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ABSTRACT How much gene flow is needed to inhibit speciation by the accumulation of Dobzhansky–Muller incompatibilities (DMIs) in
a structured population? Here, we derive these limits in a classical migration–selection model with two haploid or diploid loci and
unidirectional gene flow from a continent to an island. We discuss the dependence of the maximum gene-flow rate on ecological
factors (exogeneous selection), genetic factors (epistasis, recombination), and the evolutionary history. Extensive analytical and nu-
merical results show the following: (1) The maximum rate of gene flow is limited by exogeneous selection. In particular, maintenance of
neutral DMIs is impossible with gene flow. (2) There are two distinct mechanisms that drive DMI evolution in parapatry, selection
against immigrants in a heterogeneous environment and selection against hybrids due to the incompatibility. (3) Depending on the
mechanism, opposite predictions result concerning the genetic architecture that maximizes the rate of gene flow a DMI can sustain.
Selection against immigrants favors evolution of tightly linked DMIs of arbitrary strength, whereas selection against hybrids promotes
the evolution of strong unlinked DMIs. In diploids, the fitness of the double heterozygotes is the decisive factor to predict the pattern of
DMI stability.

THE (Bateson–) Dobzhansky–Muller model (DMM) (Bateson
1909; Dobzhansky 1936; Muller 1942) is the standard

model to explain the evolution of intrinsic postzygotic iso-
lation. A variety of theoretical studies show the plausibility
of this model (reviewed in Coyne and Orr 2004; Gavrilets
2004), and numerous empirical studies report Dobzhansky–
Muller incompatibilities (DMIs) across several species of an-
imals and plants (see reviews by Lowry et al. 2008 and
Presgraves 2010).

The appeal of the DMM is its generality: Speciation
happens as a by-product of divergence without the need of
special selection scenarios or complex adaptations to cross
fitness valleys (cf. Orr 1995). The sole, but crucial, assump-
tion is sufficient evolutionary time to let the process unfold
and the spatial separation of the incipient species during this
phase. The plausibility of the DMM as a mechanism for spe-

ciation and the widespread belief in the prevalence of allopat-
ric speciation (Mayr 1942; Coyne and Orr 2004) go hand in
hand. However, given that even tiny amounts of gene flow (of
the order of a single migrant per generation) can have sub-
stantial effects on divergence (Slatkin 1987), it is clear that
the assumption of strict allopatry is an idealization. This poses
the question of the relevance of the DMM in parapatry and
thus whether DMIs can originate or be maintained in the
presence of gene flow. It has been suggested that the accumu-
lation of DMIs in parapatry is possible (e.g., Gavrilets 1997,
2004; Porter and Johnson 2002; Kondrashov 2003; Agrawal
et al. 2011; Nosil and Flaxman 2011). However, usually only
the limit of weak migration has been studied. In contrast, we
focus on the maximum rates of gene flow that admit the
maintenance of a DMI.

A key factor in speciation via the DMM is the mechanism
that drives divergence. Although the original DMM is
consistent with neutral substitutions that spread solely by
genetic drift, all previous results indicate that selection as
a driving force is needed in the presence of gene flow (e.g.,
Gavrilets 1997). Recently, a distinction of two categories was
brought forward to describe the selection scenarios that can
promote speciation through DMIs in a structured population
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(Schluter 2009; but see also Turelli et al. 2001; Rundell and
Price 2009): Whereas “ecological speciation” refers to the case
where divergent selection results in the spread of (potentially
incompatible) locally adapted substitutions, “mutation-order
speciation” is characterized by fixation of different globally
advantageous alleles in populations adapting to similar selec-
tion pressures. The latter mechanism is termed “mutation or-
der” because it is assumed to be critically dependent on the
order in which substitutions arise (Mani and Clarke 1990).

Whereas speciation due to ecological divergence is sup-
ported by considerable empirical evidence, only a few cases of
mutation-order speciation have been identified (reviewed in
Schluter 2009). Furthermore, simulation studies have
strengthened verbal arguments claiming that mutation-order
speciation is expected to be less likely than ecological specia-
tion (Unckless and Orr 2009; Nosil and Flaxman 2011).
However, there is a lack of analytical work to justify this no-
menclature and to quantify the conditions for the evolution of
DMIs according to these mechanisms.

In this study, we address these issues in two minimal
models for the evolution of a DMI on an island that receives
migrants from a continent. We are able to provide an almost
complete characterization of the conditions and limits for
the origination and maintenance of DMIs in the presence of
gene flow. Models, results, and biological interpretations are
presented in the main body of the article. Our methods
combine classical approaches (Karlin and McGregor 1972a;
Lande 1979; Rutschman 1994) with more advanced tools
from dynamical systems theory (Hofbauer 1990; Nagylaki
et al. 1999). Since our analytical results require elaborate
derivations, all details about methods and proofs are col-
lected in the Supporting Information.

Models

To determine the conditions for the origin and maintenance
of a DMI, we use classical migration–selection models in
continuous time. We assume that a population is divided
into two panmictic subpopulations, continent and island,
each of infinite size. There is unidirectional gene flow from
the continent to the island at rate m. Individuals may be
haploid or diploid; both cases are considered in separate
sections. Selection acts on two diallelic loci, A and B, with
alleles a, A and b, B, respectively. Lowercase letters denote
the compatible alleles and uppercase letters the incompati-
ble alleles. The fitness schemes are given below. The loci
may be linked and recombine at rate r.

We consider the fate of individual substitutions at both
loci, but ignore recurrent mutation. A DMI corresponds to
a (stable) two-locus polymorphism. It can evolve from a
homogeneous ancestral state either by one single-locus
substitution in each of the two subpopulations (a so-called
derived-derived DMI) or by two subsequent substitutions in
the same subpopulation (a derived-ancestral DMI).

For a derived-derived DMI, we assume that the entire
population is initially fixed for the “wild-type haplotype” ab.

Subsequently, the mutant alleles A and B may invade on the
island and the continent, respectively. We assume that on
the continent the “continental haplotype” aB is superior to
the wild type, whereas on the island the fitness of the “island
haplotype” Ab is at least as high as that of the wild type.

We distinguish the following evolutionary scenarios:

1. Continent–island. Allele B invades first, goes to fixation
on the continent, and reaches migration–selection equi-
librium on the island. Subsequently, allele A appears on
the island.

2. Island–continent. Allele A invades first on the island. Sub-
sequently, allele B invades and becomes fixed on the
continent.

3. Secondary contact. Both populations are in secondary
contact after an allopatric phase. During allopatry, the
continent has become fixed for allele B and the island
for allele A.

4. Island–island. Here, aB is the ancestral state. Subse-
quently, first allele b and then allele A invade on the
island.

5. Continent–continent. Here, Ab is the ancestral state. Allele
a and then allele B invade on the continent.

Evolution on the continent is independent of the pop-
ulation composition on the island. We assume that every
equilibrium on the continent is monomorphic and any sub-
stitution occurs quickly. In all scenarios, the continent is
eventually fixed for the continental haplotype aB. We can
then treat the continent simply as a source of aB migrants
and need only to keep track of the allele frequencies on the
island. The different evolutionary scenarios introduced above
correspond to different initial conditions for the haplotype
frequencies on the island (see Appendix, Initial conditions).

Below, we analyze how the equilibrium structure on the
island depends on the model parameters for selection,
recombination, and migration. In particular, we are inter-
ested in the parameter ranges where the island haplotype Ab
can be maintained. Since the alleles a and b will always be
present due to immigration, a stable DMI corresponds to an
asymptotically stable, fully polymorphic equilibrium on the
island. For sufficiently strong migration, the island will al-
ways be swamped by the continental haplotype aB (implying
loss of A). Therefore, our focus is on the determination of the
maximum migration rate mmax that allows for a fully poly-
morphic equilibrium. If this equilibrium is not globally stable,
i.e., if convergence depends on the initial condition, we will
investigate under which of the scenarios it can be reached.

The haploid model

Let x1, x2, x3, and x4 denote the frequencies of the four
haplotypes ab, aB, Ab, and AB on the island. They satisfy
xi $ 0 for every i and

P4
i¼1   xi ¼ 1. We assume that selection

acts on individuals during the haploid phase of their life
cycle according to the scheme for Malthusian fitness values
given in Table 1.
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This scheme is entirely general. The fitness of the wild-
type haplotype is arbitrarily normalized to 0. The parame-
ters a and b measure a potential selective advantage of the
island and continental haplotypes, respectively, on the island
(exogeneous selection). They can be positive or negative.
However, below we assume that a . 0 because, as will be
shown, otherwise a DMI cannot exist. Finally, the epistasis
paramter g measures the strength of the incompatibility
among the A and B alleles (endogeneous selection). We
assume g $ 0, such that epistasis is negative or absent
(g = 0).

Assuming weak evolutionary forces in continuous time,
the haplotype dynamics read

_x1 ¼ x1  ðw1 2 �w2mÞ2 rD; _x2 ¼ x2  ðw2 2 �w2mÞ þ rDþm;
_x3 ¼ x3  ðw3 2 �w2mÞ þ rD; _x4 ¼ x4  ðw42 �w2mÞ2 rD:

(1)

Here, the “dot” denotes the derivative with respect to time,
D ¼ x1x4 2 x2x3 is the measure of linkage disequilibrium,
and

�w ¼ bx2 þ ax3 þ ðaþ b2 gÞx4
is the mean Malthusian fitness. Alternatively, the dynamics
can be written in terms of the allele frequencies and the
linkage-disequilibrium coefficient D (see Appendix, Haploid
Model).

The diploid model

In the diploid case, selection acts on the 16 different
combinations of two-locus haplotypes. Neglecting position
effects and assuming no dominance for the A and B alleles in
the wild-type (ab) background, we arrive at the fitness
scheme with six parameters given in Table 2.

We thus allow for a quadruple of four independent
epistasis parameters, G ¼ (g1, g2, g3, g4), for the four dif-
ferent incompatibility genotypes. These genotypes differ in
the number of A/B conflicts, one (aAbB), two (AAbB, aABB),
or four (AABB), and correspond to the H0, H1, or H2 incom-
patibilities in Turelli and Orr (2000). As in the haploid case,
we assume a, gi $ 0. In the most plausible case, epistasis
is nondecreasing with the number of conflicts, i.e., g1 # min
[g2, g3], max[g2, g3]# g4. Assuming Hardy–Weinberg equi-
librium throughout, we can write the dynamics entirely in
terms of the haplotype frequencies. These dynamics take the
same functional form as in the haploid case (Equation 1),
but with the fitness values replaced by the corresponding
marginal fitnesses and the diploid mean fitness (File S2,
Equations S.101 and S.102).

Results: Haploid Model

We first treat the haploid model for which the exact conditions
for the existence of a stable (parapatric) DMI can be derived.
These results are based on the analysis of the equilibrium
structure of the model, which is described in the Appendix. All
proofs and derivations, which require advanced mathematical
methods, are given in the supporting information. File S1
contains a complete analysis of the haploid model, which, as
a by-product, extends and complements previous studies of
haploid two-locus selection (and migration) models. File S2
contains the derivations of the results for the diploid model
and File S4 contains a Mathematica notebook with additional
supporting material.

We are interested in the maximum rate of gene flow that
allows for the evolutionary origin and the maintenance of
a DMI in parapatry. In general, this rate depends on the
initial conditions that correspond to the different evolutionary
scenarios. As it turns out, however, we need to distinguish
only two maximum rates, which we denote asm2

max andmþ
max.

A globally asymptotically stable internal equilibrium exists if
and only if m,m2

max. As a consequence, a stable DMI will
evolve from every initial condition (hence, under all evolu-
tionary scenarios). A locally stable internal equilibrium exists
if and only if m,mþ

max. Local stability is a necessary and
sufficient condition for the long-term maintenance of a DMI.
If mþ

max ¼ 0, no DMI can exist under any level of gene flow. In
addition to m6

max, we consider the equilibrium frequency x̂3 of
the island haplotype at a DMI as a measure of two-locus
population differentiation that is achieved for a given set of
parameters. With this definition, differentiation is positive if
and only if a DMI can be maintained.

