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Abstract

In the last decade there has been a great amount of research investigating the role of simulation in
our ability to infer the underlying intentions of any observed action. The majority of studies have
focussed on the role of mirror neurons and the network of cortical areas active during action
observation (AON) in inferring the goal of an observed action. However, it remains unclear what
precisely is simulated when we observe an action and how such simulations can enable the
observer to infer the underlying intention of that action. In particular it is not known how
simulation in the AON enables the inference of the same goal when the kinematics observed to
achieve that goal differ, such as when reaching to grasp an object with the left or right hands. Here
we performed a behavioural study with healthy human subjects to address this question. We show
that the subjects were able to detect very subtle changes in the kinematics of an observed action.
In addition, we fitted the behavioural responses with a model based on the predictive coding
account of mirror neurons. This is a Bayesian account of action observation that can be explained
by the free-energy principle. Here we show that we can model all the effects observed when the
action observation system is considered within a predictive coding framework.
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Introduction

When we observe other people executing an action we are able to estimate their underlying
intentions and goals. Many believe that this ability is made possible by activity of a
particular class of neurons, mirror neurons, in the observer’s own motor system during
action observation (Di Pellegrino et al.,, 1992; Gallese et al., 1996; Rizzolatti et al., 2001;
Rizzolatti & Craighero, 2004; Fogassi et al., 2005). However, despite nearly two decades of
research on mirror neurons and the action observation network (AON) it remains unclear
how the visual information from an observed action maps onto the observer’s own motor
system and how the goal of that action is inferred (Gallese et a/., 2004; lacoboni, 2005;
Jacob & Jeannerod, 2005; Saxe, 2005). Implicit in many descriptions of the AON is the idea
that visual information is transformed as it is passed by forward connections along the AON
from low-level representations of the movement kinematics to high-level representations of
intentions subtending the action. Previously we have shown that such a scheme can not work
in the case of action observation as the same sensory input can have many causes, and
therefore the process of generating the sensory inputs from the causes are non-invertible
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(Kilner et al., 2007a,b). Instead, we have proposed that the AON is best considered within a
predictive coding framework. In the predictive coding framework, each level of a hierarchy
employs a generative model to predict representations in the level below. This generative
model uses backward connections to convey the prediction to the lower level where it is
compared with the representation in this subordinate level to produce a prediction error. The
notion in predictive coding that we employ our own motor system to predict the observed
action is aligned with the idea that mirror neuron activity reflects a simulation of the
observed action (Jeannerod, 1994; Prinz, 1997; Gallese & Goldman, 1998; Wohlschléger et
al., 2003; Rizzolatti & Craighero, 2004; Grafton, 2009).

Observed actions can be described, and therefore must be simulated, at many levels (Kilner
et al., 2007a,b; Hamilton & Grafton, 2009). The vast majority of research on action
observation has focussed on the intention and goal level. However, any system that is
capable of inferring the goal and intention of an observed action must do so with only access
to the observed kinematics. This means that the predictive coding and simulation account of
mirror neuron activity must resolve how one unique goal of an action can be inferred when
the observed kinematics are different. For example, when we reach and grasp an object with
either our right or left hands the goal is the same, however, the observed kinematics differ
(Tretriluxana et al., 2008). In such cases do we generate or simulate the observed kinematics
in an identical way to which we execute it, with a different generative model for the left and
right hands as simulation theory would imply, or do we employ the same generative model
for both.

Here we designed an experiment to disambiguate between these two accounts. Subjects
observed videos of left- or right-handed actions. Half of all the videos were manipulated by
reflecting the video around the vertical midpoint such that an original right-handed action
would now appear like a left-handed action and vice versa. Subjects had to decide whether
each video was manipulated or not. We show that subjects’ responses are inconsistent with
how the simulation account is commonly interpreted, but demonstrate that the results can be
modelled by a predictive coding account of perceptual inference (Kilner et al,, 2007a,b).

Materials and methods

Subjects

Seventeen subjects (eight female) took part in the study (aged 26 + 5.4 years). Informed
consent was collected from each subject prior to the study and the study had local ethical
approval.

Experimental design

Prior to the experiment subjects were told that they would be presented with short video
clips of reach and grasp movements. They were informed that half of these movements had
been altered using video software. Subjects were given no information about which aspect
of the movement had been altered. The videos consisted of four actors making reach and
grasp movements to a small object (Fig. 1). To make the videos each actor sat on a wooden
stool facing a table covered by a black cloth. Actors were given a small cylindrical object
and asked to place it at a comfortable arms reach. Starting from a pinch grip on a pin placed
in the table directly in front of the actors, actors reached for the object, grasped it using a
pinch grip and brought it back to the start position. Each movement was repeated eight
times: four times the action was recorded from an allocentric or third-person viewpoint; and
four times the action was recorded from an egocentric or first-person viewpoint. For the
egocentric conditions, the camera was mounted on a tripod and placed just above the actors’
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right shoulder when the subject made right-handed movements, and above the left shoulder
for left-handed movements.

