
Copyedited by: TRJ MANUSCRIPT CATEGORY: ORIGINAL PAPER

[10:34 18/6/2012 Bioinformatics-bts280.tex] Page: 1838 1838–1844

BIOINFORMATICS ORIGINAL PAPER Vol. 28 no. 14 2012, pages 1838–1844
doi:10.1093/bioinformatics/bts280

Sequence analysis Advance Access publication May 7, 2012

Exploring single-sample SNP and INDEL calling with
whole-genome de novo assembly
Heng Li
Medical Population Genetics Program, Broad Institute, 7 Cambridge Center, MA 02142, USA
Associate Editor: Michael Brudno

ABSTRACT

Motivation: Eugene Myers in his string graph paper suggested that
in a string graph or equivalently a unitig graph, any path spells a valid
assembly. As a string/unitig graph also encodes every valid assembly
of reads, such a graph, provided that it can be constructed correctly,
is in fact a lossless representation of reads. In principle, every analysis
based on whole-genome shotgun sequencing (WGS) data, such as
SNP and insertion/deletion (INDEL) calling, can also be achieved with
unitigs.
Results: To explore the feasibility of using de novo assembly in the
context of resequencing, we developed a de novo assembler, fermi,
that assembles Illumina short reads into unitigs while preserving
most of information of the input reads. SNPs and INDELs can
be called by mapping the unitigs against a reference genome.
By applying the method on 35-fold human resequencing data, we
showed that in comparison to the standard pipeline, our approach
yields similar accuracy for SNP calling and better results for INDEL
calling. It has higher sensitivity than other de novo assembly based
methods for variant calling. Our work suggests that variant calling
with de novo assembly can be a beneficial complement to the
standard variant calling pipeline for whole-genome resequencing. In
the methodological aspects, we propose FMD-index for forward–
backward extension of DNA sequences, a fast algorithm for finding all
super-maximal exact matches and one-pass construction of unitigs
from an FMD-index.
Availability: http://github.com/lh3/fermi
Contact: hengli@broadinstitute.org

Received on April 3, 2012; revised on May 2, 2012; accepted on
May 3, 2012

1 INTRODUCTION
The rapidly decreasing sequencing cost has enabled whole-genome
shotgun (WGS) resequencing at an affordable price. Many software
packages have been developed to call variants, including SNPs,
short insertions and deletions (INDELs) and structural variations
(SVs), from WGS data. At present, the standard approach to variant
calling is to map raw sequence reads against a reference genome and
then to detect differences from the reference. It is well established
and has been proved to work from a single sample to thousands of
samples (1000 Genomes Project Consortium, 2010). Nonetheless, a
fundamental flaw in this mapping-based approach is that mapping
algorithms ignore the correlation between sequence reads. They are
unable to take full advantage of data and may produce inconsistent
outputs which complicate variant calling. This flaw has gradually
attracted the attention of various research groups who subsequently

proposed several methods to alleviate the effect, including post-
alignment filtering (Ossowski et al., 2008), iterative mapping
(Manske and Kwiatkowski, 2009), read realignment (Albers et al.,
2010; Depristo et al., 2011; Homer and Nelson, 2010; Li, 2011)
and local assembly (Carnevali et al., 2011). However, because these
methods still rely on the initial mapping, it is difficult for them to
identify and recover mismapped or unmapped reads due to high-
sequence divergence, long insertions, SVs, copy number changes or
misassemblies of the reference genome. They have not solved the
problem from the root.

Another distinct approach to variant calling that fundamentally
avoids the flaw of the mapping-based approach is to assemble
sequence reads into contigs and to discover variants via assembly-to-
assemby alignment. It was probably more widely used in the era of
capillary sequencing. The assembly based method became less used
since 2008 due to the great difficulties in assembling 25 bp reads, but
with longer paired-end reads and improved methodology, de novo
assembly is reborn as the preferred choice for variant discovery
between small genomes.

For variant discovery between human genomes, however,
the assembly based approach has not attracted much attention.
Assembling a human genome is far more challenging than
assembling a bacterial genome, firstly due to the sheer size of the
genome, secondly to the rich repeats and thirdly due to the diploidy
of the human genome. Many heuristics effective for assembling
small genomes are not directly applicable to the human genome
assembly. As a result, only a few de novo assemblers have been
applied on human short-read data. Among them, ABySS (Simpson
et al., 2009), SOAPdenovo (Li et al., 2010) and SGA (Simpson and
Durbin, 2012), as of now, do not explicitly output heterozygotes.
Although in theory it is possible to recover heterozygotes from
their intermediate output, it may be difficult in practice as the
assemblers may not distinguish heterozygotes from sequencing
errors. Cortex (Iqbal et al., 2012) is specifically designed for
retaining heterozygous variants in an assembly, but it may be missing
heterozygotes. ALLPATHS-LG (Gnerre et al., 2011) also paid
particular attention to keep heterozygotes, but it still has a relatively
low sensitivity. In addition, ALLPATHS-LG only works with reads
from libraries with distinct insert size distributions and prefers read
pairs with mean insert size below three times of the read length,
whereas many resequencing projects do not meet these requirements
and thus ALLPATHS-LG may not be applied or work to the best
performance. Even if we also include de novo assemblers developed
for capillary sequence reads, the version of the Celera assembler
used for assembling the HuRef genome (Levy et al., 2007) is the
only one that retains heterozygotes while capable of assembling a
mammalian genome. At last, one may think to map sequence reads

1838 © The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

Copyedited by: TRJ MANUSCRIPT CATEGORY: ORIGINAL PAPER

[10:34 18/6/2012 Bioinformatics-bts280.tex] Page: 1839 1838–1844

Variant calling from de novo assembly

back to the assembled contigs to recover heterozygous events, but
this procedure will be affected by the same flaw of read mapping. To
the best of our knowledge, no existing de novo assemblers are able
to achieve the sensitivity of the standard mapping-based approach
for a diploid mammalian genome.