Both maximum rates,mþ
max andm2

max, are functions of the
selection coefficients a, b, and g and the recombination rate
r. At most one stable internal equilibrium can exist, and
extensive numerical calculations did not produce complex
attractors such as limit cycles. If a DMI exists for a given set
of parameters, the allele frequencies at this equilibrium are
thus unique. A (globally) stable DMI for some migration rate
~m. 0 implies the existence of a (globally) stable DMI for
every positive m, ~m. Hence, the rates m6

max are the unique
boundaries of well-defined parameter regimes. Obviously,
m2

max #mþ
max. If m

2
max ,m,mþ

max, the evolutionary dynam-
ics are bistable and the DMI will not be reached from every
initial condition. Extensive numerical simulations (and
a proof for the special case of independent loci) show that
a DMI will evolve for such a bistable case if and only if the
second substitution enters the population in a deme where
the incompatible allele is absent. Clearly, this is the case for

Table 1 Haplotype fitnesses and frequencies in the haploid model

ab: aB: Ab: AB:
Haplotype wild type continental island recombinant

Fitness w1 = 0 w2 = b w3 = a w4 = a + b 2 g

Frequency x1 x2 x3 x4

Table 2 Genotype fitnesses in the diploid model

aa aA AA

bb 0 a 2a
bB b a + b 2 g1 2a + b 2 g3
BB 2b a + 2b 2 g2 2a + 2b 2 g4.
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secondary contact, but also if the first substitution occurs on
the island and the second substitution on the continent or if
both substitutions occur on the continent. In contrast, a sta-
ble DMI will never be reached for m2

max ,m,mþ
max if the

first substitution is on the continent and the second on the
island or if both substitutions occur on the island. In both
these latter scenarios, migrants from the continent carrying
the incompatible allele hamper the establishment of the sec-
ond substitution on the island.

Necessary conditions for stable DMIs

Fully polymorphic equilibria (or complex attractors) cannot
exist if all evolutionary trajectories approach the boundary
of the allele-frequency space. In File S1, section S.2, we estab-
lish necessary conditions for the existence of a DMI by means
of Lyapunov functions. In particular, a DMI can exist only if

a. 0 and g.b; (2)

i.e., the island haplotype Ab must be on a local peak of the
fitness landscape, relative to both its single-step mutational
neighbors, ab and AB. Most significantly, the condition
excludes the evolution of a DMI by a neutral process even in
the secondary contact scenario: The substitution of the island
allele Amust be adaptive, a . 0. We henceforth assume (2) in
addition to g $ 0 for all our derivations and results.

This condition does not require that the island haplotype
occupies an absolute fitness maximum. The fitness of the
continental type aB can be larger; i.e., b . a. If this is the
case, however, we can show that a DMI can exist only if

r.b2a; (3)

i.e., if continental immigrants are broken up by sufficiently
strong recombination. Conditions (2) and (3) constrain the
parameter space for a parapatric DMI under any level of
gene flow, i.e., even under arbitrarily weak migration. For
higher gene-flow rates we find additional conditions, which
can be expressed as upper bounds for the maximum gene-
flow rate mþ

max,

mþ
max#a2bþ r; (4a)

mþ
max#max

�
a2b;  

a

4

�
; (4b)

mþ
max#max

�
a2b;  

ðg2bÞ
4

�
: (4c)

Condition (4a) implies and extends (3). For gene-flow
rates above any of these bounds, we obtain global conver-
gence to one of the boundary equilibria. As detailed in the
Appendix, Boundary equilibria and global stability, at most
three boundary equilibria can exist if m . 0. In addition to
the monomorphic equilibrium corresponding to fixation of the
continental haplotype (denoted by M2), there are two equi-
libria with a single-locus polymorphism: An equilibrium SB

with locus B polymorphic and locus A fixed for allele a exists
if the continental haplotype aB is maladaptive on the island
and the ancestral type ab resists the immigration pressure (i.e.,
if m , 2b). Similarly, an equilibrium SA exists (with locus A
polymorphic and locus B fixed for allele B) whenever the
recombinant haplotype AB can resist the immigration pressure
(i.e., if m , a 2 g).

Limiting cases

Our results for the haploid model are based on a complete
analytical characterization of the maximum rates of gene flow
admitting a DMI. However, since the analytical expressions for
m2

max and mþ
max require multiple case distinctions, the state-

ment of the complete, explicit results is deferred to the Ap-
pendix, Boundary equilibria and global stability and Internal
equilibria and local stability. Below, we focus on several limit-
ing cases for which the results take a simple form. In partic-
ular, we treat the cases of weak migration (smallm), complete
linkage (r ¼ 0), and independent loci (D ¼ 0). Discussion of
these limits already allows us to draw the most important
conclusions about DMI stability.

Weak migration: For m ¼ 0 the haploid two-locus model
was already studied by Rutschman (1994); see also Feldman
(1971). In this case, the only boundary equilibria are the
monomorphic equilibria Mi (where xi ¼ 1), and at least one
of them is stable. Rutschman’s results together with those in
File S1, section S.5 imply that if an internal equilibrium exists,
it is unstable. As a consequence, if m . 0, any stable internal
equilibrium must be a perturbation of the monomorphic equi-
librium M3 (fixation of the island haplotype) that is pushed
into the interior of the state space due to immigration of aB
haplotypes. The stability properties of the perturbed equilib-
rium are the same as for the unperturbed equilibrium (Karlin
and McGregor 1972a; Bürger 2009).

We therefore obtain the necessary and sufficient con-
ditions for a stable DMI under weak migration from the
stability analysis of M3 if m ¼ 0. Expressed in terms of m6

max,

mþ
max .0 if and only if

a.0 and g.b and r.b2a; (5a)

and, if mþ
max . 0,

m2
max. 0 if and only if

b, 0  or g,a or r,a2b: (5b)

From (5a) we conclude that (2) and (3) are not only nec-
essary, but also sufficient conditions for an asymptotically
stable internal equilibrium if migration is sufficiently weak.

A perturbation analysis yields the approximate coordinates
of the perturbed internal equilibrium near M3. In particular,
the equilibrium frequency of the island haplotype Ab, which
we use as our measure of population differentiation, is

x̂3 ¼ 12
a2b

a2bþ r
� m
a2b

2
r

a2bþ r

�
m
a
þ m
g2b

�
: (6)
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The second term describes the loss of Ab due to direct com-
petition with the immigrating continental haplotype aB,
whereas the third term results from competition of Ab with
the recombination products ab and AB. Equation 6 shows
that, for small m, population differentiation increases with
the recombination rate r if and only if breaking up the im-
migrating continental type reduces the competition experi-
enced by the island type. This is the case if either b . a or
a21 + (g 2 b)21 , (a 2 b)21. These conditions can be
summarized as

@x̂3
@r

  ≷  0  ⇔  bðg2aÞ  ≷  ða2bÞ2: (7)

Tight linkage: If the two incompatibility loci are completely
linked (r ¼ 0), at most two haplotypes can coexist at an
equilibrium (i.e., one of ab, Ab, or AB, in addition to the
continental haplotype aB); see File S1, section S.8.1. A fully
polymorphic DMI, with haplotypes Ab and aB present, exists
and is globally asymptotically stable if

m,m6
max ¼ a2b: (8)

Thus, a bistable regime does not exist for r ¼ 0. The DMI
simply leaves the state space through the monomorphic
equilibrium M2 as m increases beyond a 2 b. As a conse-
quence, the population differentiation decreases to zero as
m approaches m6

max: Indeed, we find

x̂3 ¼ 12
m

a2b
: (9)

Perturbation results guarantee that the same qualitative
behavior [i.e., global stability of a DMI ðmþ

max ¼ m2
maxÞ and

continuous decrease of x̂3 to zero] holds for recombination
rates below a threshold r* . 0.

Independent loci: If recombination is sufficiently strong
relative to selection and migration, we can assume that the
loci are in linkage equilibrium. In this case, the evolutionary
dynamics reduce from three to two dimensions, and we can
determine the exact position and the stability of all internal
equilibria (see File S1, section S.8.2). We can exclude cy-
cling behavior and show that at most two internal equilibria
can exist, one of which is asymptotically stable whenever it
exists. The maximum rate of gene flow admitting a globally
stable DMI can be obtained from the formulas for general r
in the Appendix, Internal equilibria and local stability, or from
Equations S.93 and S.94 in File S1. It simplifies to

m,m2
max ¼

8><
>:

ða2 gÞðg2bÞ
a

if b# g#aþ b;

2ab

g2b
       if g.aþ b;

(10)

where negative values imply that no DMI can exist. For local
stability, we find the following condition:

m,mþ
max

¼

8>>>>><
>>>>>:

ða2 gÞðg2bÞ
a

 
�¼ m2

max
�
  if b# g#min

�
1
2
a;aþ b

�
;

2ab

g2b
 
�¼ m2

max
�
  if aþ b, g#2b;

aðg2bÞ
4g

�
.m2

max
�

if g.max
�
1
2
a;  jbj

�
:

(11)

Thus, for sufficiently large g, i.e., if g . max[|b|, a/2], we
obtain a bistable regime in which evolution of a DMI
depends on initial conditions.

An explicit (but lengthy) expression for the level of
population differentiation x̂3 is given in File S1, Equation
S.97. An illuminating result is obtained if we study x̂3 in
the limit of strong epistasis, g / N. Here, we find

x̂3ðg ¼ NÞ ¼ 1
2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

4m
a

r !
: (12)

From (11), we note that mþ
max ¼ a=4 in this case. Thus, the

amount of population differentiation at the DMI is indepen-
dent of b for strong epistasis and never falls below 1/2.
Compared to tight linkage (Equation 9), this different be-
havior of x̂3 results from the fact that, here, the stable in-
ternal equilibrium does not leave the state space through
one of the boundary equilibria at m ¼ mþ

max, but disappears
upon merging with an unstable internal equilibrium.

Stability of parapatric DMIs in the haploid model

We can draw several conclusions concerning the conditions
and mechanisms for the evolution of parapatric DMIs that
summarize our main findings for the haploid model.

First, condition (4b) defines a sharp upper bound on the
rate of gene flow that admits a (two-locus) DMI. Because this
bound depends only on the exogenous selection coefficients a
and b, a DMI is impossible for higher migration rates, irrespec-
tive of the choice of g or r. It is sharp, in the sense that DMIs
with an appropriate genetic architecture (in terms of g and r)
can evolve for every rate of gene flow below it. Second, depend-
ing on which of the terms on the right-hand side of (4a) is
relevant for the bound, the DMIs that remain stable under
the highest gene-flow rates may have widely diverging archi-
tectures: On the one hand, ifmþ

max ¼ a2b.a=4, then a tightly
linked DMI of arbitrary strength (provided g . b) will sustain
the maximum level of gene flow. On the other hand, if a/4 $

a 2 b, Equation 11 shows that a strong DMI among unlinked
loci (r, g / N) can sustain the maximum level of gene flow.

We can understand this result in terms of two different
mechanisms that enable the evolution and the maintenance of
a parapatric DMI: Whereas the first, the “direct”mechanism is
based on selection against maladapted immigrants in a spa-
tially heterogeneous environment, the second, the “indirect”
mechanism acts through selection against hybrids and requires
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epistasis and recombination. The two mechanisms act in dif-
ferent regions of the parameter space, corresponding to differ-
ent shapes of the fitness landscape on the island (see Figure 1–
Figure 3 and the analytical results in the Appendix).

Slope-type fitness: Selection against immigrants: See Fig-
ure 1A, Figure 3A1 and area with light shading in Figure 2.
A slope-type fitness landscape results under two (nonexclu-
sive) scenarios: (i) local adaptation (b , 0, i.e., the conti-
nental haplotype aB is maladaptive on the island; see Figure
1A); and (ii) weak incompatibility (g , a; hence, aB has
lower fitness than the recombinant genotype AB). In this case,
a stable DMI can be maintained by selection against immi-
grants, i.e., if (and only if) the fitness advantage of the island
genotype over the invading continental type is sufficiently
large to compensate the migration pressure. For sufficiently
small m, the island haplotype is nearly fixed at the unique
stable equilibrium. Since we assume that the haplotype aB is
fixed on the continent, selection against immigrants requires
heterogeneous selection across the continent and the island.

For slope-type fitness, DMIs are usually, but not always,
globally stable (Figure 3A1). For low recombination, global
stability extends from m ¼ 0 to the maximum rate
mþ

max ¼ m2
max: Bistability occurs if gene-flow rates are not

much lower than mþ
max and rare island haplotypes are effi-

ciently broken up by recombination, such that a stable
boundary equilibrium can be maintained. This is the case,
for instance, if both r and g are large.

From our analytical and numerical results and their graph-
ical representations (see Figures 1Aand3A1and the interactive
visualization in File S4), we conclude the following character-
istic properties for the maximum gene-flow ratesm6

max and the
degree x̂3 of population differentiation:

1. The maximum migration rate satisfies mþ
max #a2b [this

follows from (4b) and (4c) because b, 0 or g , a]. This
maximum is achieved for tightly linked incompatibility
loci (r ¼ 0). With increasing r, both mþ

max and m2
max are

strictly decreasing (see Figure 1A). This can be under-
stood as follows: As we show in File S1, section S.2.4,
D , 0 holds at every internal equilibrium if r , N. Thus,
recombination increases the frequencies of the ancestral
and recombinant types (ab and AB) relative to the conti-
nental and island types (aB and Ab). Since at least one of
the genotypes ab or AB has a higher fitness than the
continental type aB, recombination increases the mar-
ginal fitness of at least one of the alleles a or B that enters
the island through gene flow. This facilitates the fixation
of the respective allele, leading to loss of the DMI.

