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Abstract
This manuscript is part of a debate on the statement that “the use of short synthetic adhesion
peptides, like RGD, is the best approach in the design of biomaterials that guide cell behavior for
regenerative medicine and tissue engineering”. We take the position that although there are some
acknowledged disadvantages of using short peptide ligands within biomaterials, it is not necessary
to discard the notion of using peptides within biomaterials entirely, but rather to reinvent and
evolve their use. Peptides possess advantageous chemical definition, access to non-native
chemistries, amenability to de novo design, and applicability within parallel approaches.
Biomaterials development programs that require such aspects may benefit from a peptide-based
strategy.

1. Introduction
In this debate, our position is to emphasize the rationale for employing peptides, rather than
whole proteins or biologically sourced materials, in the evolving design of biomaterials in
the foreseeable future. We fully acknowledge that we are presenting one-sided arguments
for the purposes of this debate, and the reality is that there is no reasonable up-or-down
answer to this question, hence its appropriateness as a debate topic. Nevertheless, we will
artificially polarize our stance in the discussion below, with the hope of illustrating the
competing considerations that lead to the choice of one over the other. In reality, choosing
between peptides and proteins in a given biomaterial setting usually requires the synthesis
and consideration of many factors that often run counter to each other, including practicality,
cost effectiveness, mechanistic clarity, biological specificity, immune responses, regulatory
considerations, and others. It is our hope that the arguments that our opponents and we
present here will effectively enumerate these competing considerations in order to facilitate
the choice of a peptide-based approach or a protein-based approach in currently developing
biomaterials strategies.

Our position is not to defend the use of adhesion peptides in isolation as a reasonable and
complete approach for building biomaterials designed to act as surrogate ECMs. Recent
work in Biomaterials has clearly indicated that such an approach falls considerably short of
realizing the dynamic, context-specific, high-affinity, and multifunctional nature of whole
proteins, native ECMs, or even protein domains. To us, defending this position directly
would be untenable, and we believe that this paradigm will evolve. However, we do not
believe that the use of peptides within biomaterials should be discounted entirely for the
sake of using proteins or protein domains. So our position in this debate will be the
following:
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Although there are shortcomings of short peptide ligands within biomaterials, it is
not necessary to discard the notion of using peptides within biomaterials entirely,
but rather to reinvent their use.

It is our intent to illustrate some potential paths forward for the evolution of peptides within
biomaterials that exploit some of peptides’ greatest advantages, including their chemical
definition, their accessibility, their practicality, and their simplicity. We will highlight recent
strategies for improving upon their shortcomings as biomaterials components, including
their lack of specificity and their highly reduced functions.

In essence, the lack of overwhelming success of short ECM-derived ligands in biomaterials
raises a simple question of how to proceed forward. We make arguments here for doing so
using synthetic chemistry, including peptide chemistry. In the end, of course the best
approaches may well include clever marriages of both protein-based and peptide-based
strategies.

2. Advantages of using peptides
2.1 Peptides are chemically defined

Arguably the most advantageous property of peptides is that they are chemically defined.
This in turn enables the systematic refinement of their structures, parallel experimental
designs to discover novel peptides or combinations of them, and precise molecular
manipulations required for mechanistic investigations. The definition of peptides arises from
their chemical route of production, which is usually solid phase peptide synthesis (SPPS) [1,
2]. Using generally available resins, activating agents, amino acid derivatives, and solvents,
peptides of up to 30–50 residues can be routinely prepared with good yields [2]. For such
peptides, exceptional control over chemical identity can be achieved, even for “difficult to
synthesize” sequences, which are becoming more accessible owing to the progressive
introduction of newer and better reagents [3–6]. In contrast, proteins or tissue-derived
matrices often lack such precise definition. When biologically sourced, biopolymers or
ECMs can contain contaminating molecules that are difficult to define, much less remove.
Troublesome contaminants like lipopolysaccharide can accompany proteins expressed in
bacterial cultures, and tissue-derived matrices have a nonzero potential for harboring
transmissible pathogens including viruses or prions. Although it can generally be assured in
clinically developed ECM-based materials that such pathogens have been removed or
neutralized, doing so requires significant attention, effort, and expense. More pertinent to the
development of matrix-based biomaterials is that the incomplete molecular definition of
ECMs can thwart efficient engineering of them. For example, the analysis of the
glycoprotein content of a given natural ECM typically involves some combination of
enzymatic digestion, solubilization, and extraction, through which the composition of the
recovered materials and certainly the interconnectivity of them may change. This
“compositional drift” can occur during the disassembly of protein matrices and also during
the opposite process, matrix assembly. In this case, if one desires to produce a matrix with a
defined ratio of proteins (e.g. 90% Collagen I and 10% laminin-111), the different
components may not assemble or polymerize completely, making it uncertain to what extent
the ratios between different matrix components may be maintained upon assembly.
Compositional drift in analysis and production of protein-based ECMs in turn makes it
difficult to study them and engineer them. Even in “pure” protein preparations, there may
exist heterogeneity in folding, in essence producing a mix of biological activities, even
though there may be homogeneity in the primary structure of the material. Peptide-based
materials can circumvent these issues by being chemically defined.
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2.2 Peptides can possess a diversity of functions
Although the debate statement mentions the integrin-binding peptide RGD as an example,
peptides can be employed in biomaterials contexts for functions well beyond integrin
binding. In fact, relegating peptides only to integrin binding drastically underutilizes their
potential. Peptides used within biomaterials can possess a diversity of functions beyond cell
binding, including specific proteolytic susceptibility, surface binding, matrix binding, self-
assembly, growth factor binding, and combinations thereof (Box 1). Moreover, the tailorable
nature of peptides leaves much room for the discovery and development of additional
functions in the future.

