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ABSTRACT Identifying transcription factor (TF) binding sites is essential for understanding regulatory networks. The specificity of most
TFs is currently modeled using position weight matrices (PWMs) that assume the positions within a binding site contribute
independently to binding affinity for any site. Extensive, high-throughput quantitative binding assays let us examine, for the first time,
the independence assumption for many TFs. We find that the specificity of most TFs is well fit with the simple PWMmodel, but in some
cases more complex models are required. We introduce a binding energy model (BEM) that can include energy parameters for
nonindependent contributions to binding affinity. We show that in most cases where a PWM is not sufficient, a BEM that includes
energy parameters for adjacent dinucleotide contributions models the specificity very well. Having more accurate models of specificity
greatly improves the interpretation of in vivo TF localization data, such as from chromatin immunoprecipitation followed by sequencing
(ChIP-seq) experiments.

TRANSCRIPTION factor proteins (TFs) function by bind-
ing to specific sequences in the genome and activating or

repressing the expression of their target genes. Identifying
the sequences that each TF binds to can help map out tran-
scriptional regulatory networks as well as predict how genetic
variation may disrupt normal gene expression, which is often
associated with disease. In vivo TF binding locations can
be determined experimentally using techniques such as chro-
matin immunoprecipitation (ChIP) followed by microarray
hybridization (ChIP-chip) (Ren et al. 2000) or chromatin
immunoprecipitation followed by sequencing (ChIP-seq)
(Johnson et al. 2007). In addition to its intrinsic specificity
for DNA, in vivo TF binding preferences are influenced by
other cellular factors such as the presence of cooperating or
competing TFs as well as the local chromatin state. It is
possible to gain mechanistic insight by comparing the in-
trinsic TF specificity measured in vitro, which reflects only
the bimolecular interaction between the TF and DNA, with
in vivo binding locations, which are influenced by many

other cellular factors. For example, in vivo binding to a genomic
region without strong binding sites indicates that the TF is
either binding indirectly (the TF itself is not bound to DNA,
but is in complex with some other factor that is bound to DNA)
or bound to a weak site that is stabilized by a cooperative in-
teraction with another factor (Gordan et al. 2009).

Currently, the most widely used mathematical representa-
tion of TF specificity is the position weight matrix (PWM)
model (Stormo 2000). This model assumes the positions within
the binding site are independent, and the contribution at one
position of the binding site to the overall affinity does not de-
pend on the identity of nucleotides in other positions of the
site. Despite the restrictions imposed by this strong indepen-
dence assumption, the PWM model has been successfully used
to identify TF binding sites (TFBS) in sets of coexpressed genes
(Stormo and Hartzell 1989; Roth et al. 1998; Tavazoie et al.
1999; Bussemaker et al. 2001) as well as model TF binding site
evolution (Doniger and Fay 2007; Mustonen et al. 2008; Brad-
ley et al. 2010). Quantitative analysis of high-throughput bind-
ing data has also shown that PWMs are a good quantitative
model for most TFs (Zhao et al. 2009; Zhao and Stormo 2011).

Despite the success of PWM-based methods, it has long
been recognized that TF–DNA interaction is highly complex
structurally. Many cases of a single amino acid interacting
with multiple bases simultaneously have been observed in
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crystal structures of TF–DNA complexes (Luscombe et al.
2001), the overwhelming majority of which are neighbor-
ing bases. In addition to direct contact with bases, TFs can
recognize DNA sequence indirectly through sequence-
specific DNA conformations, distortions, or water-mediated
contacts (Sarai and Kono 2005; Rohs et al. 2009, 2010).
For example, drastic DNA deformations have been obser-
ved in some TF–DNA complexes, including catabolite
gene activator protein (CAP or CRP) and TATA binding
protein (TBP) (Schultz et al. 1991; Kim et al. 1993). The
identity of bases in neighboring positions is particularly
important for DNA deformation energy through their
stacking interactions.