2. As might be expected, both maximum rates, mþ
max and m2

max,
increase with a steeper slope of the landscape (higher a or
lower b; see, e.g., the interactive visualization in File S4). In
contrast, Figure 3 shows that the strength of the incompat-
ibility is far less important (and irrelevant if r ¼ 0).

3. Finally, also the level of differentiation x̂3 is strictly decreas-
ing if the number of hybrids is increased by increasing r (cf.
Figure 1A and Equation 7).

Double-peak fitness with superior continental type: Selec-
tion against hybrids: See Figure 1C, Figure 3A3, and area
withdark shading in Figure2. Ifb.a, the invading continental
type is the fittest genotype on the island (fitness scheme in
Figure 1C.) Nevertheless, the island genotype can be main-
tained in a locally stable DMI if both the ancestral and the
recombinant genotypes have relatively low fitness. The condi-
tion we need is g . b . a, thus, a strong incompatibility. In
addition, sufficiently strong recombination is required to pro-
tect the island genotype Ab by decomposing the invading con-
tinental typesaB into its constituent alleles (cf. Equation3).Due
to the lowfitness of the recombinationproductsab andAB, both
aandBarekeptat lowfrequencies.Thus, recombinationcreates
a drainage through which the invading alleles are discharged.

Figure 1 Maximum migration rates (black solid lines) and degree of
population differentiation (gray areas) as functions of the (scaled) recom-
bination rate r. We identify three regimes. (A) Selection against immi-
grants for slope-type fitness. Here, b/a = 20.6, g/a = 2.5. (C) Selection
against hybrids in a homogeneous environment. Here, b/a = 1.2, g/a = 4.
(B) Combination of both for intermediate fitness combinations. Here,
b/a = 0.6, g/a = 4. The corresponding type of fitness landscapes is dis-
played in each respective top right corner.
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This second, indirect mechanism for maintaining a stable
DMI does not depend on ecological differentiation between
the continent and the island; i.e., exogenous selection can be
homogenous. Indeed, under several scenarios (substitution on
the island first, both on the continent, or secondary contact),
evolution of a stable DMI can occur with a homogeneous
fitness function across both subpopulations. The resulting
DMI is always only locally stable. Also the dependence of
m6

max and x̂3 on the model parameters differs distinctly from
the one under slope-type fitness (Figure 1C and Figure 3A3):

1. Since, in haploids, hybrid genotypes are formed only by
recombination, selection against hybrids is most efficient
for large r. Bothmþ

max and x̂3 increase with r (cf. Figure 1C).
2. The efficiency of this mechanism is enhanced by strong

epistasis that leads to a deep fitness valley (large a and
large g 2 b), as evidenced by the dependence of mþ

max on
these parameters (cf. Figure 3A3). From (4b), we infer
that a DMI can exist only if m, ð1=4Þa. That this upper
bound is approached for high r and g has the following
explanation. If all continental migrants recombine with
resident island types (when r / N), and if all recombi-
nant types AB die (when g / N), only island and wild-
type genotypes remain on the island. Then the dynamics
of the island types are _x2 ¼ ax2ð12x2Þ2m, which have
a stable equilibrium with x2 . 0 if m, ð1=4Þa.

Double-peak fitness with superior island type: Combina-
tion of both mechanisms: See Figures 1B, Figure 3A2, and
open area in Figure 2. If 0 , b, a, g, we obtain a double-
peak fitness landscape on the island with the island type on
the higher peak. In this parameter region, both mechanisms
described above interact and contribute to the maximum
rate of gene flow in a complex way. There is no simple sharp
boundary that separates the parameter regions where either

mechanism dominates, but we can illustrate the transition
for several characteristic properties.

1. If recombination is weak relative to the fitness difference of
the island and the continental type, r � a 2 b, the haplo-
types compete mostly as entire units and selection against
immigrants dominates. The resulting DMI is globally stable
for smallm, and heterogeneous selection is needed tomain-
tainaparapatricDMI.Themaximumratem2

max foraglobally
stable DMI decreasesmonotonicallywith r and is zero if r$
a2 b (cf. Figure 1B). For higher recombination rates, a lo-
cally stable DMI can exist for spatially homogeneous selec-
tion; it can evolve from favorable initial conditions.

2. The dependence ofmþ
max on the recombination rate changes

as follows. Whereas mþ
max is monotone decreasing in r

ifg(4b2a), 3ab (see EquationS.38 in File S1), otherwise
we obtain a U-shaped dependencewith aminimum at an in-
termediate recombination rate; cf. Figure 1B. If b. ð3=4Þa,
the highest migration rate can be tolerated if the loci are
independent because (4b), (4c), and (11) imply
mþ

max ¼ ð1=4Þa if g / N and r / N. mþ
max increases

monotonically with g, indicating that both mechanisms
aremore efficient for strongDMIs in this parameter range
(cf. Figure 3A2). This can be understood since selection
against the B allele (lower fitness of AB) also leads to
reduced marginal fitness of the allele (since ab haplo-
types are less fit than aB haplotypes if b. 0).

3. Alternatively, we can ask whether formation of more
hybrids (by an elevated r) increases or decreases popu-
lation differentiation. The answer depends on the level of
gene flow. For low m, differentiation decreases with
higher r below the threshold implicitly given in Equation
7 and increases monotonically above this threshold
(dashed curve in Figure 2; Figure 1B represents a case in
whichmþ

max is highest for tight linkage although population
differentiation increases with recombination for weak mi-
gration). For high gene-flow rates near the maximum val-
ues admitting a stable DMI, the dependence of x̂3 on r can
be U-shaped, similar to the dependence of mþ

max on r.

Results: Diploid Model

Although a comprehensive analytical treatment of the general
diploid model seems out of reach, progress can be made for
particular cases. For most of our results, we focus on two choices
of the epistasis coefficients G ¼ (g1, g2, g3, g4): (1) a recessive
model with no fitness costs for double heterozygotes, G0 := (0,
g, g, 2g); and (2) a codominant model with costs proportional
to the number of A/B conflicts, G1 := (g/2, g, g, 2g).

As we will see, these two models represent two main
types of DMI structure. Two additional properties make
them analytically more tractable than the general case. First,
there is no dominance at locus A or B if the other locus is
monomorphic. In particular, this excludes stable boundary
equilibria caused by overdominance: If m ¼ 0, the only
equilibria at the boundary are the monomorphic equilibria
M1–M4. Second, the condition g4 ¼ 2g2 ¼ 2g3 preserves the

Figure 2 Parameter ranges corresponding to two different mechanisms
for DMI evolution in the haploid model as a function of the heterogeneity
of the environment (measured as b/a) and the strength of the incompat-
ibility (measured as g/a). In the intermediate parameter range (open area),
both mechanisms contribute and we see a stepwise transition for various
characteristic properties: (1) decrease/increase of population differentia-
tion with increasing recombination rate for weak migration (left/right of
dashed line) and (2) decrease/U-shape or increase of mþ

max with increasing
recombination rate (left/right of dotted line).
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symmetry of the haploid model. Thus, the equilibrium struc-
ture is symmetric under the transformation a / g 2 b and
b / g 2 a, which corresponds to an exchange of the an-
cestral haplotype ab and the recombinant type AB.

As in the haploid model, if m . 0, necessary and sufficient
conditions for a globally stable DMI can be derived from
a stability analysis of the boundary equilibria. For our special
models, the same boundary equilibria as in the haploid model
exist under the same conditions: The monomorphic equilib-
rium M2 exists always, and the single-locus polymorphisms
SA or SB exist if m , a 2 g or m , 2b, respectively (cf.
Figure A1 in the Appendix). In general, however, the stability
conditions in the haploid and diploid case differ.

Necessary conditions for recessive
and codominant DMIs

Necessary conditions for a stable DMI are derived in
Sections S.10 and S.12 of File S2. In terms of the maximum

rates of gene flow, we find for the epistasis scheme G ¼ (g1,
g, g, 2g), which comprises both our special models,

mþ
max. 0 if and only if

a. 0 and g.b and r.b2a2 g1;
(13a)

and, if mþ
max . 0,

m2
max .0 if and only if

b, 0 or g,a or r,a2b2 g1:
(13b)

There is a striking similarity with the corresponding
Equations 5a and 5b for the haploid model. For both
models, the conditions a . 0 and g . b are required for
a parapatric DMI, thus excluding neutral DMIs and setting
a lower bound for the strength of the incompatibility. For the
rest of this section, we therefore assume a . 0 and g . b.

For the recessive model (g1 ¼ 0), the conditions (13a)
and (13b) coincide with their haploid counterparts. In the

Figure 3 Maximum migration rates as functions of the
(scaled) strength of epistasis for the haploid (A1–A3), re-
cessive diploid (B1–B3), and codominant diploid (C1–C3)
models and for various recombination rates. Each panel
represents a different environmental scenario determined
by b. For the haploid model, all curves are determined
analytically using the formulas in Appendix, Internal
equilibria and local stability. See main text for a detailed
discussion of this figure and File S4 for interactive visuali-
zation of other parameter values.
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codominant model (g1 ¼ g/2), selection against double heter-
ozygotes deepens the fitness valley between the island and the
continental genotypes. For m ¼ 0, this leads to an increased
range of simultaneous stability of the monomorphic equilibria
M2 andM3. This is reflected by the conditions (13a) and (13b):
whereas the constraints for a locally stable DMI get weaker for
larger g1, the conditions for global stability become more
stringent.

For weak migration, the amount of population differen-
tiation, as measured by the equilibrium frequency x̂3 of the
island haplotype, is calculated to

x̂3 ¼ 12
a2bþ g1

a2bþ g1 þ r
� m
a2bþ g1

2
r

a2bþ g1 þ r

�
m
a
þ m
g2b

�
:

(14)

Differentiation increases or decreases with r according to

@x̂3
@r

  ≷  0  ⇔  ðb2 g1Þðg2a2 g1Þ  ≷  ða2bþ g1Þ2: (15)

In the context of the haploid result (Equation 7), we can
understand this result as follows: Forweakmigration, invading
alleles appear on the island almost exclusively in heterozygous
genotypes containing the island haplotype (i.e., in aBAb, ABAb,
orabAb). Thedynamics of these three genotypes, togetherwith
the homozygous island type AbAb, essentially follow those of
a haploid model if the following substitutions are made: bhap

/ bdip 2 g1 and ghap / gdip 2 g1.
Finally, for G ¼ (g1, g, g, 2g), we can also derive

the following upper bound for mþ
max (Equation S.111 in

File S2):

mþ
max#max

�
1
4
a;a2bþ g1

�
: (16)

For m2
max , complete analytical results can, in principle, be

derived from a local stability analysis of each boundary equi-
librium (File S2, section S.13). Since they are quite complex
and involve a large number of case distinctions, we discuss
only the limiting cases of weak migration, tight linkage (r ¼
0), and independent loci (D ¼ 0) in more detail.

Recessive DMI model

Tight linkage: If r ¼ 0, there are only two equilibria that can
be stable form. 0. One is the monomorphic equilibriumM2,
which is globally stable for m . a 2 b, but unstable other-
wise. The other equilibrium, at which only the haplotypes Ab
and aB are present, gives rise to the DMI. Hence, we recover
the resultm6

max ¼ a2b (Equation 8) from the haploid model.
Note, however, that this does not imply that the dynamics of
the diploid and haploid models are the same.

Independent loci: In linkage equilibrium, the maximum
migration rate m2

max is determined from the stability condi-
tions of the single-locus polymorphisms SA and SB (cf. File
S4, section 2.3). We obtain

m2
max

¼

8>><
>>:

a2 g

2g

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2gÞ2þ4gðg2bÞ

q
2 ða2gÞ

�
  if b,g#aþ b;

2b

2g

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4ag

q
þ b

�
   if g.aþ b:

(17)

This expression deviates from the corresponding haploid
result (Equation 10). In particular, we obtain a slower
decline to zero (�g21/2) as g / N. For local stability, we
find mþ

max ,a as an upper bound in addition to (16). How-
ever, we have not been able to derive an exact analytical
expression for mþ

max: Numerical results are discussed below.