It is true that the one peptide that has been studied the most by far in biomaterials contexts
has been RGD, originally developed as an easily produced small molecule capable of
functioning analogously to the 10th type-III domain of fibronectin [7]. But since its
discovery and exhaustive exploration within biomaterials, it is now known to engage many
different integrin subtypes, and moreover it is found in many different ECM molecules
beyond fibronectin [8]. In some applications, the broad integrin binding provided by RGD
may be acceptable, but if cell-specific behaviors are required, or if a defined set of integrins
are to be activated and bound, the information content of short integrin ligands like RGD
will in most cases be insufficient (for expansion of this view, see the recent review by one of
our opponents in this debate series [9]). The question arises, then, of how to provide for this
missing information in biomaterials. There can be advantages of doing so in chemically
precise ways, including the use of synthetic peptides, peptide derivatives, and
peptidomimetics.

As one example of additional functions that can be installed within biomaterials through
peptides, enzyme substrate sequences have received particular interest, especially within
hydrogels. Using peptide sequences of varying proteolytic susceptibility, such matrices can
be designed to degrade with controllable kinetics by a variety of different proteases
including matrix metalloproteinases or plasmin [10–12], enabling the tailored degradation of
the material or the release of a matrix-tethered payload via proteolysis [13, 14]. In contrast,
controlling the degradation kinetics of protein matrices can be somewhat less systematic,
given that the experimenter rarely has control over the precise arrangement and sequences of
proteolytic cleavage sites within them. Further, protein matrices form insoluble networks
through self-assembly, thus the degradation of one fiber may not lead to degradation of the
matrix in a predictable manner and thus controlled degradation/release rates may not be
easily achieved. Peptides can also be engineered to possess growth factor binding
capabilities, important given the native capacity of the ECM for growth factor sequestration,
presentation, activation, and release [15–20]. For example, heparin-mimicking sulfated
peptides that can bind vascular endothelial growth factor have been identified using bead-
peptide libraries of sulfated peptides [21] or through rational design [22]. Both of these
examples illustrate how the chemical definition of peptides enables parallel approaches or de
novo design, respectively.

Peptides can also be designed to self-assemble, achieving one of the basic properties of
native ECMs, insoluble network formation, with chemically defined small molecules. Native
ECMs self-polymerize through precise protein-protein interactions, as exemplified by the
LN domains of laminins, the stretches of fibronectin involved in fibrillogenesis, and the
“knobs and holes” that mediate fibrin polymerization. Analogously, several classes of
peptides have been designed and exploited in biomaterials contexts for their self-assembling
behaviors. These have included β-sheet fibrillizing peptides [23–27], peptide amphiphiles
[28–30], coiled coil peptides [31–33], β-hairpins [34–37], short aromatic peptide derivatives
[38–41], and others [42, 43]. In each case, design rules have been worked out in order to
achieve predictable assembly into fibers, networks, and gels, and strategies for decorating
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these materials with functional peptide sequences continue to be reported [26–28, 33, 39,
44–46].