In addition to structural analysis, detailed biochemical
studies of specific proteins have also shown dependencies
between adjacent positions (Man and Stormo 2001; Bulyk
et al. 2002; Berger et al. 2006). Interactions between non-
adjacent bases are possible (Jacobson et al. 1997), but they
appear to be much less common than interactions between
adjacent positions (Luscombe et al. 2001).

Statistical analyses of collections of known binding sites
have also offered evidence of interactions between positions
within binding sites for some TFs. Several groups (Barash
et al. 2003; Zhou and Liu 2004; Tomovic and Oakeley 2007)
have analyzed collections of TF binding sites in the TRANS-
FAC and JASPAR databases (Matys et al. 2006; Portales-
Casamar et al. 2010) and found statistically significant
correlated positions. Although these studies successfully
identified the existence of correlated positions within TFBS,
the type of binding data then available imposed severe
limits on their analyses. The most serious problem was
the small number of known binding sites available. For
example, on average, only 30 binding sites per TF were
used in the Tomovic and Oakeley (2007) study. Another
problem is that TFBS collected in databases such as
TRANSFAC (Matys et al. 2006) and JASPAR (Portales-
Casamar et al. 2010) generally do not include affinity
data; a sequence is simply labeled as a binding site. This
binarization results in a loss of information and is espe-
cially problematic in the setting of small sample sizes.
Finally, because of the nonlinearity between binding prob-
ability and binding affinity, the nonindependence in base
frequencies in different positions may be observed even
when the binding energy contributions are independent
(Djordjevic et al. 2003; Homsi et al. 2009; Zhao et al. 2009).
Therefore analyses that specifically model the binding en-
ergy contributions of each base at each position can better
address the issue of whether they act independently.

Recently, experimental techniques for high-throughput,
quantitative measurements of TF binding specificity have
been developed (Stormo and Zhao 2010). The wealth of
data generated by these high-throughput experiments pro-
vides us with an opportunity to answer questions left open
by previous analyses. One such unanswered question is the
average effect size of interactions between positions. Even
though statistically significant interactions may exist be-

tween positions within the binding site of a TF, if their effect
size is small, then the PWM model may still provide a good
approximation of the true TF specificity (Benos et al. 2002).
However, if the effect size is large, then more complex
statistical models, requiring additional parameters, must
be used to adequately model the specificity of the TF. This
has important practical implications as the vast majority
of existing bioinformatics software use the PWM model.
Models designed to accommodate complex interactions
within a binding site have been developed (Stormo et al.
1986; Zhang and Marr 1993; Barash et al. 2003; King and
Roth 2003; Zhou and Liu 2004; Sharon et al. 2008; Stormo
2011) but have not seen wide adoption.

In this article, we report the results of a quantitative
analysis of .400 TF specificity data obtained using the
universal protein-binding microarray (PBM) technology
(Berger et al. 2006; Berger and Bulyk 2009) and available
in the UniPROBE database (Robasky and Bulyk 2011). We
use the binding energy estimate by maximum likelihood for
PBM (BEEML-PBM) (Zhao and Stormo 2011) program to
parameterize specificity models of varying complexity and
find that improvements from incorporating interactions be-
tween positions are usually small, although there are some
significant exceptions. Moreover, we find that interactions
between neighboring bases are stronger than interactions
between nonneighboring bases.

Materials and Methods

Model of TF specificity

We use an equilibrium model of binding (Djordjevic et al.
2003; Zhao et al. 2009) where the probability that DNA
sequence Si is bound by the TF is given by

PðSi is boundÞ¼ 1
1þ eEðSiÞ2m

; (1)

where E(Si) is the free energy of the TF binding to Si and m

is the chemical potential that is related to the TF
concentration.