All videos were manipulated in the same way, they were reflected about the vertical
midpoint using Windows Movie Maker, and edited with avio Liquioero V.7 t0 remove shadows
and block potential flipping cues. In this way, for example, a left-handed action would now
appear as a right hand, but would reach and grasp with identical kinematics as the original
video.

There were eight video conditions that formed a 2 x 2 x 2 factorial design (Fig. 1). The
factors were: (i) observed hand (right or left); (ii) observed kinematics (left or right); and
(iii) viewpoint (egocentric or allocentric). Subjects performed two blocks of the experiment.
In one block subjects observed actions recorded from an egocentric viewpoint, and in the
other they viewed the actions recorded from an allocentric viewpoint. The order of the
viewpoint factor was random across subjects. In each block subjects observed 64 different
videos. These were the four movements of the right and left hands for each of the four
actors, presented in both the unmanipulated form and also after they had been manipulated.
These videos were presented in a pseudo random sequence within each block.

Subjects were presented with a fixation cross followed by a video of a movement about 1 s
in duration. Immediately after the video came the response screen, at the top of which was
the question ‘Manipulated?’. Subjects were required to press the ‘n” key for ‘no not
manipulated’ or the ‘b’ key for ‘yes manipulated’ before moving on to the next trial.
Subjects were given a break between blocks.

Following the video blocks subjects were asked to complete a computer-based version of the
Edinburgh Handedness Inventory. Handedness was measured using the Edinburgh
Handedness Inventory and analysed using marae V.6. The response screen and the
handedness inventory were created using eseno V1.254. Stimuli were presented and responses
recorded on a PC using coeent2000 versionl1.25.

Prior to analysis the responses of each subject were transformed to percentage of ‘no’
answers — the percentage of times the subjects responded that they thought that the video
had not been manipulated. At this stage one subject was eliminated from further analyses as
he / she constantly responded that the videos appeared unmanipulated or natural. It was
unclear whether this subject had not understood the task and so was eliminated prior to any
further analyses. All further analyses were based on the responses of the remaining 16
subjects.

The predictive coding account of goal inference of observed actions can be shown to be
formally equivalent to empirical Bayesian inference (Kilner et a/., 2007a,b). The empirical
Bayesian perspective on perceptual inference suggests that the role of backward connections
is to provide contextual guidance to lower levels through a prediction of the lower level’s
inputs. Given this conceptual model, a stimulus-related response can be decomposed into
two components. The first encodes the conditional expectation of perceptual causes, p. The
second encodes prediction error, e. Here we were interested in whether the observed pattern
of behavioural responses could be explained by modulations in the prior mean () and the
prior precision (IT). To this end we assumed that the percentage of times the subjects
responded that the observed videos was natural was negatively correlated with the prediction
error, g, such that
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where A is the difference between the observed data ()) and the prior mean (w), and II is the
prior precision, the reciprocal of the prior variance (o; see Fig. 4 for schematic). Note that
here the prediction error (&) is dependent upon both the prior mean (x2) and the prior
precision (I1).

In general subjects had a significant bias in reporting that they thought that the videos were
natural or not manipulated (Fig. 2; £< 0.05). This is unsurprising as all the kinematics were
natural. Despite the fact subjects reported that they were guessing, the within-subject
analysis of the behavioural results indicated the interaction between observed hand and
observed kinematics was significant (£ 15 = 5.267, P< 0.05; Fig. 2). All other main effects
and interactions did not meet the required significance criterion, £< 0.05 (main effect of
viewpoint £ 15 = 1.660, 2= 0.217; main effect of observed kinematics /; 15 = 0.141, P=
0.141; interaction between viewpoint and observed kinematics F; 15 = 0.142, P=0.141;
main effect of observed hand £ 15 = 4.260, = 0.057; interaction between viewpoint and
observed hand F; 15 = 0.009, = 0.927; interaction between viewpoint, observed kinematics
and observed hand £y 15 = 0.152, P=0.482). Post hoc t-tests revealed that the interaction
was driven by an increase in the percentage of times that the subject responded that the right
hand observed with right-hand kinematics was natural, or not manipulated, compared with
the other conditions. This was particularly evident when the subjects observed the actions
from a third-person perspective (Fig. 2). The interaction was not a crossover interaction. In
other words, subjects did not think that actions with left-hand kinematics performed by a left
hand were natural, even though these videos were not manipulated, and subjects can quite as
easily reach and grasp an object with their left hands as with their right hands.