2.3 Non-native chemistries and functions are easily incorporated into peptides
Owing to peptides’ synthetic routes of production, opportunities abound for specifically
installing structures not routinely accomplished in expressed proteins or tissue-derived
matrices. A short list of these might include natural amino acids beyond the genetically
encoded ones, D-amino acids, chemical functionalities for cross-linking or polymerization,
fluorescent labels useful for structural analyses, polymer bioconjugates, amino acids with
fluorinated side chains, post-translational modifications including hydroxylation,
phosphorylation, glycosylation, lipidation, and so on. Access to these non-canonical
structures can be used to improve upon biomolecules already found in nature or to design
new molecules de novo. As an example, 3,4-dihydroxyphenyl-L-alanine (DOPA) is post-
translationally produced from tyrosine in nature and is found in large proportion in certain
marine biopolymers such as the adhesive plaques of mussels. Chemically derived DOPA-
containing peptides, peptidomimetics, and peptide-polymers have been successfully
engineered as coatings for modifying a range of synthetic materials [47–50], effectively
installing the tenacious adhesive properties of mussel proteins into synthetic biomaterials.
Other surface-binding and matrix-binding peptides have been identified through the use of
peptide libraries [51, 52] or de novo design [53, 54], again highlighting peptides’
amenability to such approaches. Library screenings have also identified peptides that bind to
the cartilage ECM [55], solid surfaces and cells [51, 56], bone-like minerals [57], and
titanium implants [58], and that can promote the proliferation of pluripotent cells [59]. It is
true that parallel investigations, de novo design, and non-canonical amino acids can be
applied towards expressed proteins, but not as efficiently, directly, or cost-effectively as
with peptides.

2.4 Peptides can be conjugated to biomaterials with precision
Conjugating peptides onto or within synthetic materials can be accomplished with more
chemical precision than proteins because one generally has more control over the
conjugation chemistry with peptides. For proteins that have more diversity in chemical
properties, it can be difficult to orient the biomolecule such that it is correctly and uniformly
positioned on a given surface, unless precise immobilization strategies are employed [60,
61]. With proteins, the exact region that interacts with the cell may only be partially known,
so chemical modifications of proteins can also alter their biological activity in unpredictable
ways. In contrast, peptides can be incorporated into biomaterials through specific
chemistries, utilizing a range of options including commercially available crosslinkers [62],
Michael addition of cysteine-containing peptides to vinyl sulfones, acrylate or maleimide
conjugation [63–65], UV-initiated crosslinking [66], amine/carboxylic acid coupling [67],
and chemoselective chemistries such as “click” chemistries [68, 69] and native chemical
ligation [26, 70–72]. Each of these can be achieved with chemical specificity, whereas the
covalent incorporation of proteins into biomaterials is typically achieved through non-
specific amine/carboxylic acid coupling. These types of immobilization strategies can result
in random modification of the protein, a heterogeneous mixture of conformations of attached
proteins, and commonly a reduction of protein activity.

3. Addressing the shortcomings of peptide-based biomaterials
3.1 Chemical Access to Longer Peptides

Although peptides are practical molecules for conferring biological functions to synthetic
materials, they do possess a number of shortcomings; however, many of their shortcomings
can be improved upon and have been improved upon recently (Box 2). Many limitations of
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peptides are a product of their reduced length, which in turn contributes to their generally
poor specificity, their conformational flexibility, and their tendency not to fold into stable
secondary, tertiary, and quaternary structures. This is a significant hurdle to overcome, and it
is pertinent not just for employing peptides within biomaterials, but within most biomedical
contexts. As a result, there has been significant motivation to extend the length attainable for
synthetic peptides in general, driving many recent innovations in peptide chemistry. Some of
these strategies have been applied to biomaterials contexts, but most have been significantly
underutilized, thus representing an extremely useful set of resources that remain relatively
untapped within biomaterials research and development. For example, chemoselective
ligation strategies enable the joining of unprotected peptides or peptide derivatives to make
longer polyamino acids than could be produced directly using solid phase peptide synthesis
[73]. Native chemical ligation was introduced in 1994 as a means for joining two peptides,
one with a C-terminal thioester and one with an N-terminal cysteine residue, forming a new
peptide bond between the two in the process [70, 74]. The technique is highly selective
chemically, enabling the conjoining of peptides of almost any amino acid content in near
quantitative yield, and it has been successful for chemically synthesizing well-folded
proteins of over 200 amino acids in length [74, 75]. Given the technique’s importance in
synthetic biology and in total protein synthesis, it is surprising that native chemical ligation
has not been extensively utilized in biomaterials. A few reports have utilized native
chemical ligation for the polymerization or cross-linking of biomaterials [26, 71, 72], and it
has been utilized to chemically synthesize ECM domains such as type I thrombospondin
repeats [76] but combining such approaches to provide for well-folded ligands in
biomaterials contexts has been under-explored. Similarly, other chemoselective conjugation
techniques have been applied towards biomaterials, including copper-catalyzed alkyne-azide
cycloaddition [68, 69, 77], oxime ligation [78, 79], and intein-mediated ligation [80–82], but
these techniques have yet to be fully embraced in biomaterials design despite their promise
of overcoming the challenges associated with peptides’ short length. The example of intein-
mediated ligation also illustrates a useful technique combining expressed proteins with
chemoselective chemistry, despite the fact that we are focusing on purely synthetic
approaches for the purpose of the debate format. In addition to significant progress in
peptide conjugation, there has also been continual refinement in the resins, coupling
reagents, and amino acid derivatives available, progressively lowering the cost of peptide
synthesis, extending the length of sequences possible, improving purity, and simplifying
work-up. Owing to such improvements in peptide synthesis, conjugation, and
polymerization, it seems clear that longer and longer amino acid sequences will
progressively become available in biomaterials contexts. It is up to the field to exploit these
advancements.