In this article, we will show that the assembly based variant
calling can achieve an SNP accuracy close to the standard mapping
approach and have particular strength in INDEL calling, confirming
previous studies (Iqbal et al., 2012). In addition, the de novo
assembly algorithm, fermi, developed for this practice is also a
capable assembler for human assembly.

2 METHODS
The methods section is organized as follows. We first review the history
of de novo assembly in the theoretical aspects, which leads to the rationale
behind fermi: to use unitigs as a lossless representation of reads. We then
summarize the notations used in the article and introduce bidirectional FM-
index for DNA sequences. We will present several algorithms for assembling
using the bidirectional FM-index. The key algorithm is based on previous
works (Simpson and Durbin, 2010), but we need to adapt it to our new
index. We also remove the recursion in the original algorithm. Finally we
will discuss practical concerns in implementation.

2.1 Theoretical background
2.1.1 A history of the OLC paradigm Computer assisted sequence
assembly can be dated back to the late 1970s (Gingeras et al., 1979; Staden,
1979). In 1984, Peltola et al. first formulated the DNA assembling problem
as finding the shortest string (the assembly) such that each sequence read
can be mapped to the assembly within a required error rate. To solve the
problem, they proposed a three-step procedure, which is essentially the
overlap-layout-consensus (OLC) approach.

Myers (1995) pointed out that reducing DNA assembly to a shortest string
problem is flawed in the presence of repeat. He further proposed the concept
of overlap graph, where a vertex corresponds to a read and a bidirectional
edge to an overlap. Naively, the DNA assembling problem can be cast as
finding a path in the overlap graph such that each vertex/read is visited
exactly once (though edge/overlap caused by repeats are not required to be
traversed), equivalent to a Hamilton path problem which is known to be NP-
complete. This has led many to believe that the OLC approach is theoretically
crippled.

However, it is worth pointing out that although the assembly problem can
be reduced to a Hamilton path problem, it can be reduced to other problems
as well and in practice almost no assemblers try to solve a Hamilton path
problem. We note that a fundamental difference between a generic graph
and an overlap graph is the latter can be transitively reduced while retaining
the read relationship. More formally, if v1→v2, v2→v3 and v1→v3 are
all present, edge v1→v3 is said to be reducible. When we removed all the
contained reads and reducible edges, a procedure called transitive reduction,
the resulting graph is still a loyal representation of the overlap graph (Myers,
1995), but the path corresponding to the assembly is not a Hamilton path
any more because reads from repetitive regions need to be traversed multiple
times.

In a transitively reduced graph, if there exists v1→v2 with the out-degree
of v1 and in-degree of v2 both equal to 1, we are able to merge v1 and v2 into
one vertex without altering the topology of the graph. After we performed
all possible merges, we get a unitig graph in which each vertex corresponds
to a unitig, representing a maximal linear sequence that can be resolved by
reads. Multiple copies of a repeat may be collapsed to a single unitig. The
concept of unitig helps to greatly simplify an assembly graph. It has played
a central role in the Celera assembler (Myers et al., 2000).

Finding the optimal tour in a unitig graph is still NP-hard (Medvedev et al.,
2007), but such a formulation may not be useful in practice as we can rarely

assemble the entire genome into one string. A more practical solution is to
compute a traversal count for each edge by solving a minimum cost network
flow problem (Myers, 2005) and to drop edges with zero count as false
overlaps. In the resulting graph, each unambiguous path can be considered
to spell a contig.

Computing traversal counts in a transitively reduced graph can be
conducted in small subgraphs separated by some unambiguous edges. The
overall time complexity is not much worse than linear—the worst case almost
never happens globally. However, deriving an overlap graph takes O(N 2)
time, where N is the number of reads, and transitive reduction takes at least
O(E) time, where E is the number of edges which is usually much larger
than N . This still makes an OLC-based approach less favorable in short-read
assembly where N can be of the order of 109.

A breakthrough achieved by Simpson and Durbin (2010) finally solved
this last remaining problem at least when we only consider exact overlaps.
These authors developed an O(N) algorithm to find all the irreducible edges,
effectively replacing the overlapping and transitive reduction phases.

In summary, in the OLC paradigm, contig sequences can be constructed
in a time roughly linear in the total length of reads, though deriving a single-
assembled sequence is NP-hard in theory.

2.1.2 De Bruijn graph and read coherence The de Bruijn graph is an
alternative graph representation of sequence reads (Idury and Waterman,
1995). It can be trivially constructed with a simple linear-time algorithm
and finding the optimal tour has polynomial-time solutions. These make
the de Bruijn graph approach very attractive for assembling many short
reads.

However, de Bruijn is ‘lossy’. From a theoretical point view, a de Bruijn
graph is equivalent to an overlap graph built by splitting a long read
into overlap k-mers and requiring (k−1)-mer exact overlaps between non-
redundant k-mers. Such a graph does not have transitive edges. Because
long reads all effectively work as k-bp reads in a de Bruijn graph, long-
range information is lost. As a result, a path in the graph may be invalidated
by reads. In contrast, in a unitig graph or equivalently a string graph each
path models a valid assembly from input reads. Myers (2005) called this
property of path consistency as read coherence.

Losing long-range information in reads, a de Bruijn graph by itself has
reduced power to resolve short repeats. This flaw is usually amended by
solving a Eulerian superpath problem (Pevzner et al., 2001) whereby we
map reads back to the graph and bisect repeats shorter than the reads, a
procedure some also called as read threading. Many de Buijn graph-based
assemblers essentially take this strategy (Chaisson et al., 2009; Li et al.,
2010; Zerbino et al., 2009), though they may use different terminologies.
With read threading, it is possible to transform a de Bruijn graph to a
coherent graph, but finding the optimal solution is known to be NP-hard
(Medvedev et al., 2007) and may be complex to implement given rich repeat
structures.

