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ABSTRACT

Motivation: Statistical analyses of genome-wide association studies
(GWAS) require fitting large numbers of very similar regression
models, each with low statistical power. Taking advantage of
repeated observations or correlated phenotypes can increase this
statistical power, but fitting the more complicated models required
can make computation impractical.

Results: In this article, we present simple methods that capitalize
on the structure inherent in GWAS studies to dramatically speed up
computation for a wide variety of problems, with a special focus on
methods for correlated phenotypes.

Availability: The R package ’boss’ is available on the
Comprehensive R Archive Network (CRAN) at http://cran.r-
project.org/web/packages/boss/

Contact: voorma@u.washington.edu

Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION

In analysis of genome wide association studies (GWAS), it is
standard to fit very large numbers of very similar regression models.
A general form of commonly used models is

yi“’ﬂXXT‘f'/Sgg"‘Ei,

where 1 <i<n indexes subjects in the study, y; is the subject’s
outcome of interest, X; is a vector of subject-specific adjustment
variables, g; is the set of genotype-dependent variables and ¢;
is an error term. The genotype-dependent variables g; vary from
model to model, within one analysis, but the adjustment variables X;
remain identical within each analysis. If the errors are uncorrelated,
standard ordinary least squares (OLS) or generalized linear models
(GLM) efficiently estimate genetic effects 8. However, when the
errors are correlated notably, greater efficiency can be obtained,
by incorporating this structure into the model. For instance, if
repeated measures on an individual are available, either generalized
estimating equations (GEE) or mixed models can increase power
relative to an analysis that uses a single phenotype measure for each
individual (Liang and Zegel, [1993). Similarly, when subjects are
related, kinship can be incorporated into a mixed model to increase
power m, M). A single GEE or mixed model analysis
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involves negligible computing effort, but the number of analyses
carried out often extends into several millions, meaning more
complicated GEE and mixed models computation with standard
methods can be infeasible.

Some computational speedups are available, by capitalizing on
the similarity of each regression, meaning one can obtain genome-
wide estimates at a substantially reduced computational cost. For
example, Auchenko ez al. (2007) introduced an approximation to the
Maximum Likelihood Estimate for mixed models which is currently
implemented in ProbABEL. In their approach, both phenotypic
correlation and non-genetic effects are estimated once and assumed
constant across all models in an analysis. When the inclusion of
genotype does not change these parameters, the inference is close
to that obtained from the full fit, but can be misleadingly inaccurate
when genotype is correlated with non-genetic covariates.

In another example, rather than fixing both non-genetic effects and
variance structure, Kang et al. (2008, 2001) proposed mixed model
methods where the variance structure of phenotype is fixed over all
markers in which case simple modifications to Generalized Least
Squares procedures can give fast computation of the results Meyer
and Tier, iEZii il This is more complicated to implement and slower
than the ProbABEL approximation, but makes less assumptions
about the nature of the genetic association. However, one drawback
of a mixed model approach is that results may be invalid if either
the correlation structure or the covariate—phenotype relationship is
not well specified.

If the phenotype correlation is due to repeated observations on an
individual, then GEE models provide powerful testing, which does
not require us to correctly specify either the correlation structure
or the phenotype—covariate relationships, that may be complicated
(@5, ). However, there are no software packages that can
currently implement this on a genome-wide scale in reasonable
amounts of time.

In this article, we explore two approaches that substantially reduce
the computation required for a broad class of statistical models.
Each exploits two important features of GWAS analyses: (i) few
covariates are different in each regression and (ii) little variation
in phenotype is explained by genotype at a particular locus. Our
first approach exploits symmetry in the estimation of single marker
models. For ordinary least squares, it is ~20 times faster than current
implementations, and for mixed models it can reduce computation
by a factor of a few hundred.