Subsequent analyses focussed on between-subject variance. For each of the eight conditions
we tested whether the subjects’ perception of the movements observed were correlated with
the degree to which they were right-handed. To this end we performed a linear regression
analysis between each individual’s index of laterality and the percentage of times they rated
an observed action as natural or unmanipulated. Only one of the eight conditions was
significantly correlated with the index of laterality, the right-hand kinematics when viewed
as a right hand from the first-person perspective, which was negatively correlated with the
laterality index (P < 0.05, /2 = 0.31; Fig. 3A and C). Of the seven non-significant
correlations one showed a trend to significance (P= 0.07, RZ = 0.21), this was the right-hand
kinematics when viewed as a left hand from a first-person perspective, which was negatively
correlated with the laterality index. In other words for both of these correlations the more
right-handed a person was the less natural they thought the actions were. None of the
correlations between laterality and ratings to actions shown in a third-person perspective
was close to significance (Fig. 3).

Discussion

Here we have shown that: (i) when we observe actions we are sensitive to subtle and non-
perceived differences in the kinematics of the observed action (Fig. 2); and (ii) that the
degree to which subjects thought that action with right-handed kinematics was natural was
inversely correlated with how right-handed the subject was (Fig. 3). Both of these results are
difficult to explain by a simple ‘simulation theory” interpretation of the role of the AON and
mirror neurons in action understanding. If we simulate the observed action in exactly the
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same way that we would execute it then why did subjects not perceive left-handed actions
performed by the left as natural? And why would the perception of the action be inversely
correlated with how right-handed the subject was? The pattern of responses observed here,
however, can not be explained by this simulation account as there were no significant
differences when the left-hand kinematics were viewed either in their natural or manipulated
forms. Such discrepancies between the simulation theory and the results here can be
resolved by considering simulation theory within the recently proposed framework of
predictive coding (Kilner et al, 2007a,b). The essence of the predictive coding account is
that, given a prior expectation about the goal / intention of the person we are observing, we
use our own motor system to generate a model of how we perform the same action to predict
the observed action kinematics of others. The comparison of the predicted kinematics with
the observed kinematics generates prediction errors. These prediction errors are used to
update our representation of the person’s motor commands and inferred goals. By
minimizing the prediction error at all the levels of a cortical hierarchy engaged when
observing actions, the most likely cause of the action will be inferred at all levels (intention,
goal, motor and kinematic). The larger the prediction error between the predicted and
observed kinematics the more likely the subjects would be to rate the action as unnatural or
manipulated.

A partial explanation for the results described here can be achieved by assuming that we
always simulate the observed action as if we were executing the action with our dominant
hand. In other words, right-handers would simulate any observed action as if it were being
performed by the right hand. In this case, when subjects observed an action executed by the
left hand with left-handed kinematics there would be a prediction error between the model
generated with right-hand kinematics and the observed left-handed kinematics, and the
subjects would consequently have a higher probability of rating these videos as manipulated.
Indeed, it could be argued that as left-handed actions are more difficult to simulate than
right-handed actions, because they are less frequently produced, one might expect this result.
However, this can only be a partial explanation of the results as this model would predict
that both the right-handed manipulated and non-manipulated videos should appear natural as
they both have the kinematics of a right-handed action. This was not the case. Furthermore,
this account offers no explanation of the negative correlation between the subjects’ laterality
index and their responses. Although it might seem logical to argue that right-handed actions
are more easily modelled by right-handers because the subjects see these actions more
frequently, the purpose of this paper was to go further and provide a model that could
explain such results. It should be noted that the predictive coding account and an experience-
based account are not mutually exclusive. Indeed, in the predictive coding account the
parameters of the generative models must be learned through perceptual learning (Friston,
2003; Kilner & Blakemore, 2007), and this process will clearly be experience dependent.
The point here is that whereas some of the results are consistent with an experience-based
account, not all of them are.

Within the predictive coding account the prediction error can be weighted so that it is
dependent not only on the parameters of the generative model but also the prior precision of
these parameters (the confidence that these parameters are likely to be correct; Friston et al.,
2006; Friston, 2009; Friston & Kiebel, 2009). This is shown schematically in Fig. 4. Here
we propose that when subjects observed the actions they always simulated the action using a
generative model of how they would perform the same action with their dominant hand, and
in addition they modulated their confidence that the generative model would produce the
correct kinematics such that it was increased when observing actions that appeared as if they
were right-handed and decreased for actions that appeared as if they were left-handed. In
other words, in each situation subjects used the same prior means but modulated the prior
precision depending upon whether they were observing a right hand or a left hand. By
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always modelling the observed kinematics with a generative model of our dominant hand
with the precision on the parameters of this model that are dependent upon the hand
observed, it is possible to simulate the results observed here and presented in Fig. 2 (Fig. 4).