2.1.3 Concluding remark We noted that we only focused on the
theoretical aspects of de novo assembly. In practice, many assemblers derived
the final assembly by applying heuristics on the simplified graph instead
of solving a network flow problem or a Eulerian problem. Furthermore,
correcting errors, utilizing read pairs and controlling memory usage all
pose challenges to large-scale de novo assembly. Many practical problems
are not solved perfectly. De novo assembly is still a field under active
development.

2.2 Rationale
Being coherent, a perfectly constructed unitig graph annotated with per-
unitig read counts in fact encapsulates all the information of reads and
encodes no information invalidated by reads. In this sense, any unitig-based
analysis has an equivalent read-based analysis, and vice versa. This article
just uses this property to explore the applications for which we usually rely
on reads.

1839

Copyedited by: TRJ MANUSCRIPT CATEGORY: ORIGINAL PAPER

[10:34 18/6/2012 Bioinformatics-bts280.tex] Page: 1840 1838–1844

H.Li

2.3 Strings and FM-index
2.3.1 Strings with multiple sentinels Let �={$,A,C,G,T,N} be the
alphabet of DNA sequences with a predefined lexicographical order $<A<

C<G<T<N, where ‘N’ represents an ambiguous base and ‘$’ is a sentinel
that marks the end of a string. An element in � is called a symbol and a
sequence of symbols is called a string. Given a string T , let |T | be the length
of the string, T [i], i=0,...,|T |−1, be the i-th symbol in the string, T [i,j],
0≤ i≤ j< |T |, be a substring and Ti=T [i,|T |−1] be a suffix of T (Table 1).
Following the definition by Siren (2009), we define a string terminated with
‘$’ as a text. A text may have multiple sentinels. In a text T , if T [i]=$ and
T [j]=$, we mandate T [i]<T [j] if and only if i< j. Thus when we compare
two suffixes of T , we do not need to compare beyond a sentinel because each
sentinel has a different lexicographical rank.

For two strings P and W , let P ◦W be their string concatenation. We may
sometimes write P ◦W as PW if it is unambiguous in the context. Given an
ordered set of texts, we call their ordered string concatenation as a collection,
which is also a text. For example, suppose we have two reads. The first is ACG
and the second is GTG. The collection of the two reads is T=ACGGTG.
Suffix T2 <T6 because the first sentinel is lexicographically smaller than the
second.

For convenience, we assign an integer from 0 to 5 to ‘$’, ‘A’, ‘C’,
‘G’, ‘T’ and ‘N’, respectively. We may use both the integer and the letter
representations throughout the article. In addition, given a symbol a, we
define a as the Watson–Crick complement of a. We regard the complement
of ‘$’ and ‘N’ is identical to itself.

2.3.2 FM-index The suffix array S of text T is a permutation of integers
between 0 and |T |−1, where S(i), 0≤ i< |T |, is the position of the i-th
smallest suffix of T . Given a string P, the suffix array interval I l (P),Iu(P)]
of P in T is defined as

I l (P)=min{k :P is the prefix of TS(k)}
Iu(P)=max{k :P is the prefix of TS(k)}

For convenience, we also define I s(P)= Iu(P)−I l (P)+1 as the size of the
interval.

The Burrows–Wheeler Transform (Burrows and Wheeler, 1994), or BWT,
of T is a permutation of symbols in T . The BWT string B is computed as
B[i]=T [S(i)−1] for S(i)>0 and B[i]=$ otherwise. Given a text T , also
define the accumulative count array C(a) as the number of symbols in T that
are lexicographically smaller than a, and the occurrence array O(a,i) as the
occurrence of symbols a in B[0,i].

FM-index (Ferragina and Manzini, 2000) is a compressed representation
of the BWT B, the occurrence array O(a,i) and the suffix array S(i). The key

Table 1. Notations

Symbol Description

T String: T=a0a1 ...an−1 with an−1=$
|T | Length of T including sentinels: |T |=n
T [i] The i-th symbol in string T : T [i]=ai

T [i,j] Substring: T [i,j]=ai ...aj

Ti Suffix: Ti=T [i,n−1]
S Suffix array; S(i) is the position of the i-th smallest suffix
B BWT: B[i]=T [S(i)−1] if S(i)>0 or B[i]=$ otherwise
C(a) Accumul. count array: C(a)=|{0≤ i≤n−1 :T [i]<a}|
O(a,i) Occurrence array: O(a,i)=|{0≤ j≤ i :B[j]=a}|
P ◦W String concatenation of string P and W
Pa String concatenation of string P and symbol a: Pa=P◦a
P Watson–Crick reverse complement of DNA string P

property of FM-index is

I l (aP) =C(a)+O(a,I l (P)−1) (1)

Iu(aP) =C(a)+O(a,Iu(P))−1 (2)

and I l (aP)≤ Iu(aP) if and only if aP is a substring of T . We note that these
two equations are different from the ones in our previous paper (Li and
Durbin, 2009) in that C(a) and O(a,i) defined here include the sentinels, but
the two arrays in the previous paper exclude them.

Given a collection T=Q0Q1 ...Qn−1, we can retrieve sequence Qi in linear
time with Algorithm 1 (Mäkinen et al., 2009). The second return value is the
rank of Qi which equals |{Qj :Qj <Qi}|.

Algorithm 1: Sequence retrieval

Input: Sequence index i≥0; B, O and C defined in the text
Output: Sequence P and k, the rank of P

Function GetSeq(i) begin
k← i;
P← empty string;
while true do

a←B[k];
k←C(a)+O(a,k)−1;
if a=0 then

return (P,k)
P←aP

2.4 FMD-index
Given DNA texts R0,...,Rn−1, define T=R0R0R1R1 ...Rn−1Rn−1 as the
bidirectional collection of the texts. We call the FM-index of T as the
FMD-index of R0,...,Rn−1 and define the bi-interval of a string P as
[I l (P),I l (P),I s(P)]. We will show how to compute the bi-interval of aP
and Pa when we know the bi-interval of P.