Our second approach is based on matrix decompositions and
applies to a broader class of models, including those with multiple
markers, and allows model-robust variance estimation. In the case
of linear mixed models, it aligns with a proposal by Meyer and
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Tier (2011). The speedup for this approach is not large for GEE and
GLM models with few covariates or observations, but in our tests
estimation in GEE models was 60-80 times faster than currently
implemented GEE packages in R. Although these computational
approaches are approximations, estimation in practice is almost
identical to traditional methods, as we demonstrate. The two
approaches have the unifying feature that they are based on classical
one-step approximations, suggesting the name boosted one-step
statistics (BOSS).

2 APPROACH

First, consider estimation of the effect of a single genotype
variable g =[g; ...g,l]T on a phenotype Y =[y; ‘..yn]T adjusted for
p subject-specific covariates x; = [xj| ...xj,,]T,j: 1...p. Denote the
model matrix Xg=[1,,x1,...xp,g]=[X,g]. If the outcomes are
independent and continuous, we get coefficients by computing the
OLS estimate
ﬁ:(xgxg)—lxgy.

This is sufficiently simple to perform on a genome-wide scale, and
there is software available to do so (Aulchenko e g/l 1200%: Purcell
etal., ). For more complicated models, such as mixed models,
GLM or GEE, we can estimate the coefficients through iteratively
re-weighted least squares (IWLS) that repeatedly calculates

where W¥ is a matrix of weights and ¥ k is a modified phenotype
at the kth iteration of this procedure. The details of how this
arises and the exact scheme by which these are updated are not
important for this discussion, and the interested reader can refer
e.g. IDiggld (200%) and [McCullagh and Nelded (1989). It suffices
to note that, at each iteration, WX and Y* differ from W*—1 and
Y¥lin ways that only depend on the fitted values at the current
iteration. Since it can be assumed that genotype has little effect on
these fitted values, we can estimate WX and ¥* in the absence of
genotype and substantially lower the number of iterations required
to converge. In fact, for the models we consider one iteration of
the IWLS algorithm is typically sufficient. This can be considered
an instance of a so-called ‘one-step approximation’, which are well
known to be asymptotically equivalent to fully converged solutions

,11998; [Lipsitz ez all, [1994). Here, since the
one step is based on a model with nearly identical fitted values to the
model of interest, the practical performance is superior to classically
implemented one-step estimators, as we demonstrate in Section 4.
The accuracy decreases with the strength of the genetic effect, but
our simulations suggest that this loss in accuracy occurs far beyond
the threshold of genome-wide significance. That is when there are
genome-wide significant results, both BOSS and traditional tests
will identify them, but the exact size of the effect may differ slightly
when it is very large.

This procedure is already used in mixed models, although is not
identified as such. There W is proportional to the inverse variance—
covariance matrix of phenotype induced by random effects. The
details of this model are explored by ,M). BOSS
applies the same idea to GLM and GEE.

The use of one-step estimators takes advantage of the fact that
genotype at a particular loci explains little of the variation in
complicated phenotypes, but does not use the fact that only one

variable changes in each regression. Sections 3 and 4 outline two
methods used by BOSS which perform one-step estimation quickly
by avoiding calculations that do not involve g. The first applies
to single marker models and allows only model-based standard
errors. The second is slower, but applies more generally and allows
computation of robust test statistics.

To make the remaining discussion simpler, we first express
this weighted least-squares problem as an OLS problem. If we
decompose the matrix W as a square root, i.e. W=DTD, we see
that the above procedure is equivalent to regressing DX =[DX, Dg]
on DY. In general, W is an n x n matrix, making this factorization
difficult, slow and memory-intensive. However, W will often have
structure. For GLM it is a diagonal matrix, so we only need to store
a vector of length n. For GEE and mixed models, W is typically
composed of small blocks corresponding to independent clusters of
observations, so we need only to store and factorize these blocks.
For some mixed model problems, W may be dense, and difficult to
factorize in this way, but as shown in the Supplementary Appendix
we can reduce the effective dimension to the number of random
effects terms using the spectral decomposition. The factorization
will need to be performed only once, but the multiplication Dg will
need to be performed for each marker. So, where the weight matrix
is sufficiently simple to factorize and handle, speed in one-step
estimation will come from fast implementations of OLS.