We introduce the binding energy model (BEM) as a vector
of energy contributions, E

!
. For any sequence, Si, the bind-

ing energy predicted by the model is EðSiÞ ¼ E
!� S!i, where

S
!

i is the vector encoding of the sequence Si that can include
whatever features of the sequence are relevant to its binding
energy (Schneider et al. 1984; Stormo et al. 1986; Sharon
et al. 2008; Stormo 2011). If the only relevant features
are which bases occur at each position within the binding
site, then E

!
will be a PWM with the characteristic that

each element is an energy contribution (Djordjevic et al.
2003; Zhao et al. 2009). PWMs have been developed using
a variety of techniques. The first use was as a discriminant
function learned to separate sequences into two classes
(Stormo et al. 1982). Staden introduced a probabilistic
version of the PWM (Staden 1984) and a variety of other,
mostly ad hoc, methods have also been used. Under certain
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conditions the probabilistic model is equivalent to an energy
model (Berg and von Hippel 1987; Heumann et al. 1994;
Stormo and Fields 1998; Lassig 2007), but those conditions
are violated at high concentrations of the TF (Djordjevic
et al. 2003; Zhao et al. 2009). By using an energy model
directly and including the TF concentration as a separate
parameter, m, one can model the nonlinear relationship be-
tween the logarithm of binding probability and the binding
free energy described in Equation 1.

When the energy contributions of each position are
independent, E

!� S!i is explicitly

EðSiÞ ¼
XT

b¼A

XL

m¼1

eðb;mÞSiðb;mÞ;

where L is the length of the binding site, e(b,m) are the
energy contributions of base b at position m, and Si(b, m)
is an indicator variable with Si(b, m) = 1 if base b occurs
at position m of sequence Si and Si(b, m) = 0 otherwise
(Stormo et al. 1982; Stormo 2000). If we find that the
positions are not independent, we can include pairwise
interactions between adjacent positions by adding interac-
tion terms to the energy function such that E

!� S!i is

EðSiÞ ¼
PT

b¼A

PL

m¼1
eðb;mÞSiðb;mÞ

þ PL21

m¼1

PL

n¼mþ1

PT

b¼A

PT

c¼A
eðb;m; c; nÞSiðb;m; c; nÞ;

where e(b, m, c, n) is the energy contribution of having base
b at position m and base c at position n. Since the single-base
contributions are included explicitly, in the first set of sums,
the dinucleotide contributions explicitly represent the devi-
ations from additivity of the individual bases, the energy
residuals not captured by the single-base contributions.
Higher-order models can be constructed similarly and in
each case can be represented as E

!� S!i, where both vectors
include the relevant elements that contribute to the binding
energy.

Encoding of DNA sequence

In learning the energy parameters we use the WYK encoding
scheme (Stormo 2011), which uses the minimum number of
parameters required of the model and enforces the clear
separation of the contributions of the individual bases from
the contributions of the interactions between the bases. This
encoding has the further advantage, especially for some ma-
chine-learning and optimization methods (Stormo 2011),
that all sequence vectors have the same Euclidian length
ðj S!ij ¼ ð S!l � S!lÞ1=2Þ so the energy of a sequence is propor-
tional to the cosine of the angle between it and the energy
vector Ei [EðSiÞ ¼ E

!� S!l ¼ j E!jj S!ljcosu; where u is the an-
gle between the vectors. For convenience of display and in-
terpretation the models are converted to standard ACGT
encoding as described above.

Scoring sequences with binding energy models

Given a binding energy model E
!
, the program BEMSER

scans a sequence and determines the predicted binding en-
ergy at every location within the sequence (including both
orientations if desired). If E

!
contains only independent base

contributions (it is a PWM), then BEMSER returns the same
scores as would be obtained using PatSer (Hertz and Stormo
1999), a commonly used program for scanning sequences
with a PWM. But if E

!
also contains energy contributions

from combinations of bases, BEMSER uses those contribu-
tions as well to score each potential site (subsequence) in
the sequence. BEMSER as well as all of the BEMs are avail-
able for download from http://stormo.wustl.edu/TF-BEMs.

