity, this activity may shape the direct activity. However, it also remains possible that
indirect activity may play a negative role. In this viewpoint, our observed reduction in
modulation depth may allow more efficient brain control by avoiding interference with the
direct neurons22,24. As discussed below, this may be related to the ‘reweighting’
phenomenon after perturbations to the decoder22.
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Changes in directional tuning with learning
Both indirect and direct populations experienced similar changes in preferred direction.
Moreover, at the population level, there was no significant rotation. Interestingly, these
widespread changes were closely linked to the process of learning. For example, both groups
experienced an overall stabilization of tuning properties when task performance plateaued.
This was also evident for neurons across days of brain control. This association suggests a
link between learning neuroprosthetic control and the observed changes in preferred
direction. After the initial switch to brain control during early sessions, performance is
typically poor. This implies that the ensemble tuning properties (i.e. those present during
manual control) are not sufficient. It is reasonable to assume that error-correction
mechanisms are recruited over this period. It is thus possible that the observed shifts in
preferred direction are the result of cortical mechanisms to minimize task-related errors. In
support of this notion is our recent finding of a strong correlation between the extent of
instability of direct neural tuning properties and task performance during long-term brain
control23.

We also designed a novel task to closely approximate initial conditions for manual control
and brain control (i.e. Task 1). This task minimized the possibility that changes in limb
position and posture32–33 could by themselves result in widespread changes in preferred
direction. With this task, we still noted large scale changes. Interestingly, even when initial
conditions were such that the animal could not predict an upcoming trial (i.e. single trial
switching between manual and brain control, Supplementary Fig. 3), changes in preferred
direction were still evident. These results suggest that differences in initial conditions cannot
completely account for the observed change in neural properties. It remains possible that
differences emerging after the onset of movements (e.g. absence of limb dynamics and
propioception) are triggers for the changes in neural properties. However, past studies have
also shown that brain control in the presence of limb movements (i.e. where propioception
and limb dynamics are likely to be present in some form) have also resulted in
modifications13,40. Moreover, changes in sensory responses should affect both the indirect
and direct neurons equally (i.e. a global change). Our observed differential modulation is not
consistent with this possibility.

Differential modulation of direct and indirect populations
The distinction of direct versus indirect is an externally imposed causal link to cursor
movements via the ‘decoder’. While prior to learning brain control these populations were
similarly modulated, stable skill acquisition was associated with differential modulation.
Thus, learning proficient control through error-correction processes and visual feedback
appears to be capable of differentially modifying populations of units with a causal link to
movements.

Our finding is closely related to the body of literature, albeit at the level of neural
ensembles, on modifications of single neurons and pairs of neurons through operant
conditioning21,24,41. Interestingly, studies of operant conditioning of single neurons found
that non-conditioned adjacent neurons were largely correlated with the conditioned
neurons24,41. Recent theoretical work suggests that spike-timing based plasticity could
underlie changes in neural activity through operant conditioning42. Apparent differences in
comparison to our findings may be the result of two factors. Firstly, differential modulation
was only evident after several days of practice. Our analysis of ‘early’ sessions could be
consistent with the correlated changes seen with daily conditioning of individual neurons.
Secondly, learning neuroprosthetic control with larger ensembles may not be compatible
with strategies that trigger correlated increases in neural activity.
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Moreover, recent work on changes in neural activity in response to decoder perturbations
suggest that error-correcting mechanisms can partially establish a link between neurons and
their specific contributions to errors during brain control22. This finding may be related to
our observation of differential modulation. Neural mechanisms of error correction are
almost certainly recruited by this process. It seems reasonable to hypothesize that a common
mechanism underlies both the initial establishment of proficient control as well as
adjustments after a perturbation. Especially given the casual link between direct activity and
cursor movements, direct neurons are more likely to contribute to errors than indirect
neurons.

Reversibility of the modifications
The observed large-scale modifications were reversible in a state-dependent manner. While
several studies have documented changes in neural properties during brain
control 12–14,21–23, the time course and reversibility of such changes remained unclear. Here
we show that modifications to both direct and indirect neurons were rapidly reversible. This
indicates that proficient neuroprosthetic control is associated with the formation of a cortical
state that readily coexists with the long-standing network for natural motor control. When
switching between control states, the cortical network appears to rapidly switch, without
interference, based on task requirements.