3 METHODS

In this section, we describe fast implementations for one-step estimation. In
the previous section, we demonstrated how this can be phrased in terms of
fast OLS, so we will restrict our discussion to that case.

3.1 A fast algorithm for GWAS with single markers

Typically, we model a quantitative trait ¥ as an outcome variable with
genotype g and covariates X as predictors. That is we form the model

YzﬁxX+/3gg+€’

where € ~ (0, var[ Y| X + g ]). With model-based approaches, we assume that
var[Y|X + g] does not change with X and g. After fitting the model via OLS,
the output is used to test the hypothesis H : B¢ =0.

However, if we swap Y and g to form the model

g=rX+pyY+E.

The hypothesis test H(I)’ :yy =0 1is equivalent to the previous test that B¢ =0
and yields identical P-values when one uses model-based standard errors. (A
straightforward proof of this is given in the Supplementary Appendix.) While
this formulation may seem unnatural, it leads to simplified calculations.
Almost all of the computational effort involved in regression is spent on
the matrix of covariates, and using g as an outcome allows us to do this
work only once, before we examine genotype.

To use this result in a GWAS setting, we first denote the new matrix of
predictors X, =[X,y] and G to be an n x m matrix of genotypes for the entire
GWAS (in practice we may break this up into more manageable chunks). The
test statistics can then be computed by:

P=X/X,)"'X]G
R=G-X,p
6°=1;R-R/(n—p)
=3I X)y

where R-R indicates element-wise multiplication. Here, 7 is a vector of X2
test statistics, identical to those computed with traditional methods.
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It is notable that this technique yields test statistics, but not regression
coefficients. In typical GWAS, only a tiny fraction of these coefficients
might be of interest, and they could be computed without special techniques,
at minor computational cost. However, regression coefficients could be
approximated, genome wide, by using the identity (M )

.~ var[GIX+Y] . var[GIX+Y]
Ry —— Be-
var[Y|X]

¢ = G Y X+ G

By setting 62=5§ /T, we can get an estimate of the variance and report
a coefficient-standard error pair that are close approximations to the truth
(because the genetic effect can be assumed to be small) and whose ratio
gives the same test statistic as the full regression. The approximation is worse
when var[Y|X +G] is much different than var[Y|X], but this difference is
typically negligible, as we demonstrate in Section 4. Furthermore, as noted by
Zhong and Prentice (2010), interpretation of coefficients near the significance
threshold is difficult due to the ‘winner’s curse’ bias. Thus, when differences
between this method and OLS exist, they are likely small compared to bias.

3.2 Efficient GWAS using Cholesky updates

The method described in the previous section, while very fast for the models
described, has some limitations. It only allows us to use model-based standard
errors and thus relies on parametric assumptions; in GWAS settings, these are
not likely to be checked, nor is there good power to detect important model
misspecification m ). When our model is not correct, either in
how, we specify the variance structure or the mean structure, results can be
misleading. In main-effects analysis with independent outcomes, the model-
based analysis may be appropriate, but there is little work exploring the
impacts of misspecification of variance structure m ).
Furthermore, it does not give us fitted values that we can use in subsequent
IWLS iterations, if desired. In this section, we explore a method based on
well-known matrix decompositions which, while slower, overcomes these
limitations.

We start with the case of a single marker, which is later generalized to
multiple marker models. In order to distinguish between those variables that
are the same in each regression and those that differ, denote the model matrix
as Xg =[1,,x1,...x,-1,8]=[X, g]. The bottleneck calculation of each fit is
a matrix inversion of the form

(Xg X"

This matrix inversion is typically done by first factorizing XgTXg to a form
which makes inversion very simple. This factorization comprises the bulk of
the computation involved in a regression. In this case, all but one column of
X, remains unchanged between markers. Rather than computing the inverse
for each marker, we can simply update the factorization calculated without
genotype; this can be done easily using the Cholesky decomposition of X7 X.
Formally, we denote L as the lower-triangular Cholesky factorization of
X”X. We want to augment L with rows corresponding composed of a p-
vector lgT and a scalar ¢ to form the updated Cholesky decomposition Lg