We note that when we know the bi-interval of P, I l (aP) and I s(aP) can
be readily computed with Equation (1). [I l (aP),Iu(aP)] is a sub-interval of
[I l (P),Iu(P)] because P is a prefix of aP=P◦a. Due to the innate symmetry
of T , I s(cP)= I s(cP) for all c∈� with

∑
c I s(cP)= I s(P)= I s(P). We can

compute I s(cP) for all c∈� with Equation (1), use these interval sizes to
divide [I l (P),Iu(P)] and finally derive [I l (aP),Iu(aP)]. This completes the
computation of the bi-interval of aP (Algorithm 2). Furthermore, when we
backward extend P, we actually forward extend P. Conversely, backward
extension of P yields forward extension of P (Algorithm 3). An FMD-index
is bidirectional.

In comparison to the bidirectional BWT (Lam et al., 2009) which uses
two FM-indices, the FMD-index builds both forward and reverse strand
DNA sequences in one index. Although the FMD-index is not applicable to
generic texts, it is conceptually more consistent with double-strand DNA and
improves the speed of exact matching as we only need to search against one
index. For example, BWA-SW (Li and Durbin, 2010) gets a 80% speedup
when we adopt the FMD-index as the data structure.

2.5 Unitig construction
2.5.1 Labeling reads and overlaps Given a bidirectional collection T=
R0R0 ...Rn−1Rn−1, fermi labels the i-th input read Ri with an ordered integer
pair [k,l], where k is the rank of Ri and l the rank of Ri . The pair [k,l] can
be computed by GetSeq(2i) and GetSeq(2i+1), respectively. Obviously, if
read Ri is labeled by [k,l], Ri should be labeled by [l,k], with the two integer
swapped.

For two reads labeled by [k,l] and [k ′,l′], if the tail (3′ end) of read
[k,l] overlaps the head (5′ end) of [k ′,l′], we use an unordered integer pair
〈l,k ′〉 to label the overlap. Such is a tail-to-head overlap. Similarly, we use

1840

Copyedited by: TRJ MANUSCRIPT CATEGORY: ORIGINAL PAPER

[10:34 18/6/2012 Bioinformatics-bts280.tex] Page: 1841 1838–1844

Variant calling from de novo assembly

Algorithm 2: Backward extension

Input: Bi-interval [k,l,s] of string W and a symbol a
Output: Bi-interval of string aW

Function BackwardExt([k,l,s],a) begin
for b←0 to 5 do

kb←C(b)+O(b,k−1)
sb←O(b,k+s−1)−O(b,k−1)

l0← l;
l4← l0+s0;
for b←3 to 1 do

lb← lb+1+sb+1

l5← l1+s1;
return [ka,la,sa]

Algorithm 3: Forward extension

Input: Bi-interval [k,l,s] of string W and a symbol a
Output: Bi-interval of string Wa

Function ForwardExt([k,l,s],a) begin
[l′,k ′,s′]←BackwardExt([l,k,s],a);
return [k ′,l′,s′]

〈l′,k〉 for a head-to-tail overlap, 〈l,l′〉 for tail-to-tail and 〈k,k ′〉 for a head-
to-head overlap. The four types of overlaps correspond to the four types of
bidirectional edges in the bidirectional overlap graph (Myers, 1995).

2.5.2 Finding irreducible overlaps Finding irreducible overlaps plays a
central role in fermi as well as in SGA. Given its importance, we present
a restructured version of this algorithm (SD10; Simpson and Durbin 2010)
using our notations (Algorithm 4).

In Algorithm 4, Line 1 computes the bi-interval of a single symbol. The
loop at Line 2 uses backward extensions to find all the reads overlapping
with the input string P. The loop at Line 3 uses forward extensions base by
base to exclude reducible overlaps found at the previous step. W is this loop
keeps the common substring of reads overlapping P extended from the 3′
end of P. If in an iteration we find the sentinel of a read R (Line 5), then all
the reads sharing the same W with R must overlap with both R and P and
therefore their overlaps with P are reducible. In this case, no further forward
extensions are necessary (Lines 4 and 6).

Similar to the original algorithm, Algorithm 4 requires that there are
no contained reads. Fermi actually implements a modified version that
detects reads containment on the fly, but we think the algorithm is a little
overcomplicated. It is probably easier to filter contained reads first and then
run Algorithm 4, as SGA does.

2.5.3 Unitig construction Unitig construction is a process of
unambiguous merge of overlapped reads. If [k,l] and [k ′,l′] have an
irreducible overlap 〈l,k ′〉 and can be unambiguously merged, we label the
merged sequence with [k,l′]; the similar can be applied to other three types
of overlaps. With this simple labeling procedure, we are able to fully keep
track of the graph topology during the unitig construction and without
staging the graph in RAM. This procedure can also be easily multi-threaded.

2.6 Finding the SMEMs
An FMD-index can be used to find supermaximal exact matches (SMEMs)
between a reference and a query sequence. Formally, a maximal exact match
(MEM) is a an exact match that cannot be extended in either direction of

Algorithm 4: Finding irreducible overlaps

Input: Read P and the minimum overlap length x
Output: Set of bi-intervals of reads having irreducible

overlaps with the 3′ end of P

Function IrrOverlap(P,x) begin
Initialize Curr and Prev as empty arrays;
a←P[|P|−1];
[k,l,s]←[C(a),C(a),C(a+1)−C(a)];1

for i←|P|−2 to 0 do2

if |P|−i−1≥x then
[k ′,l′,s′]←BackwardExt([k,l,s],0);
if s′ �=0 then

Append ([k ′,l′,s′],ε) to Curr;

[k,l,s]←BackwardExt([k,l,s],P[i]);
Reverse array Curr, and swap Curr and Prev;
Finished=∅;
I=∅;
while Prev is not empty do3

Reset Curr to empty;
for ([k,l,s],W) in Prev do

if W ∈Finished then
continue;4

[k ′,l′,s′]←ForwardExt([k,l,s],0);
if s′ �=0 then5

Finished←Finished∪{W };
I←I∪{[k ′,l′,s′]};
continue;6

for a←1 to 5 do
[k ′,l′,s′]←ForwardExt([k,l,s],a);
if s′ �=0 and [k ′,l′,s′] is not in Curr then

Append ([k ′,l′,s′],Wa) to Curr;

Swap Curr and Prev
return IrrOvlp

the match. An SMEM is a MEM that is not contained in other MEMs on the
query sequence. Fermi uses SMEMs to map reads back to the unitigs.