Such rapid reversibility may contrast with the network changes associated with adaptation to
novel force fields4–5. In a previous study, after adaptation to a new dynamical environment,
motor cortex appeared to retain a ‘memory trace’ evident at the level of single neurons5.
While this may suggest a difference between motor adaptation versus neuroprosthetic
learning, there are several factors that could account for the differences. Two such factors
are the amount of time spent learning the task and the electrophysiological recording
technique (e.g. acute single neuron recordings versus chronic recordings could target
different neuronal populations). In general, the exact mechanisms that allow for apparently
rapid changes to cortical properties when switching control states remain unclear. They may
be related to existing cortical mechanisms for switching among states during natural motor
control43. It also points to the general ability to maintain multiple neuron-behavior
relationships without interference23,28,36.

In summary, our results demonstrate that learning neuroprosthetic control is associated with
differential modulation of neuronal populations based on its causal link to movement
control. Moreover, proficient control is linked to the formation of a stable large-scale set of
neural activations.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Modification of neural firing properties during brain control
a. For each daily session, subjects were required to serially perform a delayed center-out
task in manual control (MC1), brain control and then manual control (MC2). In the brain
control task shown, visual guides (i.e. lines shown in red) enforced straight trajectories.
Trials were started by the animal physically moving to the center target. After a hold period,
brain control (i.e. absence of any movements) was initiated. b. Changes in the preferred
direction of a direct neuron. Solid lines are the cosine fit (R2 is the percent of variance
accounted for by the fit). Circles and bars (s.e.m.) show the directional modulation of the
firing rate. Panels on the right show the waveform, crosscorrelograms (0.1% of spikes in a
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window < 1.5 ms) and the mean trajectories during manual control and brain control.
Statistics performed with boostrap analysis. c. Changes in the preferred direction of indirect
neurons. The directional modulation relationships are arranged similarly to b. Insets show
waveforms of the respective indirect neurons.
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Fig. 2. Differential modulation of neuronal populations during brain control
a. Distribution of shifts in preferred directions (ΔPD) between manual control and brain
control. Each bar shows the number of neurons (i.e. ‘counts’) with a corresponding ΔPD.
The labels above indicate the mean ΔPD for each population. Superimposed in gray is the
bootstrap distribution. b. Distribution of changes in modulation depth ratio (MDratio) for
BC:MC for the three neural populations. This panel is arranged similarly to a. c. Ratio of
relative modulation depths. To compare multiple experiments and experimental conditions,
we normalized each session to the mean MDratio for direct neurons. ‘Early’ and ‘Late’
represent brain control sessions respectively from days #1–2 and day ≥ 3 of training.
MC1:MC2 is the ratio of modulation depths of the manual control sessions before and after
brain control. Error bars show s.e.m.
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Fig. 3. Stability of neural properties
a. Average directional modulation relationship during MC1 (black) and MC2 (gray) for three
neurons. Neuron in lower panel experienced a significant change (bootstrap analysis,
p<0.05). Error bars shown s.e.m. b. Actual (solid bars) and bootstrap (orange, mean ± std
shown) distributions of changes in preferred direction during MC1 and MC2. All three
neural populations were combined as they behaved similarly. c. Distributions of modulation
depth changes. Arranged as in b.
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Fig. 4. Stability of state-dependent changes in neural properties during a session
a. Traces show the preferred direction and modulation depth for a moving window of trials
(window of 16 trials) for a direct unit. Each segment is color coded and labeled (MC1, brain
control or BC, MC2). b. Average of multiple direct units from both animals. To illustrate the
time course at the population level, the respective mean MC1 value was subtracted from
each individual trace and the absolute value was used for the average. n=number of units
included in the average. Each plot shows the mean (thick line) ± 2 s.e.m. (thin line). c,d.
Individual example and average responses of indirect units. Arranged as in a,b.
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Fig. 5. Stability of neural properties across consecutive days of brain control
a. Average directional modulation relationship for a direct and near unit during manual
control and brain control on two consecutive days. Partial lines above each tuning curve
represent the respective preferred direction for each daily brain control (PDBC) and manual
control (PDmC) session. Shaded region is the respective variance of the bootstrap
distributions of PDBC and PDMC. Waveforms and interspike interval distributions from a
direct (red) and near (blue) unit on consecutive days are also shown. b. Directional
modulation of a far unit on two consecutive days. PDBC could not be estimated because of a
lack of modulation. c. Population distribution of preferred direction changes for indirect and
direct neurons (PDBC3–PDBC4). For indirect units, the actual (grey bars) and bootstrap

Ganguly et al. Page 20

Nat Neurosci. Author manuscript; available in PMC 2012 July 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(black line) distributions are shown. The dark red line is the bootstrap distribution for direct
units. Gray vertical line represents a ΔPD of 0.
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