Codominant DMI model

Tight linkage: If r ¼ 0, local stability analysis of the bound-
ary equilibria yields

m2
max ¼

8>>>>><
>>>>>:

2ðg2bÞða2 gÞ
g

if g, 2b;

2 2ab
g

if g. 2a;

a2b2
g

2
      otherwise:

(18)

As discussed below, this deviates strongly from the haploid
and the recessive case. We deduce the following formulas
for mþ

max (cf. File S4, section 2.4). If a . 4b,

mþ
max ¼

8>>>>>>>>><
>>>>>>>>>:

ðg2bÞ
g

ð2a22b23gÞ  if g,2b;

a2b2
g

2
if 2b,g,min

�
2a;  

2
3
ða2bÞ

�
;

ð2a22bþ gÞ2
16g

  if min
�
2a;  

2
3
ða2bÞ

�

,g,max½2a;6aþ 2b�;
a

g
ðg22a22bÞ if g.max½2a; 6aþ 2b�;

(19)

and if a # 4b (which implies b . 0),

mþ
max ¼

8>>>>>><
>>>>>>:

ðg2bÞ
g

ð2a22b2 3gÞ  if g, 2
7
ðaþ 3bÞ;

ð2a22bþ gÞ2
16g

  if max
�
2ðb2aÞ;   2

7
ðaþ 3bÞ

�

, g,6aþ 2b;
a

g
ðg22a2 2bÞ if g. 6aþ 2b:

(20)

Independent loci: Under the assumption of linkage equilib-
rium, the dynamics of allele frequencies in the codominant
model map precisely to those of the corresponding haploid
model (cf. File S4). Intuitively, this can be seen as follows:
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If r / N, alleles are combined randomly. To recover the
dynamics of the haploid model, we assign to each diploid
genotype the average fitness of the corresponding allele
combination in the haploid model; e.g., wd(aAbB) ¼ 1/2
(wh(ab) + wh(AB) + wh(Ab) + wh(aB)) ¼ a + b 2 g/2,
which indeed is the fitness in the codominant model. We
obtain the same existence and stability results as in the
haploid case, namely (10) and (11). All equations reported
above are visualized in interactive Mathematica plots in File
S4, section 2.4.

Analytical results and conjectures for general
epistasis coefficients

In File S4, we analyze how our results for the special epis-
tasis schemes generalize to a diploid model with an arbitrary
two-locus incompatibility. Throughout our analysis, we as-
sume that the strength of the incompatibility is nondecreas-
ing with the number of A/B conflicts, i.e., that the epistasis
parameters fulfill the condition g4 $ {g3, g2}$ g1. Additional
(technical) assumptions are needed for some of our formal
proofs in File S2. When this is the case, our conjectures are
confirmed by perturbation arguments and by numerical simu-
lations. We find the following necessary conditions for a stable
parapatric DMI (cf. Equation S.125 in File S2):

a. 0 and b,max½g3; g4 2g3�: (21)

The latter condition simplifies to b , g3 if we exclude over-
dominance at locus B, which requires g3 , b, g4 2 g3. Since
overdominance at locus B stabilizes the island genotype, the
condition is slightly relaxed in the general case. Without over-
dominance, we also retain the lower bound on the recombina-
tion rate of the codominant model, r . b 2 a 2 g1.

Finally, we find that

mþ
max#max½a2b;a� (22)

provides an upper bound for the maintenance of any
(structurally stable) DMI in the diploid model, independent
of epistasis parameters or recombination rates. This bound is
sharp and is already attained for our two special models: if
m , a 2 b, a recessive DMI (g1 ¼ 0) exists for any g . b

and complete linkage (r ¼ 0); if m , a, a codominant DMI
exists for g1 / N and r ¼ 0.

An important consequence of (21) and (22) is that
a stable neutral DMI (or any DMI with a # 0) is impossible
in the diploid continent–island model. A proof of this fact for
the general diploid DMI model is given in File S2, section
S10. We note that this is not a trivial finding: In particular,
our general assumption of nondecreasing gi with the num-
ber of conflicts is essential, and counterexamples can be
found if g1 � max[g3, g4] (cf. File S4). A special case of
potential biological relevance is the scenario of tightly linked
loci (r ¼ 0) in the secondary-contact scenario (i.e., in the
complete absence of ab and AB haplotypes). In this case, the
model reduces to a one-locus two-allele problem and we
readily obtain the condition

m6
max ¼

8>><
>>:

a2b2 g1       if g1 #
a2b

3
;

ða2bþ g1Þ2
8g1

  if g1 .
a2b

3
:

(23)

Thus, a neutral incompatibility can be maintained if g1 . 0,
corresponding to a previous result by Lande (1979). Indeed,
the maximum rate of gene flow even increases towardNwith
growing g1. As we will see below, this behavior deviates
strongly from any other scenario where no haplotype is
excluded from the dynamics. Note that the equilibrium is
unstable in the full parameter space and thus not a true
DMI according to our definition. Indeed, the incompatibil-
ity is quickly lost if the ancestral haplotype ab is initially
present at a low frequency or if recombination deviates
(however slightly) from zero.

Stability of parapatric DMIs in the diploid model

For various parameter combinations, Figure 3B and C dis-
play m2

max and mþ
max as functions of the strength of epistasis

for the recessive and the codominant model, respectively.
Corresponding figures for other choices of epistasis schemes
are provided in File S3. As in the haploid model, we find that
at most a single stable DMI can exist for given parameters.
Locally stable DMIs refer to bistable cases, where a DMI
coexists with one (or several) stable boundary equilibria.
In these cases, evolution depends on the initial conditions.
As in the case of the haploid model, all our numerical results
show convergence to the DMI if the second substitution
occurs on the continent and for secondary contact. In con-
trast, a DMI never evolves in a bistable case for the conti-
nent–island and island–island scenarios. We find two main
types of equilibrium patterns, which are well represented by
the recessive or the codominant DMI model.

Recessive incompatibilities: Comparison of Figure 3B with
3A shows that the maximum gene-flow rates m6

max for the
recessive diploid model and for the haploid model are very
similar. This holds, in particular, for low recombination
rates, but even for independent loci the differences are mod-
est. We obtain qualitatively similar results for other choices
of the epistasis parameters that do not impose selection
against the double heterozygotes, i.e., if g1 ¼ 0 [see File S3,
Figure S4 for G ¼ (0, g, 0, 2g), Figure S5 for G ¼ (0, 0, g, 2g),
and Figure S6 for G ¼ (0, 0, 0, 2g)].

Codominant incompatibilities: Comparison of Figure 3C
with 3A shows that the maximum rates m6

max for the codom-
inant diploid model are very similar to those for the haploid
model for high recombination rates [for G ¼ (g/2, g, g, 2g)
they are even identical in the limit r / N]. However, sig-
nificant differences emerge if recombination is weak relative
to selection, r # min[a, b]. On the one hand, the maximum
rate for global stability, m2

max, is severely reduced relative to
that in the haploid model. Irrespective of the other param-
eters, we find that m2

max/0 as g1 / N. On the other hand,
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the maximum rate for a locally stable DMI, mþ
max, can be

much larger, in particular for large g. We thus find large
parameter regions with bistable dynamics for the codomi-
nant model. Again, models with different choices of the
epistasis parameters, but g1 . 0, show a similar behavior
[see Figure S7 in File S3 for the case G ¼ (2g, 2g, 2g, 2g)].

General incompatibilities

For an epistasis scheme that is intermediate between the
two special patterns studied above, e.g., G ¼ (g/50, g/5,
g/5, 2g), we observe a transition between the recessive and
the codominant DMI pattern with increasing g (in File S3,
compare Figure S8 with Figures S2 and S3; see also Figure
S9). The maximum gene-flow rates are very similar to those in
the recessive DMI model as long as the incompatibility is weak
and g1 � max[a, b]. However, when observed on a larger
scale in terms of g, such that the fitness costs of the double
heterozygote are of the order of a and b, the pattern resem-
bles that of the codominant model (File S3, Figure S9).

As in the haploid case, we can understand these results in
termsof thefitness landscapeandthecorrespondingmechanisms
for the evolution and maintenance of DMIs: heterogeneous
ecological selection pressures and selection against hybrids.

1. For a slope-type fitness landscape, due to either local
adaptation (b , 0) or a weak incompatibility (a . max
[g2, g4 2 g2] and b , min[g3, g4 2 g3]), the DMI is
maintained by heterogeneous selection. There are no
hybrids that are so unfit that they could pose a selection
barrier. If gene flow is sufficiently low, we obtain global
stability of the DMI even for high recombination (as in the
haploid case, m2

max always decreases with r but, here,
m2

max . 0 for r / N).
2. The most significant differences between the haploid and

thediploidmodel occur for a double-peakfitness landscape.
Indiploids, any selectionagainst thedoubleheterozygoteF1
hybrids (g1 . 0) deepens the fitness valley between the
peaks and generates a direct, recombination-independent
fitness cost for hybrids. In the haploid model, costly hybrids
can be produced only by recombination. As a consequence,
the difference between both models is strongest for small r.
Since the fitness valley protects both local fitness maxima,
theevolutionof theDMI (which is close to the “islandpeak”)
will always depend on initial conditions. The maximum
gene-flow rate mþ

max depends on the depth of the valley
and on its shape. If wAaBa � max[waabb, wAABB] (small g1),
the barrier is most shallow in the center, i.e., at the AaBb
hybrids. In this case, selection against hybrids is weakest
(and mþ

max smallest) for low recombination (cf. Figure 4,
recessive model). In the opposite case (large g1) the barrier
is most shallow at the recombinant hybrids aabb orAABB of
island and continental individuals (cf. Figure 4, codominant
model). As a consequence,mþ

max increases with r.
3. The individual effects of the epistasis coefficients g2, g3,

and g4, are further explored in File S3. Compared to g1,
they are relatively minor provided certain weak condi-

tions are satisfied (File S2). The parameters g2 (selection
against aABB individuals) and g3 (selection against AABb
types) have opposite effects. In particular, reducing g2
below g4/2 leads to overdominance at the A locus for
pB ¼ 1 and thus stabilizes a boundary equilibrium with-
out the island haplotype Ab. In contrast, g3 , g4/2
entails overdominance at the B locus for pA ¼ 1 and thus
contributes to the stability of a DMI with x3 . 0.

Discussion

The standard model to explain the evolution of intrinsic
postzygotic isolation in allopatry, the Dobzhansky–Muller
model, has repeatedly been described as a plausible specia-
tion scenario, also in the presence of gene flow (e.g., Gav-
rilets 2004; Wu and Ting 2004). However, little is known
about the limits up to which the mechanism could work. As
phrased by Turelli et al. (2001, p. 341), “we would like to
understand how much gene flow is needed to inhibit the
accumulation of DMIs.” The origin (and maintenance) of
the first incompatibility in a genetically homogeneous ances-
tral population is the crucial step of this process, since the
evolution of any additional DMI can only be easier.

In our study, we address this question for a minimal
model with two loci and two alleles. We focus on the
particular case of unidirectional gene flow, e.g., from a con-
tinent to an island population. For this model, we obtain
a complete analytical characterization of the maximum rates
of gene flow that permit DMI evolution. The model accounts
for exogeneous and endogeneous selection and allows for
different temporal–spatial patterns in the origination of the
substitutions. We thus can disentangle the relative impor-
tance of the external environment, the genetic architecture
of the incompatibility, and the evolutionary history for the
evolution and maintenance of parapatric DMIs.

Two mechanisms can drive the evolution of a parapatric
DMI. In a heterogeneous environment, a DMI can emerge as
a by-product of selection against maladapted immigrants.
In addition, selection against unfit hybrids can maintain a
parapatric DMI even in homogeneous environments. Both
mechanisms rely on exogenous selection, but lead to op-
posite predictions concerning the genetic architecture of the
DMI and its dependence on the evolutionary history. Our
main results are the following:

1. The maximum rate of gene flow can never exceed a
bound set by exogenous selection pressures. This implies
that the adaptive advantage of the single substitutions
rather than the strength of the incompatibility is the most
important factor in determining whether a DMI can
evolve or be maintained in the presence of gene flow.
In particular, neutral DMIs cannot exist in parapatry.

2. In the haploid model, selection against immigrants is
most effective in driving the evolution of parapatric DMIs
if both incompatibility loci are tightly linked. In contrast,
selection against hybrids works best for strong, but loosely
linked incompatibilities. The results for the diploid model
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are very similar to those for the haploid model if the in-
compatibility is recessive, i.e., if double-heterozygous F1
hybrids are not affected by the incompatibility. In con-
trast, for codominant incompatibilities, the fitness of dou-
ble heterozygotes becomes a decisive factor to determine
DMI evolution.