Algorithm 5 describes the details. Basically, we use forward–backward
extension to extend an exact match and detect the boundary of a maximal
match by tracking the change of interval sizes. Fermi implements a variant
of Algorithm 5. It finds full-length read matches and can optionally exclude
matches identical to the query sequence.

2.7 Other implementation details
2.7.1 Constructing FM-index To compute suffix arrays for strings with
multiple sentinels, we modified an optimized implementation of the SA-IS
algorithm (Nong et al., 2011) by Yuta Mori. We used the established
algorithm to merge BWTs of subsets of reads (Ferragina et al., 2010; Hon
et al., 2007; Siren, 2009). The BWT string is run-length encoded with the
length in the delta encoding (Elias, 1975).

2.7.2 Error correction Fermi corrects potential sequencing errors using
an algorithm similar to solving the spectrum alignment problem (Pevzner
et al., 2001), correcting bases in underrepresented k-mers. It also shares
similarity to HiTEC (Ilie et al., 2011). Nonetheless, the fermi’s algorithm
differs in that it is quality aware and does not rely on a user defined threshold
on the k-mer occurrences.

1841

Copyedited by: TRJ MANUSCRIPT CATEGORY: ORIGINAL PAPER

[10:34 18/6/2012 Bioinformatics-bts280.tex] Page: 1842 1838–1844

H.Li

Algorithm 5: Finding SMEMs

Input: String P and start position i0; P[−1]=0
Output: Set of bi-intervals of SMEMs overlapping i0

Function SuperMEM1(P,i0) begin
Initialize Curr, Prev and Match as empty arrays;
[k,l,s]←[C(P[i0]),C(P[i0]),C(P[i0]+1)−C(P[i0])];
for i← i0+1 to |P| do

if i=|P| then
Append [k,l,s] to Curr

else
[k ′,l′,s′]←ForwardExt([k,l,s],P[i]);
if s′ �=s then

Append [k,l,s] to Curr

if s′ =0 then
break;

[k,l,s]←[k ′,l′,s′]
Swap array Curr and Prev;
i′←|P|;
for i← i0−1 to −1 do

Reset Curr to empty;
s′′←−1;
for [k,l,s] in Prev do
[k ′,l′,s′]←BackwardExt([k,l,s],P[i]);
if s′ =0 or i=−1 then

if Curr is empty and i+1< i′+1 then
i′← i;
Append [k,l,s] to Match

if s′ �=0 and s′ �=s′′ then
s′′←s′;
Append [k,l,s] to Curr

if Curr is empty then
break

Swap Curr and Prev;
return Match

Fermi corrects errors in two phases. In the first phase, it collects all 23 mer
occurring 3 or more times using a top-down traversal over the trie represented
by the FMD-index. For each such 23 mer, fermi counts the occurrences of
the next (i.e. the 24-th) base and stores the information in a hash table with
the 23 mer being the key. In the second phase, fermi processes each read
by using the 23 mer hash table to correct errors by minimizing a heuristic
cost function of base quality and the occurrences of the 24-th base. Roughly
speaking, fermi tries to correct a low-quality base if by looking up its 23 mer
prefix we know the base is different from an overwhelmingly frequent 24-th
base. This algorithm can be adapted to correct INDEL sequencing errors in
principle, but this has not been done. More works are needed to perform
minimization efficiently.

2.7.3 Simplifying complex bubbles A bubble is a directed acyclic
subgraph with a single source and a single sink having at least two paths
between the source and the sink. A closed bubble is a bubble with no
incomming edges from or outgoing edges to other parts of the entire graph,
except at the source and the sink vertices.Aclosed bubble is simple if there are
exactly two paths between the source and the sink; otherwise it is complex.
In de novo assembly, a bubble is frequently caused by sequencing errors
or heterozygotes. Most short-read assemblers uses a modified Dijkstra’s
algorithm to pop bubbles progressively. Such an algorithm works fine for

haploid genomes, but it is not straightforward to distinguish heterozygotes
from errors when the bubble is complex.

Fermi uses a different algorithm. It effectively performs topological
sorting from the end of a vertex while keeping track of the top two paths
containing most reads. A bubble is detected when every path ends at a single
vertex. It then drops vertices not on the top two paths and thus turns a complex
bubble to a simple one.

2.7.4 Using the paired-end information Given paired-end reads with
short-insert sizes, fermi maps reads back to the unitigs with Algorithm 5.
If two unitigs are linked by at least five read pairs, fermi will locally
assemble the ends of unitigs together with unpaired reads pointing to the
gap under a relax setting. Fermi tries to align the ends of unitigs using the
Smith–Waterman algorithm, which may reveal imperfect overlaps caused
by sequencing errors or heterozygotes. Fermi also uses paired-end reads to
break contigs at regions without bridging read pairs. This helps to reduce
misassemblies during the unitig construction.

3 RESULTS
We evaluated fermi on 101 bp paired-end reads from NA12878
(Depristo et al., 2011). The total coverage of the original data is
∼70-fold, but we only used half of them. We assembled the 35-fold
reads with fermi on a machine with 12 CPUs and 96 GB memory in
∼5 days. The peak memory usage is 92 GB.