3.2 Strategies for improving peptide affinity
In general, peptides do not fold into defined or stable secondary, tertiary, or quaternary
structures, and this drastically limits the affinities that can be achieved with them in
comparison to well-folded proteins. Extending the synthetically accessible length of peptides
will certainly improve the ability to directly synthesize folded domains, but even without
lengthening peptides, many strategies currently exist for stabilizing particular folds through
non-covalent or covalent means. Design rules have been developed for specifying certain
folding in oligomerized structures, including β-sheets, α-helices [31, 33, 83], and collagen
triple helices [84]. In addition, synthetic miniproteins constructed around motifs such as Trp
cages and cystine knots [85, 86] are powerful scaffolds with which to engineer high-affinity
biomaterials components. Cystine knots have been recently utilized to design peptide
integrin ligands with low-nanomolar affinity [87], but many of these strategies have only
cursorily been applied towards biomaterials. Analogously to the uses of chemical ligation
described above, the predominant use of controlled secondary structural folding within
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biomaterials has been to polymerize or assemble the peptides into predictable networks, as
has been achieved with β-sheet peptides [23, 25, 27, 42, 88, 89], coiled coil peptides [32],
peptide amphiphiles [28], and collagen-like peptides [90]. In most of these strategies, the
overarching concept is to utilize the secondary structure motifs to oligomerize other
functional components, such as pendant functional amino acid sequences, into predictable
assemblies. By comparison, using these design rules to stabilize or improve the affinity of
the biofunctional components of the materials has received much less interest, leaving
exciting opportunities to be explored.

For biomaterials containing peptides, many routes are available for installing considerable
multivalency into the material, and this can be utilized to overcome shortcomings in peptide
affinity. For example, dendrimers, multi-arm functionalized polymers, and self-assembled
structures are all available to provide highly repetitive presentations of peptides. High-
density ligand display has been shown to be important in the biological functionality of self-
assembled materials, which are capable of displaying far higher densities of functional
components on the surface of fibrils or oligomers than is possible for protein-based scaffolds
[27, 30]. This may not be appropriate for all biomaterials strategies, but it can be
advantageous for many.

Covalent stabilization of peptides can also significantly improve their specificities. This has
been well documented for cyclic RGD ligands [91], and peptide cyclization remains a
simple, powerful method for ligand stabilization, especially for peptides that assume a
looped conformation in their native structures, as RGD does [92]. For the covalent
stabilization of more complex folds, other strategies have recently been developed and are
poised to make a significant contribution to biomaterials. These strategies include the
miniprotein scaffolds discussed above such as cystine-knot proteins, as well as stapled
peptides, in which ruthenium-catalyzed olefin metathesis is used to place hydrocarbon
bridges between specific side chains of peptides [93]. This approach has been used to
stabilize the secondary structures of several different peptides, which in turn has greatly
improved their affinities [94], made them resistant to proteolysis [95], and improved their
ability to cross the cell membrane [96]. The stabilization of peptides with this technique is
significant enough to even provide for oral bioavailability, which has been a longstanding
shortcoming of peptide therapeutics owing to their susceptibility to proteolysis in the
gastrointestinal tract [95]. Stapled peptides have been explored as therapeutics for cancer
[94, 97], HIV fusion inhibitors [95], and to initiate and study apoptotic mechanisms [96, 98],
but they have not yet to our knowledge been utilized in biomaterials applications. Doing so
may open up new possibilities for biomaterials design by providing for more specific, stable,
and of course chemically defined synthetic ligands.

