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Abstract
Nutrient and energy metabolism in mammals exhibits strong diurnal rhythm that aligns with the
body clock. Circadian regulation of metabolism is mediated through reciprocal signaling between
the clock and metabolic regulatory networks. Recent work has demonstrated that autophagy is
rhythmically activated in a clock-dependent manner. As autophagy is a conserved biological
process that contributes to nutrient and cellular homeostasis, its cyclic induction may provide a
novel link between clock and metabolism. This review discusses the mechanisms underlying
circadian autophagy regulation, the role of rhythmic autophagy in nutrient and energy metabolism,
and its implications in physiology and metabolic disease.

Nutrient and energy metabolism is coupled to timing cues
Nutrient and energy metabolism is temporally organized in mammalian tissues to
synchronize the storage and utilization of energy with light/dark cycles [1-3]. Circulating
metabolites and hormones ebb and flow according to distinct diurnal patterns. In addition,
rhythmic metabolic gene expression is prevalent in major metabolic tissues, such as the
liver, adipose tissue, and skeletal muscle [4, 5]. As a consequence, the activities of many
metabolic pathways are restricted not only to specific tissues in the body, but also to unique
periods during the day. For example, hepatic gluconeogenesis, de novo lipogenesis, VLDL
secretion, cholesterol biosynthesis, and xenobiotic detoxification are precisely timed and
reach their respective peaks at different time [6-10]. These observations form the basis for
the emerging concept that nutrient and energy metabolism is tightly coupled to the timing
cues in mammalian tissues. The temporal restriction of metabolic functions may provide
advantages for organisms as they anticipate and synchronize their feeding and activity
cycles to the environment.

The integration of clock and metabolism is mediated through reciprocal crosstalk between
these two regulatory networks (Figure 1). In mammals, the central clock in suprachiasmatic
nucleus (SCN) responds to light and drives diverse behavioral and physiological cycles in
the body [11]. This master clock effectively sets the phase of peripheral tissue clocks. At the
molecular level, biological clock comprises factors that act in concert to drive rhythmic gene
expression in the SCN and peripheral tissues (Box 1). Transcriptional profiling revealed that
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a large number of genes involved in glucose and lipid metabolism are temporally controlled
[12-16]. Recent chromatin-immunoprecipitation sequencing studies support the notion that
many of these rhythmically expressed genes are direct transcriptional targets of clock genes,
such as Bmal1 and Rev-erbα [17, 18]. Clock exerts its physiological effects in part through
these direct transcriptional targets. For example, diurnal regulation of xenobiotic
detoxification is mediated through the circadian PAR-domain basic leucine zipper
transcription factors DBP/TEF/HLF, all of which are clock targets [6]. Hepatic lipogenesis
and lipoprotein secretion are rhythmically controlled by several factors, including the
transcription factor SREBP, small heterodimer partner (SHP), and the histone deacetylase
HDAC3 [10, 18, 19].

Nuclear hormone receptors (NHR) are a family of transcriptional regulators that respond to
diverse classes of metabolites and play important roles in metabolic regulation. The
expression of many NHRs exhibits circadian regulation [20], some of which also directly
interact with clock proteins [21, 22], potentially synchronizing the expression of clock and
metabolic genes. For example, Rev-erbα, a NHR and also a core clock components,
regulates circadian SREBP signaling and bile acid homeostasis [23]. NHRs control the
expression of target genes through recruiting coactivator and corepressor proteins that
participate in chromatin remodeling and epigenetic regulation [24, 25]. Peroxisome
proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is a transcriptional
coactivator initially found to stimulate mitochondrial biogenesis, fatty acid β-oxidation,
brown fat thermogenesis, and hepatic gluconeogenesis [26, 27]. Recent work demonstrated
that PGC-1α also directly regulates the expression of core clock genes, such as Bmal1 and
Rev-erbα, and is indispensible for circadian pacemaker function [28] (Box 1). The
expression of PGC-1α is diurnally regulated and is modulated by casein kinase 1δ [29], an
important regulator of the clock oscillator. Similarly, HDAC3 is recruited to the NHR Rev-
erbα and regulates a program of metabolic and clock gene expression in the liver [18, 30,
31]. As such, the regulatory networks that govern clock and metabolism are highly
intertwined and integrated.