We obtained unitigs of N50 1022 bp, totaling 3.83 Gb. After
collapsing most heterozygotes and closing gaps with paired-end
reads, we got longer contigs (Table 4). Unitigs are short and
redundant mainly because they break at heterozygotes.

For SNP and INDEL calling, we aligned unitigs to the reference
genome using BWA-SW (Li and Durbin, 2010) with command line
options ‘-b9 -q16 -r1 -w500’. We called SNPs with the SAMtools
caller and called INDELs by directly counting INDELs from the
pileup output. We did not run a standard INDEL caller as short-read
INDEL callers do not work well with long contig sequences.

3.1 Performance on de novo assembly
We obtained the HuRef capillary read assembly (Levy et al., 2007)
and the ALLPATHS-LG NA12878 contigs (AC:AEKP01000000)
from NCBI, the SGA scaffolds from http://bit.ly/jts12878 (Simpson
and Durbin, 2012) and the ABySS assembly provided by Shaun
Jackman (personal communication). For both SGA and ABySS
scaffolds, we split at any ambiguous bases to get contigs; for the
HuRef assembly, we split at contiguous ‘N’ longer than 20 bp. The
ABySS, fermi and SGA assemblies are derived from essentially the
same input reads. ALLPATH-LG uses a superset of reads at 100-fold
coverage, including reads from multiple long-insert libraries.

From Table 2, we can see that the HuRef assembly has much
better contiguity than short-read assemblies. It appears to yield
more alignment break points, some of which may be caused by
true SVs not easily detectable with short reads. The quality of
short-read assemblies varies in terms of contiguity, misassembly
rate and redundancy between contigs, but overall, they are largely
comparable to each other.

3.2 Performance on SNP and INDEL calling
One of the key motivations of fermi is to explore the power of
de novo assembly in calling short variants. We collected several
SNP and INDEL call sets (Table 3) and compared the performance
of fermi (Tables 4 and 5).

1842

http://bit.ly/jts12878

Copyedited by: TRJ MANUSCRIPT CATEGORY: ORIGINAL PAPER

[10:34 18/6/2012 Bioinformatics-bts280.tex] Page: 1843 1838–1844

Variant calling from de novo assembly

Table 2. Statistics on human whole-genome assemblies

ABySS AllPaths-LG Fermi SGA HuRef

Aligned contig bp 2.73 G 2.62 G 2.82 G 2.74 G 2.88 G
Aligned N50 9.0 k 22.6 k 15.6 k 9.8 k 81.4 k
Covered ref. bp 2.69 G 2.59 G 2.74 G 2.70 G 2.78 G
No. of type-1 breaks 5856 13 738 5704 6049 16 318
No. of type-2 breaks 1617 3823 1120 1735 6626

Contigs over 150 bp in length are aligned to the human reference genome GRCh37 with
BWA-SW using option ‘-b33 -q50 -r17’. A type-1 break point is detected if a contig
is split during alignment and mapped to two distict locations, and at each location the
alignment is longer than 500 bp and the mapping quality is no less than 10. Type-2
break points exclude type-1 break points which can be patched with gaps no longer
than 500 bp.

Table 3. Evaluated SNP and INDEL call sets

Label Data Assembler Mapper Caller

AC 96X Illumina PEa AllPaths-LG BWA-SWb SAMtoolsc

BS 70X Illumina PE BWAd SAMtools
CG Complete Genom. cgatools2e cgatools2
CV 26X Illumina SEf Cortex Cortex-var
FC 35X Illumina SEf Fermi BWA-SWb SAMtoolsc

MD 60X multiple MAQ 1000 g pilotg

MI Capillary readsh

SS 35X Illumina SEf BWA-SW SAMtools

a AS uses reads from Illumina jumping and fosmid libraries.
b BWA-SW is invoked with ‘bwa bwasw -b9 -q16 -r1 -w500’.
c INDELs are called from pileup without using the SAMtools caller.
d Realigned by GATK (Depristo et al., 2011) also around known INDELs.
e By Complete Genomics (Drmanac et al., 2010); only ‘VQHIGH’ calls retained.
f CV, FC and SS do not use the pairing information in calling.
g 1000 Genomes Project pilot calls; generated from Dindel and multiple SNP callers.
h INDEL calls by Mills et al. (2011).

Table 4. Statistics of SNP call sets

FC CV SS BS CG MD

No. of SNPs (M) 3.37 2.20 3.24 3.50 3.34 2.69
No. of hets (M) 1.97 1.04 1.94 2.11 2.04 1.65
Ts/tv 2.04 2.03 2.08 2.11 2.12 2.06
DN50 (bp) 3593 6662 3523 3392 3447 3992
DN2/DN50 22.3 20.8 23.4 22.7 22.3 22.9

Ts/tv is the transition-to-transversion ratio of SNPs. DN50 is calculated as follows. The
reference genome is masked according to the align-ability mask (http://bit.ly/snpable)
and segmented into intervals at heterozygous SNPs. DN50 is computed such as 50% of
unique positions in the genome are in intervals longer than DN50. DN2 is calculated
similarly and D2/DN50 is the ratio of DN2 and DN50. DN50 measures the sensitivity;
the smaller the better. DN2/DN50 measures the precision of heterozygous SNPs; the
higher the better.

For SNP calling (Table 4), fermi misses 3% of SNPs called in
SS, but finds more additional ones. Manual examination reveals
that the additional calls are mainly caused by two factors. Firstly,
in the single-end mode, BWA-SW is very conservative. It may
consistently give a correct alignment a low-mapping quality which
are all downweighted by samtools. Fermi is able to assemble such
reads into longer sequences which increase the power of BWA-SW.