3. In many cases, a DMI will evolve only if the two incompatible
substitutions appear in the correct order on the continent and
on the island. In particular, if selection acts mainly against
hybrids in a homogeneous environment, the outcome of the
evolutionary process is dependent on historic contingency.

In the following, we discuss the most important implications
that arise from these results and relate them to existing
empirical and theoretical work.

The importance of exogenous selection

Our results highlight the importance of exogeneous selec-
tion (parameters a and b in the model) and of adaptive
evolution during parapatric speciation. At least one of the
substitutions involved in a stable parapatric DMI must have
a selective advantage on the island relative to the ancestral
type (a . 0 for the “island substitution”). This confirms
previous claims that neutral postzygotic speciation is impos-
sible in the presence of gene flow (Barton and Bengtsson
1986; Gavrilets 1997; Kondrashov 2003; Lemmon and Kirk-
patrick 2006; but see Gavrilets 2004). Although the formal
proof of this fact is quite involved for the diploid model (see
File S2), there is an intuitive explanation: If both substitu-
tions are neutral, the compatible ancestral haplotype has
a marginal advantage over all haplotypes that carry a sub-
stitution. Thus, whenever the ancestral type is produced by
recombination (or if its initial frequency is positive), it can
rise in frequency until the island substitution (the allele that
is not present on the continent) is lost. These results also

exclude the maintenance of a neutral DMI after secondary
contact, even if such a DMI may have originated in a phase
of strict allopatry. The only exception is a DMI that is effec-
tively just a single underdominant diploid locus (a single
recombinational unit). This may occur, e.g., if both substitu-
tions are joined in an inversion. However, as has previously
been shown in a simulation study, even tiny recombination
rates preclude the maintenance of a neutral DMI upon sec-
ondary contact (Feder and Nosil 2009).

These findings generalize easily to pairwise DMIs in the
background of other genetic barriers to gene flow by
substituting an effective migration rate (Barton and Bengts-
son 1986). Since the maximum rate of gene flow for the
maintenance of a neutral DMI is zero, such an incompatibil-
ity will be maintained only if isolation is already complete. It
thus cannot contribute to the speciation process, even at
a late stage. These results are consistent with empirical ev-
idence for signatures of positive selection, which have been
observed for most incompatibility genes that have been
identified so far (Presgraves et al. 2003; Johnson 2010).

The maximum rates of gene flow for locally or globally
stable DMIs increase with a higher selective advantage of the
island substitution (higher a) and with higher disadvantage of
the incompatible continental substitution (lower b). Strong
local adaptation (with a . 0 and b , 0) can enable the
accumulation of DMIs under strong gene flow (mþ

max ¼ a2b;
e.g., Figure 3, A1 and B1). Since empirical studies have indeed
identified cases of very strong divergent selection (e.g., Mullen
and Hoekstra 2008), this implies that the evolution of DMIs as
a by-product of local adaptation might be possible in nearly
sympatric scenarios. However, the level of population differen-
tiation that is maintained by a DMI at high gene-flow rates will
become vanishingly low (Figure 1A and Figure 4, A1 and B1).

Stability of a parapatric DMI does not require local ad-
aptation, but is also possible in a homogeneous environment

Figure 4 Maximum migration rate
(solid lines) and population differentia-
tion (shaded areas) in the recessive and
codominant diploid models as a function
of the recombination rate g. For each
model, two choices for the strength g

of epistasis (weak/strong) and three
choices for b, describing different types
of selection scenarios (corresponding to
local adaptation/heterogeneous/homo-
geneous environments), are repre-
sented. Similar to the haploid model
(cf. Figure 1), the results in the recessive
model are almost independent of the
strength of epistasis (compare A1–A3
and B1–B3), but strongly dependent on
the environment (compare rows 1, 2,
and 3). In contrast, for the codominant
model, mþ

max and m2
max depend only

weakly on the environment if epistasis
is strong (D1–D3). Generally, the co-

dominant model produces stronger population differentiation than the recessive model (dark shading dominating), although the overall maximum
migration rate in scenarios of local adaptation is lower; compare A1 and B1 with C1 and D1.
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if there is sufficiently strong selection against hybrids (i.e., if
g . b in the haploid model). It is even possible that the
“island” substitution is less beneficial on the island than the
invading, incompatible “continental” substitution (b . a . 0;
e.g., Figure 3, A3–C3). Although the maximum rates of gene
flow are lower than for local adaptation (mþ

max #a=4 for hap-
loids, mþ

max #a for diploids), the amount of population differ-
entiation that a single DMI can achieve, even close to the
maximum migration rate, is still high (Figure 1C and Figure
4, A3–D3). This is in line with classical arguments about hybrid
zones by Barton and Hewitt (1989), who claimed that local
adaptation might be important to generate variation in the first
place, but selection against hybrids is supposed to be more
important for maintaining a hybrid zone.

The importance of the genetic architecture of the DMI

Reliable inferences about the genetic architecture of a DMI
(its strength g and its linkage r) must take into account
under which mechanism it has evolved. If a DMI is main-
tained simply as a by-product of local adaptation or direct
selection against immigrants in a heterogeneous environ-
ment, the strength of the incompatibility (measured by the
epistasis parameters) is of minor importance. The maximum
admissible migration rates often even decrease with stron-
ger epistasis (e.g., Figure 3, A1–C1). In the selection-against-
immigrants scenario, a DMI on the island is most effectively
protected from gene flow if tight linkage (low r) of the in-
compatibility loci maintains the immigrant haplotype aB (e.g.,
Figure 1A). In contrast, strong recombination will quickly decom-
pose the immigrant type, even if it does not suffer a direct fitness
cost. Instead, hybrid haplotypes (ab and AB) are produced. DMIs
on the island can withstand the immigration pressure if and only
if sufficiently strong selection acts against these hybrids.

In haploid populations, hybrid individuals suffering from
an incompatibility are produced only by recombination. This
also holds for recessive diploid incompatibilities (g1 ¼ 0),
where double-heterozygous F1 individuals pay no cost. If
selection against hybrids is the driving mechanism of DMI
evolution, we therefore find that DMI stability against gene
flow increases with recombination (cf. Figure 1C). This is
different for codominant DMIs, where the incompatibility
affects double heterozygotes (H0 incompatibility in the ter-
minology of Turelli and Orr 2000). Here, selection against
F1 hybrids (g1 . 0) can protect the island genotypes from
swamping by continental types even if recombination is low
or absent. Indeed, the maximum rate of gene flow permitting
stable DMIs decreases with recombination if selection against
F1 hybrids is strong (cf. Figure 4C3 and D3). Our results
conform to related findings by Gavrilets (1997), who noted
the importance of F1 fitness for the strength of a barrier to
gene flow induced by a DMI in a model of a genetic cline.

The importance of the evolutionary history

The two incompatible substitutions can originate in various
temporal–spatial patterns, either on the continent or on the
island. They can occur in the presence of gene flow or in

a temporary allopatric phase. We find that, with respect to
the stability of the DMI, all evolutionary histories can be
categorized in two classes. If the second substitution arises
on the continent (and the first substitution either on the
island or on the continent), or if both alleles originate in
an allopatric phase, they are initially protected from incom-
patibility selection. A DMI will evolve under these conditions
whenever the model parameters allow for a stable incom-
patibility, i.e., independent of initial conditions. In contrast,
if the second substitution occurs on the island, a DMI will
evolve if and only if the corresponding equilibrium is glob-
ally stable (i.e., there is no alternative stable evolutionary
endpoint). The intuitive reason is that the second allele
faces competition from its incompatible counterpart, which
is maintained on the island either due to local selection or
due to recurrent gene flow from the continent.

As expected, a favorable evolutionary history is always
decisive in a homogeneous environment. The dependence
on the history is also increased by high recombination rates
and by selection against double heterozygotes in the co-
dominant diploid model. We thus find that historic contin-
gency becomes important in all scenarios in which DMIs
primarily evolve due to selection against hybrids. In con-
trast, DMIs are usually (but not always) globally stable if
selection acts directly against immigrants.

The strong dependence on the evolutionary history that
we observe is partially a consequence of the migration
asymmetry that is inherent to the continent–island model.
We can extend our results to include very weak back migra-
tion from the island to the continent under the following
assumptions. Back migration is much weaker than both se-
lection and migration from the continent, such that the equi-
libria derived for unidirectional gene flow are only slightly
perturbed. Back migration nevertheless is much stronger
than recurrent new mutation on the continent, such that
the first substitution will reach equilibrium in both demes,
independent of its deme of origin. The impact of weak back
migration of this type depends on the fitness landscape on
the continent. If fixation of the continental haplotype (aB) is
the only stable equilibrium on the continent, we retain all
predictions from the model with strict unidirectional migra-
tion. If the fitness function on the continent is double
peaked, with local optima for fixation of either the continen-
tal or the island haplotype (aB or Ab), the continental sub-
stitution B must occur first, since otherwise both demes fix
for the island haplotype. In this case, however, the island
substitution A faces competition from the continental B al-
lele and will be able to invade only if the DMI in the unidi-
rectional model is globally stable.

An important consequence of this result is that heteroge-
neous selection across both demes is a prerequisite for the
evolution a parapatric DMI if there is (even minimal) back
migration. The same line of arguments also shows that evo-
lution of a codominant DMI may be difficult in the presence of
bidirectional gene flow, since strong selection against double
heterozygotes will plausibly lead to a double-peak fitness
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landscape on the continent and on the island. Indeed, most
hybrid incompatibility loci that have been identified so far are
recessive (cf. Presgraves 2003). This is expected particularly
for DMIs that have evolved via gene duplications or selfish
elements (Johnson 2010; Presgraves 2010).

Ecological vs. mutation-order speciation

According to Schluter (2009), adaptive postzygotic isolation
with gene flow falls into two broad categories. Ecological
speciation refers to the case that each substitution of a
DMI pair is beneficial in one subpopulation, but deleterious
in the other. Speciation is then a by-product of local adap-
tation. In contrast, the case in which both substitutions are
beneficial in both demes is referred to as mutation-order
speciation (Mani and Clarke 1990). Characteristic for this
second scenario is that speciation depends on the “chance
occurrence and fixation of different alleles between popula-
tions adapting to similar selection pressures” (Schluter
2009, p. 737).

The present study provides a framework for an adjust-
ment and formal validation of this verbal classification. In
our model, local adaptation corresponds to a deleterious
effect of the continental substitution on the island (b , 0).
“Mutation order” expresses dependence on the evolutionary
history, which is the case in all regimes with a locally, but not
globally, stable DMI. We find that these types are not exclu-
sive, nor do they cover the entire parameter space where
a DMI can evolve: On the one hand, the potential for “pure”
mutation-order speciation with (strictly) homogeneous se-
lection across both demes is relatively limited in the conti-
nent–island model and becomes impossible if there is back
migration. On the other hand, the correct mutation order
is often essential in addition to local adaptation to explain
the evolution of a DMI, in particular for codominant DMIs in
the diploid model. Finally, there is a large parameter range
where weak DMIs (with g , a) evolve under heterogeneous
selection, but without the need of local adaptation and in-
dependently of the evolutionary history.

From our model, we do not find a clean way to classify
the DMIs themselves into categories. Instead, we distinguish
two mechanisms that can drive the evolution of parapatric
DMIs (cf. Figure 2). This distinction retains some flavor of
Schluter’s classification: Selection against immigrants relies
on ecological selection due to a heterogeneous environment,
whereas selection against hybrids in a homogeneous envi-
ronment must rely on mutation order. For each mechanism
there are parameter regions in which one dominates the
other. This has characteristic consequences for predictions
concerning the genetic architecture or historic contingency.
However, and in contrast to Schluter’s scheme, the two
mechanisms are not exclusive and reliable predictions be-
come more complex in the broad transition region.

The limited potential of mutation-order speciation has
previously been reported by Nosil and Flaxman (2011), who
performed a simulation study in a two-island model. Fur-
thermore, Agrawal et al. (2011) studied the evolution of a

DMI in the context of ecological speciation and examined
the resulting barriers to neutral gene flow.

Limitations of the model

Our continent–island model of DMI evolution represents
a minimal model to investigate under which conditions of
the genetics and the environment a single two-locus DMI
can evolve. We have shown that in this simple case a com-
prehensive analytical understanding of these conditions can
be achieved. Naturally, several further issues emerge from
our study. Maybe the most pressing question is how our
results depend on our assumptions about population struc-
ture. Since the continent–island model represents an
extreme case of asymmetric mutation, it should be comple-
mented by a study of a two-island model with bidirectional
migration. As outlined above, we generally expect that DMIs
are more difficult to evolve with bidirectional migration,
where the second mutation always experiences immediate
incompatibility selection. In contrast, the maintenance of
a DMI may be possible under even higher migration rates,
if part of the gene flow is due to back migration of advan-
tageous types. These intuitive expectations are supported by
preliminary results and previous studies (e.g., Karlin and
McGregor 1972a; Lande 1979). Further extensions could ad-
dress DMI evolution in a stepping-stone model or in contin-
uous space, building on the preliminary results by Gavrilets
(1997) and Kondrashov (2003), respectively.