Nutrient signaling exerts profound effects on the clock network (reviewed by Peek et al., in
this issue). A notable example of nutrient sensing in the cell is via NAD+ and NAD+-
dependent regulatory proteins. Sirtuin 1 (SIRT1) is an NAD+-dependent histone deacetylase
that deacetylates several clock proteins [32, 33]. Poly (ADP-ribose) polymerase 1 (PARP-1),
an NAD+-dependent ADP-ribosyltransferase, poly(ADP-ribosyl)ates Clock and alters the
affinity of the Bmal1/Clock transcriptional complex (Box 1) to its target DNA [34]. PARP-1
also regulates SIRT1 activity indirectly through its modulation of NAD+ levels in the cell
[35]. In parallel, the AMP-activated protein kinase (AMPK), a sensor for cellular AMP/ATP
ratio, phosphorylates clock proteins such as Cry and CK1ε [36, 37]. Because intracellular
NAD+ levels and energy charge are regulated by nutrient status, these studies highlight a
direct role for metabolic signaling in fine-tuning pacemaker function. The reciprocal
crosstalk between the clock and metabolic regulatory networks potentially provides a real-
time mechanism for synchronizing cellular metabolism with other biological processes.

Perturbations of clock function have been associated with elevated risk for certain diseases
in humans, including sleep disorder, metabolic syndrome, cardiovascular disease,
rheumatoid arthritis, and cancer [2, 38]. Acute disruption of sleep rhythm in healthy
individuals results in decreased insulin sensitivity while chronic circadian misalignment
increases the risk for metabolic disorders in shift workers [39-41]. Various clock-deficient
animal models have been generated and characterized in recent years. Clock mutant mice
develop symptoms reminiscent of metabolic syndrome, whereas pancreatic islets lacking
clock have impaired glucose-stimulated insulin secretion [42, 43]. Disruption of liver clock
perturbs hepatic gluconeogenesis, lipid metabolism, and bile acid homeostasis [23, 44].
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Exposure of mice to inverted circadian environment has also been shown to cause excess
weight gain [45]. These studies underscore a potentially important role for circadian
misalignment in the pathogenesis of metabolic disorders in humans.

Circadian regulation of autophagy
Autophagy literally means ‘self-eating’ and refers to the process that initiates with the
formation of isolation membranes, which then elongate, engulf cytosolic components, and
form enclosed vesicles called autophagosome [46]. The autophagosome subsequently fuses
with lysosome to form autolysosome, where degradation occurs (Figure 2). The
identification of factors that carry out autophagy has provided a molecular framework for
autophagic degradation and its physiological significance [47] (Box 2). These studies have
led to the conclusion that autophagy is critical for cellular homeostasis and nutrient
metabolism in the starvation state. Autophagy is induced in neonatal tissues and in adult
tissues in response to starvation [48, 49]. Defects in autophagy induction result in lower
plasma glucose and amino acid levels and compromise survival during the early postnatal
period. In parallel, autophagy is required for removing protein aggregates, damaged
organelles, and certain pathogens [50]. Autophagy deficiency has been implicated in the
pathogenesis of various disease conditions, such as cancer, diabetes, hepatic steatosis,
skeletal myopathy and neurodegeneration [51-56].

In the 1970s, a series of electron microscopy studies demonstrated that the number of
autophagic vacuoles varies throughout the day in several tissues, including the inner
segment of retina rod cells, cardiomyocytes, hepatocytes, pancreatic acinar cells, and
proximal tubules of kidney in rats [57, 58]. Using more specific molecular markers for
autophagy, recent studies indicated that autophagy activity exhibits robust diurnal rhythm in
several mouse tissues, including the liver, heart, and skeletal muscle [59]. When autophagy
is activated, the rate of autophagosome formation, its conversion to autolysosome, and
subsequent degradation in lysosome are increased. Autophagy flux can be estimated by
examining the degradation rate of autophagic protein marker microtubule-associated
protein1 light chain 3 (LC3). This measurement revealed that autophagy flux reached a peak
in the afternoon and decreased to lower levels in the dark phase. In addition, the cyclic
activation of autophagy flux in the liver is associated with changes in autophagosome
abundance and rhythmic expression of autophagy genes. The expression of several genes in
the autophagy and lysosomal pathways was also found to oscillate in the yeast during
continuous growth under nutrient-limited conditions [60]. In this case, autophagy appears to
be restricted to a specific temporal phase that is associated with reductive metabolic
activities. While the timing cues that drive rhythmic autophagy activation in mammalian
tissues and in yeast cells are likely different, the autophagy cycles may reflect a conserved
property of cellular metabolism and homeostasis.