Modulating the precision of parameters in our generative model when observing actions can
also be used to explain the correlation between the individuals’ index of laterality and their
ratings. Such correlations were only significant for actions with right-handed kinematics
when viewed from the first-person perspective. The majority of times we view a hand in the
first-person perspective it is our own hand. When we observe our own self-generated
movements the precision of the parameters of the generative model predicting the produced
kinematics will be high as we have learnt how we move our own limbs. It seems reasonable
to assume that the precision will not be the same for each subject and will be dependent
upon how well the subject thinks they can perform the action. If we take the laterality index
as a rough surrogate for the precision that each subject has on the parameters of their own
generative model for executed actions, we can account for the negative correlation between
the subjects’ rating and their laterality index by assuming that when the subjects observe an
action in the first-person viewpoint they then model the kinematics as if it were their own
hand. Previous studies have shown that the mere observation of a hand observed from this
viewpoint is sufficient for us to believe that that hand is our own (Ehrsson et al., 2004, 2005,
2007; Makin et al., 2008). In this case the confidence in the parameters of the generative
model of any observed action would be correlated with how right-handed the subjects were,
such that if a subject had a high laterality index then they would have a high precision that
the parameters of the model were correct. However, the actions were not performed by
them, so that subjects that had a high precision would have a larger precision-weighted
prediction error and therefore they would have a higher incidence of reporting the observed
action as non-natural (Fig. 4). When subjects observe actions from a third-party viewpoint
they then a prioriknow that the kinematics observed would not be fitted with their own
model and so have a broader pattern of prior precisions. In this case no significant negative
correlations are observed. Although speculative, this suggests that subjects can use the prior
precision to modulate self from other generated actions (Gallagher, 2007).

Here we have shown that: (i) when we observe actions we are sensitive to subtle and non-
perceived differences in the kinematics of the observed action; and (ii) that the degree to
which subjects thought that right-handed videos were natural was inversely correlated with
how right-handed the subject was. We argue that these results can only be explained within
the predictive coding framework of simulation theory of observed actions. This account
suggests that we always generate a simulation of an observed action as if we would execute
the action with our dominant hand, and we modulate the confidence or prior precision of this
model. Such a model creates the testable hypothesis that some neuronal populations that are
active during action observation should be functionally correlated not with the prior mean of
the simulated action but with the prior precision.
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Experimental design. There were eight video conditions that formed a 2 x 2 x 2 factorial
design. The factors were observed hand (right or left), observed kinematics (right or left)

and viewpoint [egocentric (A) and allocentric (B)].
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Fig. 2.

Behavioural responses. This figure shows the mean behavioural responses for each of the
eight conditions. The error bars show standard error. The image of the hand depicts the
observed hand, left or right. The white and the black bars show the responses to the
observed kinematics for the right and left hands, respectively. Significant differences at P <
0.05 are shown (indicated by the *). All other comparisons were non-significant at this
threshold.
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Fig. 3.

Correlations with laterality index. (A) The correlation coefficient /2 for the correlation
across subjects of the laterality index for each subject and their ratings that the videos were
not manipulated. The image of the hand depicts the observed hand, left or right. The white
and the black bars show the responses to the observed kinematics for the right and left
hands, respectively. The significance of each correlation is shown above the appropriate bar.
(B and C) Scatter plots of percentage of responses that were natural or non-manipulated
against the laterality index. (B) The scatter for responses to videos of actions from an
egocentric viewpoint that appeared to show a left hand, but right-hand kinematics. (C) The
scatter for responses to videos of actions from an egocentric viewpoint that appeared to
show a right hand, and right-hand kinematics.
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Fig. 4.

Schematic of the effect of prior mean and precision on prediction error. (A) A schematic
outlining the relationship between the prior mean (w), the prior precision (71), the observed
data ()) and the precision-weighted prediction error (&). The prior precision is the reciprocal
of the prior variance (o). Note that here the prediction error () is dependent upon the
difference (A) between the observed data ()) and the prior mean (1) and the prior precision
(7). (B) A schematic depicting the effect of prior mean and precision on the prediction error
for each of the four conditions collapsed across the factor viewpoint. The Gaussian
represents the precision of the prior for the observed action (see A). This is dependent upon
the observed hand, being more precise for right-handed actions. Note that the prior mean
does not change. The dashed line depicts the observed data. This is dependent upon the
observed kinematics. Note that the prior mean is closer to the observed data for actions
observed with right-handed kinematics than for those with left-handed kinematics. The grey
bar depicts the size of the prediction error. The white bar depicts the corresponding
percentage of natural responses for that condition. Note that when the prediction error is
high the percentage of natural responses is low. (C) A schematic showing how changes in
the prior precision can explain the negative correlation between subjects’ responses and their
laterality index. Note that the precision decreases with the subject’s index of laterality, this
resulted in a decrease in the prediction error and a subsequent increase in the percentage of
‘natural’ responses.
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