3.3 Installing multifunctionality and modularity in peptides
One shortcoming of peptides is that they typically only possess one function, whether it is
integrin binding, enzymatic susceptibility, growth factor binding, oligomerization, or
another. In contrast, native ECM proteins are exceptionally more multifunctional, combining
all of these functions elegantly within one molecule or a network of molecules. This
multifunctional nature of ECM proteins is both their advantage over peptides and their
disadvantage, as it contributes to the challenge of defining them, manipulating them,
purifying them, and studying them. Even though peptides are extremely limited in terms of
functionality, methods are being developed for combining them together in multifactorial
combinations, in order to integrate multiple functions within synthetic matrices [99]. Recent
examples include polymer hydrogels containing peptides of multiple different functions
[100], self-assembling biomaterials in which multiple different peptides are co-assembled
[32, 42, 99], and multidomain self-assembling peptides incorporating several functions, for
example cell-adhesion, fibril formation, and proteolytic susceptibility [88, 89]. Unlike native
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ECMs, these materials have the advantage of being chemically defined, with known
amounts of each functional component, so unlike native protein matrices their compositions
can be systematically tailored to fit the needs of the application or experimental goal, as
discussed above [99].

3.4 The cost of synthetic peptides
Peptides have sometimes been labeled as being prohibitively expensive, but peptide
synthesis can be achieved on research scales with reasonable costs, and large-scale industrial
production of peptides indicates their economic viability. On an industrial scale,
commercialized pharmaceuticals such as enfuvirtide (a 36-amino acid synthetic peptide that
acts as an HIV fusion inhibitor) and eptifibatide (an antiplatelet small cyclic peptide)
illustrate peptides’ economic viability [101, 102]. On a research scale, peptide synthesis
costs continue to decline as different coupling reagents, resins, amino acids, and solvents
become increasingly available. Costs are especially attractive when considering all factors
such as time for synthesis and simplicity of purification. In our laboratories, once the initial
start cost is assumed, reasonably pure batches of a few hundred milligrams of average-
length peptides can be produced in a few days with a cost of around two hundred US dollars.
On a research scale, we find this to be not especially onerous. Peptides are also available
through many companies specializing in custom synthesis, with reasonable pricing. For in
vivo or immunological work, the purification requirements of peptides are especially
attractive because they do not contain biological contaminants, especially troublesome ones
like lipopolysaccharide. In contrast, proteins require the continuous optimization of their
production for each recombinant protein, the purchase of large fermentors to be able to
produce enough material for biomaterials applications, and the cloning of each different
protein, which is not always straightforward.

4. Thoughts
In order to design biomaterials capable of driving specific cell phenotypes essential for
proper development, homeostasis, repair, and potential regeneration of tissues, it will be
necessary to design materials exhibiting complexity, coordinated molecular processes, and
dynamic interactions with cells and tissues. As we have outlined above, many of these goals
could be achieved with peptides and other chemically defined materials. A wealth of newly
developed strategies in peptide design, chemistry, assembly, and materials science have yet
to be exploited fully in biomaterials contexts, and more strategies are sure to be forthcoming
as peptide science continues to progress. However, the evolution of peptides in biomaterials
cannot simply be built on advancements in chemistry and peptide design, for they must also
take advantage of new findings and understanding in ECM biology. New chemistries will
only be effective if they engage relevant processes operating in tissues and native ECMs. In
this regard, better communication between chemists, materials scientists, and ECM
biologists would be a welcome development. Not only can chemically defined matrices be
directed towards improved biomaterials, but they could also be extremely helpful for
developing and testing specific hypotheses in ECM biology. Although peptides will surely
not always be the most appropriate choice for all biomaterials research and development,
many such efforts will benefit from peptide use.
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Box 1.
Peptides available for incorporation in biomaterials posess functions beyond cell binding
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Box 2.
Addressing shortcomings of peptides in biomaterials. Problems of poor affinity could be
addressed with covalent stabilization approaches such as “stapled” peptides (top). The short
nature of synthetic peptides could be improved with chemoselective conjugation strategies
such as native chemical ligation (middle top). Multiple functions can be combined, for
example using self-assembling strategies (middle bottom), and materials with extreme
multivalency can be produced, for example with dendrimers or self-assembly (bottom).
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