Transcriptional regulation of autophagy rhythm
The nature of timing cues that drive circadian autophagy appears to involve both clock and
nutritional signals [59]. Liver-specific Bmal1 null mice have dampened rhythm of
autophagy gene expression and autophagy flux, suggesting that clock exerts its effects on
circadian autophagy, at least in part, through cell-autonomous mechanisms [59]. Nutritional
status provides a strong entrainment signal for peripheral tissues. Restriction feeding resets
the phase of peripheral clocks in rodents without affecting the central clock (Box 1) [61].
Notably, the phase of autophagy gene expression is also reversed following the feeding
switch [59, 62]. While meal timing dominantly resets the phase of autophagy rhythm, it
remains unknown whether this is secondary to the realignment of clock with feeding status.
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Transcriptional regulation of autophagy genes is emerging as an important mechanism in the
control of cellular autophagy activity. To date, several transcription factors have been
identified that regulate various aspects of the autophagy gene program (Figure 2). In the
context of circadian autophagy, C/EBPβ appears to play a crucial role in coordinating
rhythmic expression of autophagy genes [59]. C/EBPβ is a basic leucine zipper transcription
factor that regulates diverse biological processes, including immune response, cell
differentiation, and metabolism [63-67]. The expression of C/EBPβ is highly rhythmic and
is regulated by the liver clock in a tissue-autonomous manner. Adenoviral-mediated
expression of C/EBPβ stimulates the program of autophagy gene expression and induces
autophagic protein degradation in cultured hepatocytes. C/EBPβ directly binds to the
promoters of autophagy genes and activates their transcription [59]. Similar to C/EBPβ,
Forkhead transcription factor O3 (FoxO3) induces the expression of several autophagy
genes in skeletal myocytes, including LC3B, Gabarapl1, Bnip3, and Bnip3l [68, 69]. This
regulation of autophagic protein degradation by FoxO3 contributes to muscle atrophy
induced by starvation. In addition to FoxO3, FoxO1 also regulates autophagy in
cardiomyocytes [70]. A recent chromatin-immunoprecipitation sequencing study revealed an
unexpected role for sterol regulatory element binding protein 2 (SREBP2) in the regulation
of autophagy gene expression in the liver [71]. In this case, SREBP2 may provide a link
between autophagy and cellular sterol homeostasis. Recent studies also demonstrate that the
transcription factor TFEB controls a large number of genes involved in autophagy and
lysosome dynamics in HeLa cells, and is sufficient to promote lysosome biogenesis,
autophagy, and lysosomal exocytosis [72, 73]. Interestingly, TFEB is localized in cytosolic
compartment under normal growth conditions, and translocates into the nucleus in response
to lysosomal stress or nutrient limitation. Whether the FoxO transcription factors, SREBP2,
and TFEB also contribute to circadian regulation of autophagy remains currently unknown.

In addition to the transcriptional mechanisms, it has been recognized that mTOR plays an
important role in mediating nutrient regulation of autophagy. When nutrients are abundant,
active mTOR physically interacts with the Ulk1-FIP200-Atg13 complex and phosphorylates
Ulk1 and Atg13, thereby inhibiting Ulk1 kinase activity and autophagy induction [74-76].

Besides the mTOR complex, AMPK also regulates autophagy directly by phosphorylating
Ulk1 and this particular phosphorylation increases the kinase activity of Ulk1 and promotes
autophagy [77-79]. While the mTOR and AMPK pathways appear to undergo circadian
regulation, their role in driving rhythmic autophagy activation in tissues remains to be
explored [37, 80].