Parameterization of TF specificity model

The models are all determined from PBM data available
from the UniPROBE database (Robasky and Bulyk 2011). All
models were parameterized using the BEEML-PBM algo-
rithm, which has been described in detail previously (Zhao
and Stormo 2011). Briefly, BEEML-PBM employs nonlinear
regression to obtain the parameters of the model, E

!
and m,

that maximize the fit to the data.

Evaluation of model performance on PBM data

Given a binding energy model the fluorescence of each
probe is predicted by summing the predicted binding
probabilities for each position in the probe sequence in both
orientations. Because the individual probe measurements
are somewhat noisy, we determine the median fluorescence
intensity for all 8mers, each of which occurs 32 times on the
array (counting both orientations). We assess the perfor-
mance of different models by determining the square of the
correlation coefficient (r2) between the predicted and mea-
sured 8mer intensities. When only one array exists for a spe-
cific TF, this is useful in determining how much better fit is
obtained (increase in r2) for models that include dinucleo-
tide contributions than for those that assume independent
base contributions. Because of the large number of 8mers,
even very small changes in r2 are statistically significant
(P, 0.05), but may make almost no difference in prediction
accuracy.

A subset of 147 TFs, from the complete set of 401
available in UniPROBE, was assayed on two independent
arrays with different probe sequences, but each containing
all possible 10mers (Berger and Bulyk 2009). In those cases
we can assess how well a model obtained from one array
predicts the 8mer intensities of the other array for the same
TF; we use the average of the two cross-predictions as the
performance of the model. The squared correlation coeffi-
cient between the observed 8mer intensities for the two
arrays is referred to as the replicate reproducibility. In pre-
vious work we considered models whose performance was
at least 90% of the replicate reproducibility to provide very
good fits to the data (Zhao and Stormo 2011). But it should
be noted that it is possible, in fact common, for the model
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performance to exceed the replicate reproducibility as we
showed in the supplemental materials of that article. This
can occur when one of the two datasets is considerably
noisier than the other. The replicate reproducibility can then
be fairly low and the predictions using the model from the
good array have low r2 on the noisier array. But we showed
that the noisy array is still capable of generating fairly good
models with much higher r2 on the good array. The average
of the two model r2 values can then exceed the replicate
reproducibility.

Analysis of ChIP-seq data

The DNA-binding domain of Hepatocyte nuclear factor 4,
alpha (Hnf4a) is completely conserved between human and
mouse. Since Badis et al. (2009) used only the DNA-binding
domain of mouse Hnf4a to determine its in vitro binding
specificity, we used this information to analyze Verzi
et al.’s (2010) ChIP-seq data even though it was carried
out in human cell lines. Hnf4a ChIP-seq data were down-
loaded from Gene Expression Omnibus (accession no.
GSM575227) from the study conducted by Verzi et al.
(2010) and we used the peak location and summit informa-
tion as provided. Binding site location analysis was con-
ducted by aligning all peaks by their annotated summit
and scoring genomic sequences within 200 bp on each side
of the summit, using each of the different models for pre-
dicting the binding sites. For each model, the predicted low-
est energy site within that window was considered the
binding site for that peak. In the vast majority of cases the
predicted best binding site was the same for all models
within that 400-bp window. We then determined the num-
ber of reads that overlap that predicted binding site after
extending each read by 100 bp on each side. While the
choices of 400- and 200-bp windows are somewhat arbi-
trary, they are consistent with typical fragmentation sizes
for ChIP-seq experiments. Most importantly, since most of
the predicted sites are the same for all of the models, we can
directly compare their predicted relative affinities for each
identified peak without the confounding effect of different
models predicting different binding sites. For each model
the predicted relative binding affinities for the predicted
binding site within each peak were calculated as eðEcon2EsiteÞ,
where Econ is the energy of the lowest possible energy site
(the consensus sequence for the model) and Esite is the en-
ergy of the site being considered.