As a technical point, we have used continuous-time
dynamics, implicitly assuming weak selection. However,
numerical checks against a model with discrete generations
did not show qualitative changes even for fairly large
selection coefficients (results not shown). More significantly,
our derivations do not account for genetic drift. Thus, we
implicitly assume that drift is much weaker than selection
and migration. Following heuristic arguments by Yeaman
and Otto (2011) suggests that the stability properties of
DMIs should remain unaltered under drift if selection and
migration parameters are �1/2N. Whereas the regime
where drift is much stronger than migration (such that the
population is almost always monomorphic) was analyzed by
Gavrilets (2000), the case in which all three forces are of
similar size has yet to be studied.

Also our assumptions on the genetics of the model are
restrictive and call for further study. A valuable (and
relatively easy) next step would be to extend the model to
nonautosomal incompatibilities, since empirical studies
report a growing number of DMIs that involve the sex
chromosomes or mitochondria (Presgraves 2003; Chou and
Leu 2010). Since we consider only a two-locus DMI, exten-
sions to higher-order incompatibilities would be welcome.
We expect, however, that the analysis will be much more
complex and results will have to rely on extensive numerical
work. Finally, our model considers the origin and mainte-
nance of only a single, first DMI in a previously homoge-
neous population. Although this is an important question,
also with regard to reports of segregating incompatibilities

858 C. Bank, R. Bürger, and J. Hermisson



within populations (Cutter 2012), in the context of para-
patric speciation the entire dynamics of DMI accumulation
up to complete isolation need to be addressed. In the light of
a growing number of whole-genome scans for incompatibil-
ities (e.g., Kao et al. 2010), it would be particularly interest-
ing to predict how distribution patterns of DMIs along the
genome depend on environmental and genetic conditions.

Our results are informative for an accumulation process
in various ways. Primarily, they characterize the conditions
for the onset of parapatric speciation via accumulating
DMIs. Because the first single DMI will establish population
differentiation, this will reduce the effective gene flow
between the populations and hence simplify the accumula-
tion of additional incompatibilities. Moreover, if one inter-
prets the maximum migration rate as a maximum rate of
effective gene flow, our model can be readily extended to
two populations at an advanced stage of the speciation
process. In particular, we can also assume that barriers to
gene flow have been built by prezygotic mechanisms, such
as reinforcement (e.g., Nosil et al. 2003). In this case, our
model predicts the maximum residual amount of gene flow
that permits DMIs to accumulate and finish the speciation
process when other evolutionary forces, such as reinforce-
ment, have become too weak to shut off gene flow (cf. Bank
et al. 2012).

Predictions and conclusions

What can we conclude about the possibility of evolution of
postzygotic reproductive isolation in the presence of gene
flow? We have seen that the substitutions involved in a
parapatric DMI must be adaptive. Also, at least some en-
vironmental heterogeneity is usually necessary, in particular
if there is gene flow from the island back to the continent. In
this case, recessive incompatibilities are far easier to evolve
than codominant incompatibilities. If selection on the island
acts most strongly against maladapted immigrants from the
continent, the emergence of recessive DMIs is promoted by
tight linkage between loci. Consequently, we expect an
advantage for incompatibilities that evolve in regions of low
recombination, such as chromosomal rearrangements (Bür-
ger and Akerman 2011; Yeaman and Whitlock 2011). This
supports a “genomic islands of speciation” model (Wu and
Ting 2004), where DMIs accumulate in clusters on the ge-
nome. Incompatibilities are just a by-product of strong di-
versifying selection in this case, and the evolutionary
outcome is largely independent of the chronological order
of the substitutions. On the contrary, if selection on the
island acts primarily against hybrids, the correct mutation
order is decisive. In stark contrast to the “genomic island”
picture, incompatibility pairs are rather expected to be
loosely linked or unlinked in this case. Also upon secondary
contact, populations that have undergone initial divergence
under similar selection pressures in allopatry are more likely
to maintain incompatibilities that are unlinked.

Although there are still many open questions, the present
study provides theoretical groundwork for a characterization

of the conditions for the evolution of differentiation via
DMIs in parapatry. In particular, our analytical results show
that progress on these issues is not necessarily limited to
simulation studies. We hope that our methods can serve as
a basis for future work on the evolution of reproductive
isolation in parapatry and shed light on the ongoing
discussion about the plausibility of ecological and muta-
tion-order speciation.
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Appendix

Haploid Model

For the haploid model, we determined the equilibrium
structure completely and obtained explicit analytical expres-
sions for the maximum rates of gene flow below which
locally or globally stable DMIs can be maintained. Since the
proofs are complex and require advanced mathematical
arguments, they are given in File S4. File S4 provides a self-
contained analytical treatment of the haploid model. For
dedicated readers interested in additional results, we also
provide a fully annotated Mathematica notebook in File S4.
In this Appendix, we give a summary of our results. In par-
ticular, we state all formulas for the maximum rates of gene
flow m6

max that are used in the main body of the article.

For many purposes, it is convenient to write the dyna-
mics in terms of the frequencies p and q of the incompat-
ible alleles (A and B) and the linkage-disequilibrium
coefficient D:

_p ¼ apð12 pÞ2 gð12 pÞðpqþ DÞ þ bD2mp; (A1a)

_q ¼ bqð12 qÞ2 gð12 qÞðpqþ DÞ þ aDþmð12 qÞ; (A1b)

_D ¼ ½að12 2pÞ þ bð12 2qÞ�D2 g½ð12 pÞð12 qÞ2D�ðpqþ DÞ
2 rD2m½pð12 qÞ þ D�:

(A1c)

We note that D has to satisfy
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2min½pq;   ð12 pÞð12 qÞ�#D#min½pð12 qÞ;   ð12 pÞq�  :
(A2)

Equilibrium structure

Figure A1 sketches the positions in state space of all equilibria
that can exist for the haploid model with m $ 0. These are
the four monomorphic equilibriaMi, where the corresponding
haplotype is fixed on the island (xi ¼ 1). Two boundary equi-
libria with a single polymorphic locus may exist on the edges
q ¼ 1 or p ¼ 0. We denote them by SA and SB (locus A, B
polymorphic), respectively. There is at most one asymptoti-
cally stable internal equilibrium, denoted by IDMI. If it exists
we say that a parapatric DMI is maintained. Finally, an un-
stable internal equilibrium, I0, may exist.

In the absence of migration (m¼ 0), all four monomorphic
equilibria Mi exist. In the relevant parameter space (a .
0 and g . b, see Equation 2), only M2 (the continental
haplotype aB is fixed) and M3 (the island haplotype Ab is
fixed) can be stable. An unstable internal equilibrium (I0)
exists if and only if M2 and M3 are both stable. No further
equilibrium can exist in this case. For sufficiently smallm. 0,
IDMI exists if and only if the island equilibriumM3 is stable for
m ¼ 0 [leading to conditions (2) and (3)]. Indeed, IDMI is
a perturbation of M3 and enters the state space when m
becomes positive. IDMI is globally asymptotically stable if
and only if it is the only internal equilibrium. If the unstable
internal equilibrium I0 exists, the dynamics are bistable, and
IDMI and one of the boundary equilibria (M2, SA, or SB) are
locally stable attractors.

As m increases, there are three different scenarios for the
fate of IDMI (File S1, section S.7; note that these patterns in

the dynamics do not easily correspond to the mechanisms of
DMI evolution that we identify):

1. If the unstable internal equilibrium I0 exists already at
m = 0, we have m2

max ¼ 0. Both internal equilibria merge
and disappear at m ¼ mþ

max . 0, and the previously locally
stable boundary equilibrium becomes globally stable.

2. The unstable equilibrium I0 enters the state space
through one of the boundary equilibria at
m ¼ m2

max .0. Both internal equilibria merge and disap-
pear at m ¼ mþ

max .m2
max.

3. The stable equilibrium IDMI leaves the state space through
one of the three boundary equilibria at m ¼ mþ

max ¼ m2
max,

which then becomes globally stable for larger m. Thus, an
unstable internal equilibrium never exists.

We note that a DMI always exhibits negative linkage
disequilibrium unless independent loci are assumed (File
S1, section S.2.4). This is not at variance with the usual
finding that migration induces positive linkage disequilib-
rium because in our model the frequencies of the “extreme”
gametes (Ab and aB) are x2 and x3.

Boundary equilibria and global stability

At a boundary equilibrium, at least one haplotype
frequency xi is zero. For recombination rates r . 0, this is
possible only if one of the two loci is monomorphic (we deal
with the case r ¼ 0 separately in File S1, section S.8.1). Due
to constant immigration of the continental haplotype aB,
there are no equilibria with p ¼ 1 or q ¼ 0. Thus, boundary
equilibria satisfy p ¼ 0 or q ¼ 1, and hence, D ¼ 0. If m . 0,
M2 is the only monomorphic equilibrium. A linear stability
analysis reveals that M2 is asymptotically stable if

m.max½2b;a2 g;a2b2 r�: (A3)

The three lower bounds correspond to the invasion criteria
for the other three haplotypes. If m , 2b, the selective ad-
vantage of the wild-type ab over aB is sufficiently large to
exceed the growth of the continental type due to migration.
Similarly, ifm, a2 g, the recombinant-type AB outperforms
the continental type near M2. Note that recombination of aB
haplotypes with rare ab or AB types does not affect the hap-
lotype frequencies. This is different if rare island haplotypes
Ab invade the monomorphic equilibrium M2. Then recombi-
nation between aB and Ab reduces the growth rate of Ab in
proportion to its frequency. We therefore obtain the criterion
m, a2 b2 r for the invasion ofM2 by the island haplotype.
We define the following critical migration rates:

mA ¼ ða2 gÞðg2bÞ
a

�
1þ aþ b2 g

r

�
; (A4a)

mB ¼ 2ba

g2b

�
1þ g2b2a

r

�
; (A4b)

m2 ¼ a2b2 r: (A4c)

Figure A1 State-space diagram, projected onto the plane spanned by the
allele frequencies p and q, showing the possible equilibria and initial states of
the haploid dynamics. Immigration of continental haplotypes moves the
monomorphic equilibrium M3 (which exists for m ¼ 0) into the interior of
the state space, thus yielding a stable DMI. Open circles represent instable
equilibria, whereas half-filled circles represent equilibria which can be stable
or instable. The gray circle represents a potential polymorphic initial state.
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The equilibrium SA has the coordinates ðp; q;DÞ ¼
ð12m=ða2gÞ;  1;  0Þ and exists if m # a 2 g. It is asymp-
totically stable if

2b,a2 g and mA ,m,a2 g; (A5)

which requires r . g 2 b. Similarly, the equilibrium SB has
coordinates ð0;  2  m=b;  0Þ, exists ifm#2b, and is asymp-
totically stable if

a2 g, 2b and mB ,m, 2b; (A6)

which requires r . a. The coordinates and stability con-
ditions of SA and SB are related by the substitutions a /
g 2 b and b / g 2 a. This substitution exchanges the roles
of the wild-type ab and the recombinant haplotype AB in the
fitness scheme and expresses an important symmetry of the
haploid model. From conditions (A3), (A5), and (A6), we
deduce at once that at most one of the boundary equilibria
can be stable for given parameters.

From the stability properties of the boundary equilibria,
we can derive conditions for a globally stable DMI (and thus
for m2

max). In particular, IDMI exists and is globally stable if
and only if the boundary of the state space is repelling, i.e., if
genotypes that are initially absent can invade every bound-
ary equilibrium. From (A3), (A5), and (A6) we deduce the
following values for m2

max:

mmax ¼

8<
:

mA if   g2a, 0, g2b,a and r.g2b;

mB if   b, 0,a, g2b  and r.a;

m2   if   r#min½a;a2b; g2b�:
(A7a) (A7b) (A7c)

Condition (A7a) delineates the parameter regime with
a globally stable DMI (m,m2

max ¼ mA) from that where the
boundary equilibrium SA is locally or globally stable. Con-
ditions (A7b) and (A7c) provide analogous delineations for
the regions where SB and M2 are stable. In each case, there
are two possibilities: If IDMI leaves the state space at
m ¼ m2

max, the boundary equilibrium involved in this bifur-
cation becomes globally stable. If the unstable equilibrium I0
enters the state space at m ¼ m2

max, the corresponding
boundary equilibrium becomes locally stable.