Rhythmic autophagy: a link between clock and metabolism?
While it is evident that autophagy is rhythmically activated in the body, the significance of
autophagy cycles in physiology and disease is far from clear. Conceptually, close coupling
of autophagic degradation to the biological clock may provide distinct advantages for
multicellular organisms to maintain nutrient and energy homeostasis, remodel proteomes
and organelles, and achieve temporal compartmentalization of tissue metabolism.

Nutrient and energy homeostasis
A major function of autophagy is to degrade cellular components when nutrients become
limited. The concentrations of plasma amino acids and metabolites exhibit robust circadian
oscillation [81, 82]. Interestingly, diurnal regulation of branched-chain amino acid levels in
plasma, the liver, and skeletal muscle in fasted state is diminished in liver-specific Atg7-
deficient mice [82]. Disruption of circadian autophagy rhythm in liver-specific Bmal1 null
mice is also associated with impaired hepatic gluconeogenesis and hypoglycemia during late
light phase [44], which coincides with peak autophagy flux. Recent studies have implicated
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autophagy in the catabolism of triglycerides stored in lipid droplets [53]. Because the
expression of genes involved in de novo lipogenesis, cholesterol biosynthesis, and fatty acid
β-oxidation is highly rhythmic in the liver, it is likely that the circadian regulation of these
metabolic cycles is coordinated with autophagy to optimize the supply of nutrients for
storage or oxidation.

Proteome and organelle remodeling
Rhythmic autophagic induction may be important for temporal remodeling of proteomes and
organelles. This dynamic regulation of cellular proteomes and organelles enables the cells to
adjust their functions in response to specific physiological needs. A surprising finding with
regard to the circadian regulation of the hepatic proteome and transcriptome came from
comparative analysis of diurnal regulation of protein and mRNA expression [83]. While up
to 20% of soluble proteins assayed in mouse liver exhibit circadian oscillation, nearly half of
them lack corresponding mRNA cycles. Additionally, these oscillated proteins tend to peak
in the dark phase when autophagy activity is lower [57, 59, 83], raising the possibility that
circadian autophagy could play a role in selective proteome remodeling in the liver.
Interestingly, the abundance of mitochondria, peroxisomes, and endoplasmic reticulum
varies throughout the day, which is likely mediated through cyclic activation of autophagy-
mediated turnover [84, 85]. The periodical removal of mitochondria and other organelles
may facilitate the adjustment of the bioenergetic properties throughout different circadian
phases.

Temporal compartmentalization of tissue metabolism
Autophagy-mediated proteome and organelle turnover may provide an important mechanism
for the temporal compartmentalization of tissue metabolism. Biological rhythm is an
intrinsic cellular property that is conserved from single-cell eukaryotes to different
kingdoms of multicellular eukaryotes. Yeast grown under nutrient-limited condition exhibits
robust cycles of oxygen consumption and redox changes in the cell [60]. In each phase, a
subset of oscillating genes peaks, including those involved in ubiquitin/proteasome function
and autophagy. It is possible that this rhythmic induction of degradation pathways is
necessary for large-scale removal of cellular components that paves the way for metabolic
phase transition. As such, the metabolic functions in higher organisms are not only restricted
to specific tissues, but also compartmentalized along the temporal axis. The cyclic activation
of autophagy may alter the composition and/or functional characteristics of cellular
proteomes and organelles, thus defining distinct temporal compartments of nutrient and
energy metabolism.

Implications of autophagy rhythm in metabolic disease
Autophagy is a fundamental cellular process that has been implicated in various disease
conditions [50]. Deletion of Beclin 1, also known as autophagy-related gene 6 (Atg6), a
protein required for the initiation of autophagosome formation, was found in patients with
breast cancer [54]. Genetic deletion of Atg5 or Atg7 in the liver leads to the development of
benign liver adenomas, likely as a result of mitochondrial dysfunction, oxidative stress, and
impaired DNA damage response [86]. Because autophagy is critical for the removal of
protein aggregates, defects in autophagy have also been linked to the pathogenesis of
neurodegenerative disease, muscular dystrophy as well as liver damage caused by mutations
in α1-antitrypsin [55, 56, 87]. Genetic and pharmacological activation of autophagy
alleviates disease progression and severity in these animal models.