Table 5. Fraction of INDELs found in other call sets

MD CG BS CV FC MI ALL

MD 240 424 0.819 0.937 0.678 0.947 0.054 0.977
CG 0.752 264 696 0.915 0.629 0.924 0.052 0.965
BS 0.564 0.597 404 646 0.498 0.844 0.044 0.906
CV 0.708 0.726 0.882 251 769 0.902 0.052 0.923
FC 0.588 0.624 0.873 0.522 393 841 0.045 0.952
MI 0.593 0.618 0.790 0.527 0.804 23 216 0.864

INDELs that start within a homopolymer run longer than 6 bp are excluded in all call
sets. An INDEL in call set R (indexed by row) is said to be found in call set C (indexed
by column) if there exists an INDEL in C such that the left-aligned starting positions
of the two INDELs are within 20 bp from each other. An INDEL in R is considered to
be found in ‘ALL’ if it is found in one of the other INDEL sets in the table, plus the AC
call set. In the table, a number on the diagonal equals |R|, the number of INDEL calls
in the call set. The fraction equals |{g∈R :g is found in C}|/|R|.

Secondly, in the fermi alignment, some regions may be mapped
with a high-mismatching rate. These may be due to small-scale
misassemblies in fermi unitigs or in the reference assembly, or copy-
number variations. It is possible that these clustered SNPs contain
more errors. Such errors may lead to reduced ts/tv, but tend not
to break long homozygous blocks due to very recent coalescences.
That is why FC has a good DN2/DN50 ratio, which measures how
often false heterozygotes arise from a long homozygous block.

Table 5 shows the comparison between different INDEL call
sets. We excluded INDELs around long homopolymer runs in all
call sets because INDEL sequencing errors tend to occur around
long homopolymer runs and their error profile is still unclear (the
1000 Genomes Project Analysis group, personal communication). In
addition, we have excluded the SS INDEL call set which is nearly
contained in BS due to the use of the same INDEL caller.

For the call sets in Table 5, MD and CG are relatively small
due to the use of very short reads. CV uses 26X 100 bp reads. It
is a small call set due to the high-false negative rate of the calling
method (Iqbal et al., 2012). The fermi call set FC is slightly smaller
than BS, but it has larger overlap with other call sets than BS, and
more FC calls are confirmed by others. One explanation to the lower
overlapping ratio between BS and ALL is that BS is the only call
set that uses 101 bp paired-end information, which gives it higher
power for INDELs not detectable with single-end or very short reads.
Nonetheless, purely based on Table 5, fermi appears to have higher
overall accuracy.

Even with all short-read call sets combined, as many as 14%
of double-hit INDELs called by Mills et al. (2011) are missed.
We manually checked 30 missing INDELs in an alignment viewer.
For half of the cases, the short-read alignment and fermi alignment
strongly suggest no variations, and for all these cases, the HuRef
sequences are identical to GRCh37. In addition, there are a few
cases called from regions under clear copy-number changes. In all,
we believe INDELs called by Mills et al. (2011) only may have high-
error rate. With short reads, we can recover most of short INDELs
found by capillary sequencing.

4 DISCUSSIONS
In this article, we derived FMD-index by storing both forward
and reverse complement DNA sequences in FM-index. This
simple modification enables faster forward–backward search than

1843

Copyedited by: TRJ MANUSCRIPT CATEGORY: ORIGINAL PAPER

[10:34 18/6/2012 Bioinformatics-bts280.tex] Page: 1844 1838–1844

H.Li

bi-directional BWT (Lam et al., 2009) and makes FMD-index a more
natural representation of DNA sequences. Based on FMD-index, we
developed a new de novo assembler, fermi, which achieves similar
quality to other mainstream assemblers.

We demonstrated that it is possible to call SNPs and short
INDELs by aligning assembled unitigs to the reference genome.
This approach has similar SNP accuracy to the standard mapping-
based SNP calling and arguably outperforms the existing methods on
INDEL calling in terms of both sensitivity and precision. Assembly
based variant calling is a practical and beneficial complement to
mapping-based calling.

In the course of evaluating INDEL accuracy, we found that outside
long homopolymer regions, INDEL call sets do not often contain
false positives, but they may have high-false negative rate, which
leads to the apparent small overlap between call sets (Lam et al.,
2012).

As a theoretical remark, we note that with read counts kept, unitigs
are a lossless but reduced representation of sequence reads. They are
‘reduced’ in that individual reads are lost; they are ‘lossless’ in that
all the information in reads, such as small variants, copy numbers
and structural changes are fully preserved in unitigs, as long as they
are constructed correctly. For single-end reads, it is theoretically
possible to ‘compress’ reads to unitigs, which are largely non-
redundant and much smaller in size. Accurately and efficiently
constructing unitigs might provide an interesting alternative to
data storage and downstream analyses in future, though practical
challenges, such as the high-computational cost and the lack of
accuracy of unitigs, remain at present.

ACKNOWLEDGEMENTS
We are grateful to David Reich, Evan Eichler and Peter Sudmant for
providing additional data and computing resources for evaluating
fermi, to David Altshuler and the GSA group at Broad for the
helpful discussions and to Richard Durbin and Jared Simpson for
their comments on the initial draft of the manuscript. We also thank
Shaun Jackman for providing the ABySS assembly and Michael
Brudno for his insight into the algorithm time complexity.

Funding: NIH Joint SNP and CNV calling in 1000 Genomes
sequence data grant (1U01HG005208-01).

Conflict of Interest: none declared.