Primary and secondary PWMs for Hnf4a obtained by the
seed-and-wobble method (Berger et al. 2006) were down-
loaded from the UniPROBE database (Robasky and Bulyk
2011) and converted to energy PWMs. Positions with low
information content were trimmed off so both PWMs were
8-long, the same size as the BEEML models. The energy of
an 8mer was calculated as the minimum of the energies
predicted by primary and secondary PWMs. If longer models
were used, the predicted relative affinities would either stay
the same (in cases where the predicted site had the consen-
sus base in the additional position) or decrease (if it had

a nonconsensus base). So by trimming the UniPROBE mod-
els to be 8-long, the differences in the predicted relative
affinities between different models are minimized.

Results

PBM technology uses double-stranded DNA microarrays to
measure the binding of TFs to many sequences in a highly
parallel fashion (Bulyk et al. 2001; Mukherjee et al. 2004;
Berger et al. 2006). In the current design (Berger et al. 2006;
Berger and Bulyk 2009) all possible 10-nucleotide-long
binding sites (10mers) are contained in the sequences of
microarray probes. In a recent PBM study, Badis et al.
(2009) measured the binding specificity of 104 mouse TFs
and found many cases where the best PWM model they
obtained seemed inadequate to represent TF specificity. In
fact, the authors invoked a model where TFs could use al-
ternative modes of binding, each represented by indepen-
dent PWMs, to explain the PBM data. We developed
a nonlinear regression method, BEEML-PBM, to estimate
PWM parameters from PBM data (Zhao and Stormo
2011). Using BEEML-PBM, we showed that, contrary to
the conclusions of Badis et al. (2009), the PWM model pro-
vides a good quantitative model of specificity for most of the
TFs in their study.

Despite the good performance of the PWM model in
general, there were cases where the simple PWM performed
poorly. For example, an 8-long BEEML-PBM PWM for Hnf4a
trained on the data from one array is able to predict the
median 8mer intensities of probes on the test array with
only an r2 = 0.55 (Figure 1, A and B), much less than the
experimental reproducibility between the training and test-
ing data (r2 = 0.82). A model that includes interactions
between all adjacent positions, which requires an additional
63 parameters over the PWM, results in significantly im-
proved performance (r2 = 0.81). We also tested the perfor-
mance of all 28 possible 8-long models that include a single
pairwise interaction between two positions and found that
a model with interaction terms only between positions 4 and
5 is able to achieve an r2 = 0.78 (Figure 1, C and D). This
model appears to capture most of the relevant features of
Hnf4a binding and includes only 9 more parameters than
the PWM.

To determine the biological significance of the position
dependence observed in vitro, we compared different spec-
ificity models of Hnf4a learned from PBM data with in vivo
binding data from the ChIP-seq experiment conducted by
Verzi et al. (2010). Figure 2A shows the primary and sec-
ondary PWMs obtained for Hnf4a from the UniProbe data-
base (Robasky and Bulyk 2011). Figure 2B shows that the
vast majority of best binding sites for the ChIP-seq peaks
have very low predicted relative affinity using the UniProbe
PWMs. Those PWMs are highly specific and the vast major-
ity of peaks do not contain consensus sites for either the
primary or the secondary motif or even for variations from
the consensus that are predicted to be of high relative
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affinity. Figure 2C shows that more of the peaks have higher
predicted relative affinity using the PWM obtained by
BEEML-PBM on the same training data (Figure 1A), consis-
tent with the previous results that those PWMs fit the
in vitro PBM binding data better than the PWMs obtained
using the seed-and-wobble algorithm (Zhao and Stormo

2011). Figure 2D shows that the energy model that includes
dinucleotide energy contributions between positions 4 and 5
(Figure 1C) has even more predicted high-affinity binding
sites. Figure 2E shows the cumulative frequency of the num-
ber of reads at increasing relative binding affinities for each
of the three models.