Potential involvement of autophagy in the pathogenesis of metabolic diseases is drawing
increasing attention. Autophagy activity appears to be reduced in the liver in diet-induced
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and genetically obese mice [88, 89]. Importantly, rescue of autophagy function in the liver
restores hepatic insulin signaling and glucose homeostasis. Autophagy also plays a direct
role in the hydrolysis of triglycerides stored in lipid droplets [53]. In this case, lysosomal
hydrolysis of triglycerides provides a previously unappreciated mechanism for lipid
hydrolysis and fatty acid β-oxidation. As hepatic steatosis is a common feature in insulin
resistant state, it is possible that defects in autophagy may contribute to excess triglyceride
accumulation in the liver. The extent to which reduced autophagy contributes to hepatic
steatosis and potentially non-alcoholic steatohepatitis remains to be established. A second
pathway that links autophagy to hepatic lipid metabolism is through autophagy-mediated
degradation of Apolipoprotein B (ApoB). Under physiological conditions, a significant
proportion of nascent ApoB-containing VLDL particles is diverted from the secretory
pathway and towards autophagic degradation [90]. It is possible that defective clearance of
these lipid-containing particles may further aggravate hepatic steatosis. Hepatic VLDL
secretion is itself diurnally regulated, and as such, autophagy-mediated ApoB degradation
may be coupled to the circadian regulation of VLDL secretion [91]. Finally, autophagy is
also required for adipogenesis, insulin secretion by β-cells as well as muscle metabolism and
function [51, 52, 55, 92, 93]. The coupling of autophagy and metabolism, and importantly,
their alignment to the body clock are emerging as a novel factor underlying metabolic
homeostasis and disease.

Concluding remarks
Nutrient and energy metabolism in mammalian tissues exhibits strong diurnal rhythms. The
orchestration of metabolic rhythm requires time-dependent transitions between metabolic
states and their alignment to the biological clock. In this context, cyclic activation of
autophagy throughout light/dark cycles could in principle fulfill several critical roles.
Autophagic degradation provides energy and biosynthetic intermediates to help maintain
cellular and systemic homeostasis between feeding cycles. The periodic activation of
autophagy may contribute to proteome turnover and organelle homeostasis, which
collectively define different metabolic phases and the transition among these temporal
compartments in the tissue. Because autophagy is emerging as an important process for
metabolic homeostasis, future work is needed to assess the significance of autophagy cycles
in physiology and the extent to which its disruption contributes to the pathogenesis of
metabolic disease.
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Box 1. The core components of the mammalian clock

To adapt to the daily light/dark cycle, some prokaryotes and most eukaryotes have
evolved mechanisms to synchronize their behavior and physiology to the environment.
Although the exact molecular players are not the same, all of these biological timing
systems consist of positive and negative regulators assembled into auto-regulatory
feedback loops [94-96]. In mammals, the Bmal1/Clock and Bmal1/Npas2 transcriptional
complexes are key activators that constitute the positive arm of the molecular clock. The
expression of Bmal1 itself is under the control of nuclear receptor RORα/γ and
transcriptional coactivator PGC-1α. Major target genes of Bmal1 include Period 1
(Per1), Per2, Per3, Cryptochrome 1 (Cry1), and Cry2, which form repressor complexes
that inhibit the transcriptional activity of Bmal1. In addition, Bmal1 also induces the
expression of Rev-erbα, which forms repressor complexes with NCoR and HDAC3 and
inhibits Bmal1 expression [30, 97]. These negative feedback loops serve as the molecular
basis for the generation of transcriptional rhythm. Casein kinase 1δ (CK1δ) and 1ε
phosphorylate Per and Cry proteins, leading to their proteasomal degradation. In addition
to phosphorylation, the components of the core clock are regulated by other post-
translational mechanisms including acetylation, deacetylation, and ubiquitination, which
modulate the stability and/or activities of clock proteins [98].