REFERENCES
Albers,C.A. et al. (2010) Dindel: accurate indel calls from short-read data. Genome

Res., 21, 961–973.
Burrows,M. and Wheeler,D.J. (1994) A block-sorting lossless data compression

algorithm. Technical Report 124, Digital Equipment Corporation, Palo Alto, CA.
Carnevali,P. et al. (2011) Computational techniques for human genome resequencing

using mated gapped reads. J. Comput. Biol., 19, 279–292.
Chaisson,M.J. et al. (2009) De novo fragment assembly with short mate-paired reads:

Does the read length matter? Genome Res., 19, 336–346.
Depristo,M.A. et al. (2011) A framework for variation discovery and genotyping using

next-generation DNA sequencing data. Nat. Genet., 43, 491–498.
Drmanac,R. et al. (2010) Human genome sequencing using unchained base reads on

self-assembling DNA nanoarrays. Science, 327, 78–81.
Elias,P. (1975) Universal codeword sets and representations of the integers. IEEE Trans.

Inf. Theory, 21, 194–203.
Ferragina,P. and Manzini,G. (2000) Opportunistic data structures with applications. In

FOCS, Redondo Beach, California, USA. IEEE Computer Society, pp. 390–398.

Ferragina,P. et al. (2010) Lightweight data indexing and compression in external
memory. In López-Ortiz, A. (ed.), LATIN, Oaxaca, Mexico; volume 6034 of Lecture
Notes in Computer Science, Springer, pp. 697–710.

Gingeras, T. R. et al. (1979) Computer programs for the assembly of DNA sequences.
Nucleic Acids Res., 7, 529–545.

Gnerre,S. et al. (2011) High-quality draft assemblies of mammalian genomes from
massively parallel sequence data. Proc. Natl. Acad. Sci. USA, 108, 1513–1518.

Homer,N. and Nelson,S.F. (2010) Improved variant discovery through local re-
alignment of short-read next-generation sequencing data using SRMA. Genome
Biol., 11, R99.

Hon,W.-K. et al. (2007) A space and time efficient algorithm for constructing
compressed suffix arrays. Algorithmica, 48, 23–36.

Idury,R.M. and Waterman,M.S. (1995) A new algorithm for DNA sequence assembly.
J. Comput. Biol., 2, 291–306.

Ilie,L. et al. (2011) HiTEC: accurate error correction in high-throughput sequencing
data. Bioinformatics, 27, 295–302.

Iqbal,Z. et al. (2012) De novo assembly and genotyping of variants using colored de
bruijn graphs. Nat. Genet., 44, 226–232.

Lam,T.W. et al. (2009) High throughput short read alignment via bi-directional BWT.
In BIBM, Washington, DC, USA. pp. 31–36.

Lam,H.Y.K. et al. (2012) Performance comparison of whole-genome sequencing
platforms. Nat. Biotechnol., 30, 78–82.

Levy,S. et al. (2007) The diploid genome sequence of an individual human. PLoS Biol.,
5, e254.

Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics, 25, 1754–1760.

Li,H. and Durbin,R. (2010) Fast and accurate long-read alignment with Burrows-
Wheeler transform. Bioinformatics, 26, 589–595.

Li,H. (2011) Improving SNP discovery by base alignment quality. Bioinformatics, 27,
1157–1158.

Li,R. et al. (2010) De novo assembly of human genomes with massively parallel short
read sequencing. Genome Res, 20, 265–272.

Mäkinen,V. et al. (2009) Storage and retrieval of individual genomes. In Batzoglou,S.
(ed.), RECOMB. Tucson, AZ, USA; volume 5541 of Lecture Notes in Computer
Science, Springer, pp. 121–137.

Manske,H.M. and Kwiatkowski,D.P. (2009) SNP-o-matic. Bioinformatics, 25,
2434–2435.

Medvedev,P. et al. (2007) Computability of models for sequence assembly. In
Giancarlo,R. and Hannenhalli,S. (eds.), WABI, Philadelphia, PA, USA; volume 4654
of Lecture Notes in Computer Science, Springer, pp. 289–301.

Mills,R.E. et al. (2011) Natural genetic variation caused by small insertions and
deletions in the human genome. Genome Res., 21, 830–839.

Myers,E.W. (1995) Toward simplifying and accurately formulating fragment assembly.
J. Comput. Biol., 2, 275–290.

Myers,E.W. et al. (2000) A whole-genome assembly of drosophila. Science, 287,
2196–2204.

Myers,E.W. (2005) The fragment assembly string graph. Bioinformatics, 21 (Suppl. 2),
ii79–ii85.

Nong,G. et al. (2011) Two efficient algorithms for linear time suffix array construction.
IEEE Trans. Comput., 60, 1471–1484.

Ossowski,S. et al. (2008) Sequencing of natural strains of arabidopsis thaliana with
short reads. Genome Res., 18, 2024–2033.

Peltola,H. et al. (1984) SEQAID: a DNA sequence assembling program based on a
mathematical model. Nucleic Acids Res., 12, 307–321.

Pevzner,P.A. et al. (2001) An eulerian path approach to DNA fragment assembly. Proc.
Natl. Acad. Sci. USA, 98, 9748–9753.

Simpson,J.T. and Durbin,R. (2010) Efficient construction of an assembly string graph
using the FM-index. Bioinformatics, 26, i367–i373.

Simpson,J.T. and Durbin,R. (2012) Efficient de novo assembly of large genomes using
compressed data structures. Genome Res., 22, 549–556.

Simpson,J.T. et al. (2009) ABySS: a parallel assembler for short read sequence data.
Genome Res., 19, 1117–1123.

Siren,J. (2009) Compressed suffix arrays for massive data. In String Processing and
Information Retrieval, Saariselkä, Finland, pp. 63–74.

Staden,R. (1979) A strategy of DNA sequencing employing computer programs. Nucleic
Acids Res., 6, 2601–2610.

Zerbino,D.R. et al. (2009) Pebble and rock band: heuristic resolution of repeats
and scaffolding in the velvet short-read de novo assembler. PLoS ONE, 4,
e8407.

1000 Genomes Project Consortium. (2010) A map of human genome variation from
population-scale sequencing. Nature, 467, 1061–1073.

1844

	Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly
	1 INTRODUCTION
	2 METHODS
	3 RESULTS
	4 Discussions