Internal equilibria and local stability

The possible internal equilibria are determined in File S1,
section S.3. The coordinate p of an internal equilibrium can
be expressed as a root of a third-order polynomial. Given p,
the coordinate q is the root of a quadratic polynomial. Finally,
D is a simple rational function of p and q. Only solutions that
fall inside the state space [with p, q 2 [0,1] and D has to
satisfy (A2)] correspond to equilibria of the model. The ex-
plicit solutions are complicated and several case distinctions
are necessary to ensure that a triple (p, q, D) is in the admis-
sible range. Therefore, we give explicit formulas for the coor-
dinates of IDMI and I0 only in special cases and rather focus on
the conditions for the existence of these equilibria.

As explained above, there are two possibilities how a stable
DMI can vanish from the state space as m increases. The
equilibrium can leave the state space through one of the
boundary equilibria at m2

max: Alternatively, the internal equi-
libria IDMI and I0 can merge and disappear at a bifurcation
point m ¼ m* that is given by (File S1, section S.4)

m* ¼ 1
27rag2ðg2bÞ

	
2 2a2ðg2bÞ2½8bðg2aÞ þ gðb2aÞ�

2 3agðg2bÞ½2bðg2aÞ þ gðb2aÞ�r
2 3ag2ðg2bÞr2 2 2g3r3

þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
�
4b225bg þ g2

�þ g2r22aðb2gÞgð3bþ rÞ�3q �
:

(A8)

This migration rate corresponds to a bifurcation point of
IDMI and I0 if and only if IDMI does not leave the state space if
m , m*. Since IDMI can leave the state space only at
m ¼ m2

max, the boundaries of the regime with a bifurcation
of IDMI and I0 are obtained by equating m* (Equation A8)
with m2

max (Equation A7). At this boundary, the recombina-
tion rate r can take one of the following values:

rA ¼ ðg2aÞ 3ðg2bÞ2a

2g2a
; (A9)

rB ¼ b 
3aþ b2 g

bþ g
; (A10)

r2 ¼ 3aðg2bÞ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðg2bÞð4gbþ 5ag2 9abÞp

2g
: (A11)

We further define

r*2 ¼
�
r2
min½a; g2b�

if r2 is    real;
otherwise:

(A12)

To provide expressions for the upper boundmþ
max below which

IDMI exists, we need to distinguish several cases (cf. Theorem
S.5 in File S1). They correspond to the mechanisms maintain-
ing or establishing a DMI that result from the different types of
fitness landscapes discussed in the main text.

1. Selection scenario 1: 0 , a , b , g (double-peak land-
scape with maximum at the continental type). This selec-
tion scenario represents the parameter regime in which
“selection against hybrids” is driving DMI evolution (area
with dark shading in Figure 2). With this fitness landscape,
a globally stable internal equilibrium cannot exist; i.e.,

m2
max ¼ 0: (A13)

If r # b 2 a, there is no internal equilibrium and the
continental equilibrium M2 is globally stable for any m.
If r . b 2 a, IDMI exists if m # m*,

mþ
max ¼

�
0

�¼ m2
max
�

if r#b2a;

m*
�
.m2

max
�

if r.b2a:
(A14)
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If m.mþ
max, M2 is globally stable.

2. Selection scenario 2: 0 , a , b , g (double-peak land-
scape with maximum at the island type). This selection
scenario represents the intermediate parameter regime
(open area in Figure 2) in which both mechanisms in-
terfere. In this case, IDMI exists always for small m. If r ,
a 2 b, it is globally stable for m up to

m2
max ¼ m2: (A15)

Thus, IDMI exists and is stable up to

mþ
max ¼

�m2
max

m* 
�
.m2

max
� if
if

r# r2;

r. r2:
(A16)

If r , r2, the monomorphic equilibrium M2 is globally
stable for m$m2

max ¼ mþ
max. If r2 , r , a 2 b, M2

becomes locally stable at m ¼ m2
max (where I0 enters

the state space) and globally stable at m ¼ mþ
max ¼ m*

(where IDMI and I0 merge). If r $ a 2 b, M2 is already
locally stable at m ¼ 0 and becomes the unique globally
stable equilibrium at m ¼ mþ

max ¼ m*.

3. Selection scenario 3: g 2 a , 0 , g 2 b , a (slope-type
landscape with weak DMI g , a). This selection scenario
represents a part of the parameter regime in which “se-
lection against immigrants” drives DMI evolution. In Fig-
ure 2, it is represented by the area with light shading for
0 , b/a , 1. With this landscape, IDMI is globally stable
for small m, and we have

m2
max ¼

�
m2 if r# g2b;
mA if r. g2b:

(A17)

For the existence of IDMI, we need to distinguish two
subcases:
i. g . a/2:

mþ
max ¼

�
m2

max if r#min


g2b;  r*2

�
or g2b, r# rA;

m*
�
.m2

max
�

if r*2 , r#g2b or r.max½g2b;  rA�:
(A18)

ii. g , a/2:

mþ
max ¼

�m2
max if r# r*2 or r$ rA;

m* �
.m2

max
�

  if r*2, r, rA:
(A19)

4. Selection scenario 4: b , 0 , a , g 2 b (slope-type with
local adaptation). This selection scenario represents the
remaining part of the parameter regime in which selection
against immigrants drives DMI evolution. In Figure 2 it is
depicted by the area with light shading for b / a , 0. With
this landscape, IDMI is globally stable for smallm, andwehave

m2
max ¼

�
m2 if r#a;
mB if r.a:

(A20)

For the existence of IDMI, we distinguish two subcases:
i. g + b . 0:

mþ
max ¼

�
m2

max if r#min


a; r*2

�
 or  a, r# rB;

m*
�
.m2

max
�
 if r*2 , r#a or  r.max½a; rB�:

(A21)

ii. g + b , 0:

mþ
max ¼

�m2
max if  r# r*2 or r$ rB;

m*  
�
.m2

max
�
 if  r*2, r, rB:

(A22)

Initial conditions

The above results show that for sufficiently large values
of r, we have mþ

max .m2
max in parts of the parameter space.

This leads to bistable regimes, where maintenance of a DMI
depends on the initial conditions. Depending on the order of
substitution events in the evolutionary history of the two
populations, in the Models section of the main text we have
outlined five scenarios for the evolution of a parapatric DMI.
Here, we show how they correspond to three different initial
conditions that are illustrated in Figure A1.

1. For both the continent–island and island–island sce-
narios, the island allele A enters the island only after
the allele frequencies at the locus B have reached equi-
librium. Locus B is initially at the polymorphic SB equi-
librium, whenever this exists (i.e., if m # 2b).
Otherwise, the population starts in the vicinity of the
monomorphic equilibrium M2. Here, we assume that
the ancestral b allele is not completely lost, or reintro-
duced at very low frequencies, such that the dynamics
are not artificially stuck to the q ¼ 1 boundary if this
boundary is unstable.

2. For the island–continent and continent–continent scenarios,
Amutants arepresenton the islandwhile the continent is still
fixed for the ab haplotype. A stable single-locus polymor-
phism with coordinates pA : ðp; q;DÞ ¼ ð12m=a; 0; 0Þ re-
sults whenever the island allele can invade, which is the
case if m , a. Otherwise, the population is initially in
the vicinity of the monomorphic equilibrium M1 at which
the ancestral haplotype is fixed.

3. For secondary contact, the island population is, by defi-
nition, initially fixed for the island haplotype, i.e., at M3.

For the case of independent loci, we show in File S1
(section S.8.2) that, in a bistable regime, a locally stable
DMI will always evolve under the scenarios corresponding
to the second or the third initial condition (island–continent,
continent–continent, and secondary contact), but never un-
der the scenarios corresponding to the first initial condition
(island–island and continent–island). This holds indepen-
dently of the size of the domain of attraction of the DMI.
Extensive numerical calculations show that this finding
extends to the general model with linkage.
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File S1: Analysis of the haploid model

Here, we derive the possible equilibrium and bifurcation structures of the haploid model
(Section The haploid model). Our main results are formulated and proved in Section S.7.
The supplementary Mathematica notebook will be useful in checking several of the results
presented below. It also contains interactive gadgets to visualize these results.

The results derived in this Online Supplement are not merely auxiliary to those presented
in the main text, but they complement and extend previous studies of two-locus haploid
models. Theorem S.2 characterizes the equilibrium structure of the diallelic haploid two-locus
model with arbitrary selection (and no migration) for the cases that are not covered by the
analyses of Feldman (1971) and Rutschman (1994). These are the cases when an internal
equilibrium exists and two boundary equilibria are asymptotically stable. However, in contrast
to their analyses, ours is performed for the continuous-time model. This not only facilitates
some computations but in particular enables the application of the index theory of continuous
dynamical systems. Index theorems are a powerful tool that, to our knowledge, has not been
used in the population genetic literature so far. Except for non-generic, degenerate cases,
Theorems S.4 and S.5 characterize all equilibrium and bifurcation patterns for the haploid
two-locus continent-island model with negative epistatic selection. In particular, they extend
the main mathematical result of Bürger and Akerman (2011), who derived these patterns
for nonepistatic selection.

For easier reference, we state the basic differential equations describing the haplotype
dynamics:

ẋ1 = x1[−α(x3 + x4)− β(x2 + x4) + γx4]− rD −mx1 , (S.1a)

ẋ2 = x2[−α(x3 + x4) + β(x1 + x3) + γx4] + rD + m(1− x2) , (S.1b)

ẋ3 = x3[α(x1 + x2)− β(x2 + x4) + γx4] + rD −mx3 , (S.1c)

ẋ4 = x4[α(x1 + x2) + β(x1 + x3)− γ(x1 + x2 + x3)]− rD −mx4 . (S.1d)

This is a dynamical system on the simplex S4 = {(x1, x2, x3, x4) : xi ≥ 0 ∀i and
�

i xi = 1}
which constitutes our state space. We always assume m ≥ 0, r ≥ 0, and γ ≥ 0.

For many purposes, it will be convenient to describe the dynamics in terms of the allele
frequencies pA = x3 + x4, pB = x2 + x4, and the measure D of linkage disequilibrium (LD).
Deviating from the main text, we use the notation p = pA and q = pB throughout this Online
Supplement. Then the dynamical equations read
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ṗ = αp(1− p)− γ(1− p)(pq + D) + βD −mp , (S.2a)

q̇ = βq(1− q)− γ(1− q)(pq + D) + αD + m(1− q) , (S.2b)

Ḋ = [α(1− 2p) + β(1− 2q)]D − γ[(1− p)(1− q)−D](pq + D)

− rD −m[p(1− q) + D] . (S.2c)

We recall that D has to satisfy

−min[pq, (1− p)(1− q)] ≤ D ≤ min[p(1− q), (1− p)q] . (S.3)

S.1 Existence and linear stability of boundary equilibria

We denote the monomorphic equilibria xi = 1 by Mi. If m = 0, then all monomorphic equi-
libria exist. However, if α > 0 and γ > β, the conditions most relevant for this investigation
(see (S.24) below), M1 and M4 are always unstable.

If m > 0, then only M2 (fixation of the continental type) is an equilibrium. The eigenvalues
of (the Jacobian of (S.1) at) M2 are

−β −m , α− γ −m , α− β −m− r . (S.4)

Hence, M2 is asymptotically stable if

m > max[−β,α− γ,α− β − r] , (S.5)

i.e., if (A.3) holds.

If m = 0, the eigenvalues of M3 are

−α , β − γ , −α + β − r . (S.6)

Hence, M3 is asymptotically stable if α > 0, γ > β, and r > β − α.

Next, there may exist two equilibria at which one locus is polymorphic and the other is
fixed. The equilibrium SA has the coordinates (p, q,D) =

�
1− m

α−γ , 1, 0
�

and is admissible if
and only if m < α− γ. Its eigenvalues are

−α + γ + m ,
1
2

�
−(α + r) + 2(γ − β)±

�
(α + r)2 +

4αrm

γ − α

�
. (S.7)

Hence, SA is asymptotically stable if

γ < α + β and
(α− γ)(γ − β)

α

�
1 +

α + β − γ

r

�
< m < α− γ , (S.8)
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which requires r > γ − β.

The equilibrium SB has coordinates the
�
0,−m

β , 0
�

and is admissible if and only if m < −β.
Its eigenvalues are

β + m ,
1
2

�
−(γ − β + r) + 2α±

�

(γ − β + r)2 +
4(γ − β)rm

β

�
. (S.9)

Hence, SB is asymptotically stable if

γ > α + β and
−βα

γ − β

�
1 +

γ − β − α

r

�
< m < −β , (S.10)

which requires r > α.