Figure 1 Binding energy model including interactions makes more accurate predictions of in vitro binding specificity than the PWM for Hnf4a. (A)
Graphical representation of Hnf4a binding energies estimated from PBM data under the PWM model (Supporting Information, Figure S1). Negatives of
binding energy (in units of RT) are plotted on the y-axis. Energies are normalized such that the average energy at each position is 0. This energy logo is
equivalent to the “affinity logo” from Foat et al. (2006). (B) Performance of model shown in A on test PBM data. (C) Binding energy model estimated
from the same training data but including interaction energies between positions 4 and 5 (Figure S2). (D) Performance of the energy model including
interactions on test PBM data.
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We next examined the 147 TFs in the UniPROBE
database (Robasky and Bulyk 2011) for which replicate
data are available. Figure 3A shows that the PWM model
is unable to explain .90% of the reproducibility for 25
of these 147 TFs (17%). Note that the models obtained
using BEEML-PBM are often better at predicting probe
intensities than the reproducibility between arrays. This
is because good models can be obtained even from noisy

experimental data, as demonstrated in the Foxa2 example
of Figure S4 of Zhao and Stormo (2011). For most of
the TFs that are not well modeled by simple PWMs, pre-
dictive performance was substantially improved with
the addition of interaction terms between adjacent posi-
tions (Figure 3B), indicating that the majority of interac-
tions not captured by the PWM are between adjacent
positions.

Figure 2 Hnf4a energy model including interactions makes more accurate predictions of in vivo ChIP-seq binding data. (A) Primary and secondary
binding energy models for Hnf4a obtained by UniPROBE (Robasky and Bulyk 2011) (Figure S3). (B) Primary and secondary models predicted affinity of
the best site under each peak vs. number of reads overlapping the best predicted sites. (C) BEEML-PBM PWM predicted affinities of best sites vs. number
of reads. (D) Energy model including interaction between positions 4 and 5 predicted affinities of best sites vs. number of reads. (E) Cumulative
frequency (fraction of total reads) for each model at increasing predicted relative affinities.
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For a more global perspective, we compared the fit of
PWMs with those of nearest-neighbor and random interac-
tion models for all 401 TFs in the UniPROBE database
(Robasky and Bulyk 2011). Nearest-neighbor BEMs include
the independent base contributions to binding (as in
a PWM) as well as interaction energies between all adjacent
positions. In this model, an L-long binding site requires 3L +
9(L 2 1) independent parameters, approximately four times
as many as a simple PWM model that requires 3L parame-
ters. The random interaction model is defined as a PWM as
well as interaction energies for the same number, L 2 1, of
randomly chosen nonadjacent position pairs in the binding
site and its performance is calculated as the average of 10
random interaction assignments. The reason for comparing
the nearest-neighbor to the random interaction model is
twofold: first, it allows us to assess the importance of near-
est-neighbor interactions; and second, since replicate data
are not available for many of the TFs, the performance of the
random interaction model, which has the same number of
parameters as the nearest-neighbor model, gives an indica-
tion of the extent to which performance gain is simply due to
these models having more parameters than the PWM.

Figure 4A shows the distribution of increases in r2 for all
of the nearest-neighbor BEMs compared to the PWMs. Fig-
ure 4B plots the PWM performance vs. the nearest-neighbor
dinucleotide models for all 401 TFs. For most TFs, addition
of interaction parameters did not substantially improve the
fit; for ,15% of TFs is the increase in r2 . 0.06. Further-
more, the nearest-neighbor model always outperformed the
random interaction model, demonstrating the importance of
nearest-neighbor interactions. Although nearest-neighbor
and random interaction models have more parameters and
therefore should always outperform the PWM model, the
local optimization procedure used by BEEML sometimes
fails to find optimal parameter values, resulting in few
points falling below the main diagonal of Figure 4B.