P 1 P 1

Lo _P LL” L, \ p (XX XTg
s T 1 \ITLT T4+t )T \gTX gTe )

Since L is lower triangular, solving the system of equations L/, =XTg
is straightforward. We then set ¢’ c=g7g— lngg. For p variables and n
observations, this updating can be done with 0@2+np) calculations, rather
than O(p® +np?) calculations, the cost of a typical OLS fit. [The same
approach is used by M) in the LARS algorithm to successively
add covariates to a model]. The benefit of this approach is small when there
are few covariates or observations, but becomes substantial in larger models
and studies, which is precisely when computational speed becomes an issue
in GWAS. The application of this procedure to mixed model equations was
recently noticed by ). Our discussion extends the results
to a still broader class of models.

The approach for main-effects GWAS outlined above easily extends to the
situation where multiple markers or interactions are included. These terms
can be subsequently added using the same method, which gives the matrix
inverse using the same order of computation as standard matrix inversion

(Efron er o], 2004; [Golub and Van Toad, [199d).

3.3 Missing data

One drawback of pre-computing before genotype is observed is that it
is more difficult to adapt the analysis to peculiarities for any single
regression. For example, if a subject is missing genotype data, the quantities
computed without genotype will still contain this subject’s information. If
this constitutes only one observation, rank-one downdating algorithms can
compute the appropriate factorization efficiently, to which the genotype of
the remaining observations can be added as described above R
). If there are many missing observations, as would be the case with
repeated measures, this downdating may be applied repeatedly; however, it
may be more straightforward to conduct a naive analysis. In practice, linkage
disequilibrium allows one to accurately impute missing genotype data, so this
is not a large concern i ingd, N i X R
,M). The methods used by BOSS can accommodate
uncertain genotype, given by a continuous variable, without modification.
Currently, BOSS ignores missing genotype, which is equivalent to imputing
a value of 0. Observations with missing non-genetic covariates are dropped
from the analysis by BOSS.

3.4 Meta-analyses

It is common in GWAS analyses to pool effect estimates and associated
standard errors from multiple study centers. Since meta-analyses typically
do not require that all study centers use the same estimator of an effect, the
one-step estimators produced by BOSS can be considered compatible with
those produced by other software. Furthermore, in the range of scenarios
where it would be beneficial to meta-analyse results, that is, when the effect
is modest, one should expect BOSS estimates to nearly identical to traditional
estimators.

4 RESULTS

4.1 Timing comparisons

We implemented the above methods in R and compared the
timings using synthetic data (R_Development Core Tean], [2009).
We simulated data for n=2000 subjects and averaged time over
m= 1000 simulated genetic markers, which is sufficient to accurately
estimate the relative speeds. For GEE and mixed models, we
generated three observations per patient. For GEE, we modeled
the variance structure with an exchangeable working correlation
matrix, and for mixed models we used a random intercept and
one random slope. To make calculations as fair as possible, we
implemented OLS directly with matrix inversion, which is twice as
fast as the specialized code in the ‘Im()’ function; we used ‘glm.fit()’
for logistic regression, ‘geese()’ from the ‘geepack’ package for GEE
calculations and ‘Imer()’ from the ‘lme4’ package for mixed models
(Bates and Maechlel, 00d:  Rood: frad,
m; m, m,). All comparisons were carried out on
a Macbook pro with a 2.8 GHz Intel Dual Core i7. The timing
comparisons are given in Table [l

For OLS, the Cholesky updating method is twice as fast as
traditional methods, while the swap method is 20 times as fast.
The advantage of the Cholesky updating is less pronounced for GXE
analyses, but more so for logistic regression. For logistic regression,
the swap method is about 125 times faster than the naive method.
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Table 1. Timing comparisons, given in seconds per 1000 SNPs