The molecular clock exists in diverse cell types in the body [95, 96]. The central clock
refers to the circadian pacemaker residing in the SCN, which is essential for light
entrainment of behavioral and physiological cycles. The clocks in peripheral tissues, such
as the liver, lung and kidney, are highly responsive to nutrient and hormonal signals
derived from feeding. Under restriction feeding conditions, the peripheral clocks can be
entrained by meal timing independently and become uncoupled from the central clock
[61]. In humans, disruption of circadian rhythm has been associated with increased risk
for obesity and cardiovascular disease [99]. Genetic disruption of core clock components
results in metabolic perturbations reminiscent of metabolic syndrome, including obesity,
α-cell dysfunction and hyperlipidemia [43, 44, 100].
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Box 2. Molecular machinery of autophagy

Autophagy is a highly conserved cellular process that defends the cell against acute
nutrient deprivation and certain stresses. Under conditions of limited nutrient access,
such as starvation and the interruption of placental nutrient supply in neonates, autophagy
can be rapidly and robustly induced in multiple tissues [48, 49]. Restriction of various
types of nutrients, such as amino acids, growth factors, oxygen, and energy, can also
induce autophagy in the mammalian cells [50]. This induction of autophagy is in part
mediated by the mTOR and AMPK signaling pathways [101]. Certain stress conditions,
such as hypoxia, mitochondria damage, ER stress, and immune signals can also induce
autophagy through distinct downstream mediators [102, 103]. In addition to the post-
translational regulation, recent studies suggest transcriptional regulation is also important
underlying mechanisms of autophagy activation [59, 68, 69, 72].

Autophagosomes are generated in close proximity to the endoplasmic reticulum (ER),
with membrane supply from Golgi complex, mitochondria, and plasma membrane [47,
101]. A number of factors have been identified to play an essential role in
autophagosome formation. They constitute five macromolecular complexes: Ulk1-
FIP200-Atg13-Atg101 (Ulk1 complex), Beclin-PI3-kinase-Atg14, Atg9-vacuole
membrane protein 1 (VMP1), Atg5-Atg12-Atg16L1, and the LC3-
phosphatidylethanolamine (PE) conjugation complex [101]. The Ulk1 complex is
regulated by mTORC1 and AMPK through phosphorylation and serves as a potential
gatekeeper for the autophagy machinery [79, 104-108]. Upon autophagy induction, the
Ulk1 complex translocates to discrete domains on ER, where it regulates the Beclin-PI3-
kinase-Atg14 complex. Formation of phosphatidylinositol 3-phosphate (PI3P) by Beclin-
PI3-kinase-Atg14 complex recruits double FYVE-containing protein 1 and WIPI
proteins. These proteins promote the formation and maturation of isolation membrane,
the precursor of autophagosome [50], while the Atg5-Atg12-Atg16L1 complex and LC3-
PE conjugation complex promotes the elongation and closure of the isolation membrane.
A number of adaptor proteins, such as p62 and Bnip3l (NIX), mediate the degradation of
selective cargoes through autophagy, such as ubiquitinated protein aggregates, damaged
mitochondria, and pathogens [50] (Figure 2).
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Figure 1. Integration of clock and metabolism
Core components of the clock oscillator (pink) are gated by factors that relay nutrient and
hormonal signals (green). In parallel, the timing cues are integrated with the metabolic
regulatory network to drive rhythmic metabolic gene expression and output. GR,
glucocorticoid receptor; RORE, Rev-erb/ROR responsive element.
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Figure 2. Transcriptional and post-translational regulation of autophagy
Autophagy is involved in the degradation of certain cellular components, such as
cytoplasmic material, protein aggregates, damaged mitochondria, peroxisomes, lipid
droplets, and certain pathogens (lower box). Nutrient regulation of autophagy is mediated by
mTOR and AMPK, which phosphorylate components of the ULK1-FIP200-ATG13
complex. Reduced Atg7 expression contributes to impaired autophagy in obesity state [89].
The autophagy and lysosome gene program is controlled by several transcription factors,
including C/EBPβ, FOXO, SREBP2, and TFEB.

Ma et al. Page 15

Trends Endocrinol Metab. Author manuscript; available in PMC 2013 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3. Autophagy rhythm and diurnal metabolic homeostasis
Rhythmic activation of autophagy is controlled by the biological clock as well as nutritional
signals, and may contribute to nutritional and energy homeostasis through light/dark cycles,
proteome and organelle remodeling, and the temporal compartmentalization of tissue
metabolism.

Ma et al. Page 16

Trends Endocrinol Metab. Author manuscript; available in PMC 2013 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