We examined the nearest-neighbor model performances
for different TF structural classes (Figure 4, C–F). There are
209 helix-turn-helix TFs in the data set, including homeo-

domain and winged helix-turn-helix, such as ETS domain,
TFs. Addition of interaction parameters typically resulted in
relatively small gains in performance, but there are several
cases where nearest-neighbor interactions are important
(Figure 4C). This pattern holds true for the zinc finger class,
which has 89 members including C2H2, C4, C6, and GATA
zinc finger domains (Figure 4D). This includes the Hnf4a
example analyzed in detail above. The 25 TFs of the zipper
class, including the basic leucine zipper (bZIP) and the basic
helix-loop-helix (bHLH) domains, appear to have benefited
the most from the inclusion of nearest-neighbor interactions
(Figure 4E). By contrast, none of the 24 high-mobility group
(HMG) TFs benefitted substantially from the additional
parameters (Figure 4F). While there are data showing non-
independence between positions for at least some HMG pro-
teins (Jauch et al. 2011), those appear to be relatively minor
contributions overall, as found previously for several zinc
finger proteins (Benos et al. 2002; Bulyk et al. 2002).

Discussion

Our quantitative analysis of .400 in vitro quantitative TF spe-
cificities generated by PBM technology demonstrates that ex-
plicitly including interactions within the binding site generally
results in relatively small improvements in performance. With
a few exceptions, the PWM model provides a good approxima-
tion for TF specificity. Consistent with available structural in-
formation, when interactions between positions are important,
most of them are found to occur between adjacent positions in
the binding site. Some TF families are more likely to require
interaction models than others. In particular the bZIP and
bHLH families are commonly fitted much better by including
adjacent dinucleotide energy contributions, consistent with pre-
vious information (Berger et al. 2006; Maerkl and Quake 2007;
Stormo and Zhao 2007; Zhao et al. 2009; Nutiu et al. 2011).

Improved specificity models that are based on in vitro
binding data can be very useful for assessing how consistent
in vivo location data are with the expected binding sites.
When predicted genomic binding sites are not observed in

Figure 3 Comparisons of energy
model predictions and experi-
mental reproducibility. (A) The
PWM energy model is unable
to explain .90% of the repro-
ducibility for 25 of these 147
TFs. (B) Predictive performance
was substantially improved with
the addition of interaction terms
between adjacent positions, indi-
cating that the majority of inter-
actions not captured by the PWM
are between adjacent positions.
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ChIP-seq data, one can usually assume that those locations
are not accessible. But when binding is observed in locations
without predicted binding sites, or with only very low pre-
dicted affinity sites, that implies either indirect or cooperative
binding mediated through some other factor(s) that binds
directly to the DNA (Gordan et al. 2009). Such indirect and
cooperative binding events can lead to the discovery of inter-

acting TFs that coordinately control gene expression. But to
be confident about which ChIP-seq peaks are not due to direct
binding one needs an accurate model for the specificity of the
TF. As we show for Hnf4a, different models can lead to quite
different conclusions about which peaks contain predicted
high-affinity sites. For both the BEEML-PBM models, with
and without dinucleotide contributions, a much greater

Figure 4 Comparison of the fit
of PWM, nearest-neighbor, and
random interaction energy mod-
els. (A) Histogram of the im-
provement in r2 for the nearest-
neighbor interaction models
compared to the PWMs. (B–F)
The performance of the PWM
model is plotted on the x-axis,
and performances of nearest-
neighbor (circles) and random in-
teraction (triangles) models are
plotted on the y-axis. (B) Com-
parisons for all 401 TFs in the
UniPROBE database. (C) Compar-
isons for the 209 helix-turn-helix
TFs in the database. (D) Compar-
isons for the 89 zinc finger TFs,
including C2H2, C4, C6, and
GATA zinc finger domains. (E)
Comparisons of 25 zipper class
TFs, including the basic leucine
zipper (bZIP) domain and the he-
lix-loop-helix (bHLH) domain. (F)
Comparisons of the 24 high-mo-
bility group (HMG) TFs.
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fraction of the ChIP-seq reads can be explained by direct
binding, with the dinucleotide model explaining the most.