Naive method BOSS-chol BOSS-swap
OLS 1.29 0.74 0.059
OLS - GxE 1.39 1.07 -
Logistic reg. 7.68 0.82 0.062
GEE - linear, exch. 325 5.38 0.31
GEE - logistic, exch. 383 5.27 0.31
Linear mixed models 360 2.62 0.48

For repeated measures, the Cholesky method is 60 times faster
than traditional methods for GEE with continuous outcomes 70 times
faster for GEE with binary outcomes, and about 137 times faster
for linear mixed models. If we do not want to use robust variance
estimates, the ‘swap’ method gives GEE and mixed model estimates
1000 and 750 times faster, respectively, than standard code.

4.2 Accuracy of the one-step estimator

In general, we found that the P-values from BOSS approximations
are extremely accurate, which agrees with what m

) demonstrated for mixed models. Figure 1 displays results
for logistic regression and GEE with exchangeable working
correlation. Genotype was simulated away from the null to
demonstrate that there is little difference between the two methods,
even for small P-values. The simulations are described in more
detail in the Supplementary Appendix. For logistic regression,
the traditional one-step approximation is not sufficiently accurate
for genome-wide significant associations. For GEE, traditional
one-step approximation is the same as estimation with an
independence working correlation. Although both the independence
and exchangeable working correlations are consistent for arbitrary
correlation structures, we see that correctly modelling correlation
structure increases power.

There is no clear choice for a threshold to identify when further
iterations may be beneficial. Since the accuracy of the approach
depends on the change in the fitted values, iterating further either
when within-cluster or overall fitted values change relative to the
model fitted without genotype. However, since the approximations
are so close, the simplest and most practical approach is performing
subsequent iterations when the approximate P-values fall below
a certain threshold, say p®"¢~%%P <1/m where m is the number
of tests. In this way, we would not expect to perform subsequent
iterations in a study where genotype has no effect, and when an
association is present in the data the P-value reported will be as
accurate as possible.

i

4.3 Accuracy of approximations in the single
marker method

First, as discussed in the previous section, the single marker method
calculates a coefficient-standard error pair, which is different from
the OLS estimate, but gives identical Wald statistics. We simulated
1000 genotypes for 2000 subjects away from the null hypothesis and
computed both the OLS ﬁg and the described approximation. Figure
2 demonstrates that this approximation is very close to the truth,
even when the genetic effect is large. We see that genotype with
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Fig. 1. Comparison of P-values obtained with BOSS and those obtained with
the fully converged model. Results are also displayed for the conventional
one-step approximations

pr 10~8 differs from the standard OLS coefficient by about 1%.
Since var[Y|X]> var[Y|X+ G], we know that the approximation is
an overestimate, but we see that it is by a very small amount.

5 CONCLUSION

In this article, we provided general computational methods that
capitalize on the structure of genome-wide association studies to
increase speed. BOSS is composed of two distinct procedures,
but each takes advantage of two important features of genome-
wide association studies (i) few variables change from analysis to
analysis and (ii) genotype at each locus explains a small component
of variation in phenotype. Recognizing this, we demonstrated that
one could perform nearly exact estimation and testing in a wide
variety of statistical models fit with IWLS including GLM, GEE
and mixed models, for a lower computational cost than currently
implemented least squares. This had also been noticed in mixed
models, but our contribution allows the analyst to use a much
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Fig. 2. Comparison of approximate coefficients to the OLS estimates using
‘swap’ method. (a) The approximate against the OLS estimate directly. (b)
The error in the approximation, as a percent of the OLS coefficient, against
the P-value. Herein, the approximate coefficient, with its associated variance,
yields identical inference to the OLS estimate

broader set of tools, and for single marker models we provide a
method which is substantially faster (IMQ;Le_Lan_LIiQﬂ, |2£)_]_]]). In
particular, it is now feasible to take advantage of repeated measures
with GEE and doubly robust standard errors on a genome-wide
scale.
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