In these analyses we have considered a model to be a good
fit to the PBM data if it can capture .90% of the reproducible
variance of the experiment. However, some of the data sets are
fairly noisy and it is possible that cleaner data would show that
even the interaction models do not capture the specificity well.
For example, the Hnf4a PBM data have reproducibility be-
tween the two arrays of only r2 = 0.82. The BEM with inter-
action terms between only positions 4 and 5 predicts the test
array data with r2 = 0.78, which is nearly all of the reproduc-
ible variance. But if additional data had higher consistency
between experiments, it is possible that additional terms would
be required to obtain an adequate model. We can only claim
that, given the current experimental data sets, in most cases
simple PWMs fit the data quite well and in most of the remain-
ing cases an extended BEM, with energy terms for adjacent
dinucleotides, captures most of the remaining variance.
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Y.	  Zhao	  et	  al.	  2	  SI	  

>Hnf4a	  
	  	  	  	  	  	  	  	  A	  	  	  	  	  	  	  C	  	  	  	  	  	  	  G	  	  	  	  	  	  	  T	  
1:	  	  -‐0.46	  	  0.59	  -‐0.78	  	  0.66	  	  
2:	  	  -‐0.88	  	  1.62	  -‐1.57	  	  0.82	  
3:	  	  -‐0.32	  	  4.21	  -‐3.19	  -‐0.71	  
4:	  	  	  0.42	  	  4.90	  -‐2.01	  -‐3.31	  
5:	  	  	  0.43	  -‐1.17	  	  0.89	  -‐0.15	  	  
6:	  	  -‐0.56	  -‐0.85	  	  0.23	  	  1.19	  	  
7:	  	  -‐0.84	  	  0.51	  -‐0.04	  	  0.36	  	  
8:	  	  -‐0.21	  -‐0.02	  	  0.23	  -‐0.01	  
	  

Figure	  S1	  Energy	  PWM	  for	  Hnf4a	  from	  BEEML-‐PBM	  analysis	  
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>Hnf4a-di4.5 
1: -0.30  0.37 -0.55  0.48 
2: -0.94  1.19 -1.23  0.98 
3:  0.73  2.37 -2.72 -0.39 
4:  0.59  2.08 -1.15 -1.53 
5: -0.03  0.27  0.33 -0.58 
6:  0.47 -1.64  0.84  0.33 
7: -1.57  1.33 -0.64  0.87 
8: -0.29 -0.02  0.25  0.06 
4,5: -0.14 0.30 0.35 -0.51 -0.91 0.34 -0.40 0.97 0.84 0.66 -0.68 -0.81 
0.21 -1.29 0.72 0.36 
	  
	  
Figure	  S2	  	  	  Energy	  model	  for	  Hnf4a	  including	  di-‐nucleotide	  interactions	  between	  positions	  4	  and	  5.	  
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>Hnf4a-primary Seed k-mer: GGGGTCAA Enrichment Score: 0.494711 
1:   -0.71    0.88   -2.53    2.36 
2:   -1.66    2.44   -3.46    2.68 
3:    1.25    2.78   -4.40    0.37 
4:    1.67    3.52   -3.64   -1.55 
5:    1.54    2.41    0.06   -4.01 
6:    2.25   -3.94    1.62    0.07 
7:   -2.89   -0.61    0.63    2.87 
8:   -1.60    0.33    0.58    0.68 
 
>Hnf4a-secondary Seed k-mer: AAAGTCCA Enrichment Score: 0.496885 
1:   -2.55    1.67    0.59    0.29 
2:   -2.12    1.62   -0.61    1.11 
3:   -3.57    2.32   -0.44    1.69 
4:    1.27    1.86   -4.60    0.93 
5:    1.41    2.16    0.42   -3.98 
6:    0.51   -3.55    1.97    1.06 
7:    2.01   -3.98    1.35    0.62 
8:   -3.15    2.49   -0.93    1.59 
 
 
	  
Figure	  S3	  	  	  Primary	  and	  secondary	  PWMs	  from	  UniProbe	  database.	  
	  