In the following lemma, we collect a few simple but important observations that follow
from the above analysis.

Lemma S.1. 1. For given m > 0, at most one of the boundary equilibria M2, SA, or
SB can be stable. Their asymptotic stability conditions are given by (S.5), (S.8), or (S.10),
respectively.

2. M2 is asymptotically stable if m is sufficiently large. If M2 is asymptotically stable,
then SA and SB are not admissible.

3. As a function of m, boundary equilibria change stability at most once. If a change in
stability occurs, then it is from unstable to stable (as m increases).

Finally, if r = 0, there is a fully polymorphic equilibrium R0 on the edge x1 = x4 = 0
of S4. Thus, only the island and the continental haplotypes are present. It satisfies p = x3,
q = x2, D = −pq, and p + q = 1. The coordinates (p, q,D) of R0 are

�
1− m

α− β
,

m

α− β
,

m2

(α− β)2
− m

α− β

�
. (S.11)

The eigenvalues are

−α , β − γ , −α + β + m . (S.12)

This equilibrium exists and is asymptotically stable if and only if

m < α− β (S.13)

holds; cf. (8).
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S.2 Global stability properties of boundary equilibria

In the following we prove global asymptotic stability of boundary equilibria for various sets of
parameters by applying the theory of Lyapunov functions (e.g. LaSalle 1976, in particular,
Theorem 6.4 and Corollary 6.5). By global asymptotic stability of an equilibrium we mean
that every trajectory, such that initially all alleles are present, converges to this equilibrium.
By (S.5), (S.8), and (S.10), there is at most one asymptotically stable boundary equilibrium
for any given set of parameters. Hence, convergence of all trajectories to the boundary is
sufficient for demonstrating global stability. Because global convergence to the boundary
precludes the existence of an internal equilibrium, these results yield the necessary conditions
for a stable DMI (i.e., a stable internal equilibrium) in the section Necessary conditions for
stable DMIs.

S.2.1 Proof of the necessary conditions α > 0 and β < γ

We define
Y =

x1 + x3

x3 + x4
=

1− q

p
, (S.14)

where we assume x3 + x4 > 0. Differentiating Y with respect to t and using (S.1), we obtain

Ẏ = −(β − γ)x4(x1 + x3) + αx1(x3 + x4)
(x3 + x4)2

. (S.15)

We infer immediately that

Ẏ ≤ 0 if α > 0 and β ≥ γ , (S.16a)

Ẏ ≥ 0 if α ≤ 0 and β < γ , (S.16b)

and the inequalities for Ẏ are strict in the interior of S4. Therefore, q(t) → 1 as t → ∞
if (S.16a) applies. It is an easy, but not necessary, exercise to show that SA is globally
asymptotically stable if α > γ and M2 is globally asymptotically stable if α ≤ γ (see also
below). If (S.16b) applies, then p(t)→ 0, and either M2 (if (S.5) holds) or SB (otherwise) is
globally asymptotically stable.

Next, we define

X =
x1 + x3

x1 + x2
=

1− q

1− p
, (S.17)

where x1 + x2 > 0, and obtain

Ẋ = −m(x1 + x3) + βx2(x1 + x3)− αx3(x1 + x2)
(x1 + x2)2

. (S.18)
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We conclude that
Ẋ ≤ 0 if α < 0 and β ≥ 0 , (S.19)

and Ẋ < 0 in the interior of S4. Therefore, q(t) → 1 as t →∞. Combining (S.16a), (S.16b),
and (S.19) completes the proof that (2), i.e., α > 0 and γ > β, is a necessary condition for
the existence of a DMI.

S.2.2 Gobal convergence to M2

Assume α > 0 and γ > β. Because

ẋ2 = x2[β(x1 + x3) + γx4 − α(x3 + x4)− rx3] + m(x1 + x3 + x4) + rx1x4

≥ x2[(m + β)x1 + (m + β − α− r)x3 + (m− α + γ)x4] , (S.20)

global convergence to M2 follows at once if m > max[−β,α− γ,α− β + r] = α− β + r. This
implies (3) and (4a). Hence, M2 is globally asymptotically stable for every m if r < β − α.

S.2.3 Proof of (4b) and (4c)

Assume α > 0 and γ > β. We first prove that m ≥ max[α − β, 1
4α] implies Ẋ ≤ 0, i.e.,

q(t)→ 1 as t→∞. Indeed, the denominator of −Ẋ in (S.18) satisfies

m(x1 + x3) + βx2(x1 + x3)− αx3(x1 + x2)

= mx1(x1 + x3 + x4) + mx3(x1 + x3 + x4)− αx1x3 + x1x2(m + β) + x2x3(m + β − α)

≥ m(x1 + x3)2 − αx1x3 + x1x2(m + β) + x2x3(m + β − α) ≥ 0 (S.21)

if m ≥ max[α − β, 1
4α,−β]. This proves m+

max ≤ max[α − β, 1
4α] because α − β > −β. The

other inequality, (4c), follows analogously by using the Lyapunov function (x3 +x4)/(x2 +x4)
or by employing the model symmetry noted below (A.6), i.e., α→ γ − β and β → γ − α.

S.2.4 Internal equilibria exhibit negative linkage disequilibrium

We prove that every trajectory eventually enters the region D ≤ 0 and remains there. Con-
vergence to D = 0 occurs if and only if at least one allele is eventually lost. Thus, every
internal equilibrium satisfies D < 0.
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To prove these statements, we define

Z =
x2x3

x1x4
, (S.22)

where x1 > 0 and x4 > 0 is assumed. We note that Z = 1 if and only if D = 0, and Z < 1 if
and only if D > 0. Then

Ż = x1x3x4(m + γx2) + rD(x1x2x3 + x2x3x4 + x1x2x4 + x1x3x4) . (S.23)

We observe that Ż ≥ 0 holds whenever D ≥ 0. In addition, it follows immediately that Ż > 0
if rD > 0 and x2 + x3 > 0. If x2 + x3 = 0 and x1x4 > 0, then ẋ1 + ẋ4 < 0 if r + m > 0.
Hence, all trajectories leave D > 0 if r > 0. If rD = 0, then Ż = 0 only if x3 = 0 or if m = 0
and γx2 = 0. Thus, our result follows by investigating (i) the dynamics on x3 = 0 if r = 0,
(ii) the dynamics on x2 = 0 if m = r = 0, and (iii) the case m = γ = 0. We leave the simple
first two cases to the reader. The third case is also not difficult and follows immediately from
Section 3.4.1 in Bürger and Akerman (2011)).

We conclude that at any equilibrium satisfying D = 0, one or both loci are fixed.

For the rest of this Online Supplement, we assume

α > 0 and γ > β and r > β − α , (S.24)

because we have proved that internal equilibria can exist only if (S.24) is satisfied. We note
that (S.24) holds if and only if M3 (island haplotype fixed) is linearly stable in the absence
of migration; cf. (S.6).

S.3 Calculating the internal equilibria

We derive a cubic equation from which the coordinate p of an internal equilibrium (p, q,D)
can be obtained. Given p, the coordinates q and D can be computed from relative simple
explicit formulas. Using these results, we show that at most three internal equilibria can exist.

By solving ṗ = 0, we find that, for given p and q, and if p �= 1− β/γ, the value of LD at
equilibrium is

D = D(p, q) = p
m + (1− p)(γq − α)

β − γ + γp
. (S.25)

Substituting this into (S.2b), assuming β �= 0, and solving q̇ = 0 for q, we obtain

q1,2(p) =
1
2

��
1− m

β

�
±

�
Q

�
(S.26)

where

Q =
�

1 +
m

β

�2

− 4αmp

β(γ − β)
− 4α(γ − α)

β(γ − β)
p(1− p) (S.27)
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needs to be nonnegative to yield an admissible equilibrium. Finally, we substitute q = q1(p)
and D = D(p, q1(p)) into (S.2c) and obtain that any equilibrium value p must be a solution
of the equation

(γ − β)A(p)−
�

QB(p) = 0 , (S.28)

where

A(p) = (γ − β)
�
β[(α− r)(γ − 2α) + γ(α− β)] + [β(γ + β − 2α) + r(2β − γ)]m + βm2

�

+
�
β [2α(2γ − 3β)(γ − α)− βγ(γ − β)]− (2γ − β)(2α− γ)r

+ [2αβ(γ − 2β)− βγ(γ − β) + γ(2γ − 3β)r]m
�
p

− [2αβ(γ − α)(γ − 2β) + βγ(γ − 2α)r + γ2rm]p2 , (S.29a)

B(p) = (γ − β)[−2αβ + γ(β + r) + βm]

+ [2αβ(γ − β)− βγ(γ − β) + r(β − 2γ)]p + γ2rp2 . (S.29b)

If we substitute q = q2(p) and D = D(p, q2(p)) into (S.2c), we obtain

(γ − β)A(p) +
�

QB(p) = 0 , (S.30)

instead of (S.28). If A(p) = B(p) = 0, then for given α, β, γ, and r, only one value of m can
give rise to an internal equilibrium. We ignore this case here, but will encounter it further
below. Otherwise, a solution p of (S.28) cannot be a solution of (S.30), and vice versa. Hence,
for a solution p, only one of q1(p) or q2(p) can give rise to an admissible internal equilibrium.
In fact,

if A(p) and B(p) have the same sign, only q1(p) can be admissible;

if A(p) and B(p) have opposite signs, only q2(p) can be admissible.
(S.31)

Therefore, solutions p of (S.28) or (S.30) satisfy

0 = (γ − β)2A(p)2 −QB(p)2

=
4β

γ − β
(β − γ + γp)2[m + (γ − α)(1− p)]P (p) , (S.32)

where

P (p) = (γ − β)(m + r + β − α)[αβ(α + β − γ − r)−mr(γ − β)]

+
�
αβ(α− β)(γ − β)(α + β − γ) + α(γ − β)[3β(γ − 2α) + m(4β − γ)]r

+ [α(γ2 + βγ − β2) + γ(γ − β)m]r2
�
p

− 2αr[β(γ − β)(γ − 2α) + γ2r]p2 + αγ2r2p3 . (S.33)
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Because p = 1− β/γ never gives an equilibrium of (S.2) and p = 1−m/(γ − α) can give rise
only to a single-locus polymorphism, any internal equilibrium value p must satisfy P (p) = 0.
It is easy to find parameter values such that P has three zeros in (0, 1) (e.g., α = 1, β = 1.5,
γ = 4, r = 2, m = 0.4). Apparently, only two can give rise to an equilibrium (and this will
be proved further below).

The case β = 0 can be treated separately and is much simpler because q(p) is uniquely
determined. In particular, the value p of an internal equilibrium has to satisfy P (p) = 0. If
p = 1− β

γ , we necessarily have r = γ(α−β)(α+β−γ)
(γ−2α)(γ−2β) . Then q = α/γ is uniquely determined and

D = −α(γ−α)(α+β−γ)
(γ−2α)(γ−2β) . This equilibrium may be admissible or not.

Remark S.1. In the absence of epistasis (γ = 0) there can be at most two internal equilibria.
Their coordinates are obtained from a quadratic equation in p. The admissibility conditions
are given by simple formulas (Bürger and Akerman 2011).

We can summarize these findings as follows.

Theorem S.1. The haploid dynamics (S.2) can have at most three internal equilibria. The
coordinate p̂ of an internal equilibrium (p̂, q̂, D̂) is a zero of the polynomial P given by (S.33).
For given p̂ with P (p̂) = 0, only one of q1(p̂) or q2(p̂) (S.26) can yield an equilibrium value q̂.
D̂ is calculated from p̂ and q̂ by (S.25). This procedure yields an internal equilibrium if and
only if 0 < p̂ < 1, 0 < q̂ < 1, and −min[p̂q̂, (1− p̂)(1− q̂)] ≤ D̂ < 0 hold. If γ = 0, there are
at most two internal equilibria.

For several important limiting cases, explicit expressions for the internal equilibria are
obtained below (see Sections S.6 and S.8).

S.4 Critical m at which two internal equilibria may bifurcate

A bifurcation of two internal equilibria can occur if and only if P (p∗) = 0, where p∗ ∈ (0, 1)
is a critical point of P , i.e., P �(p∗) = 0. There are at most two such critical points, and they
are given by

p∗1,2 =
1

3αγ2r

�
2α[β(γ − 2α)(γ − β) + γ2r]±

√
R

�
, (S.34a)

where

R = α2
�
−β(γ − β)

�
16αβ(γ − α)(γ − β) + γ2(3α2 + β2)− γ3(3α + β)

�

− βγ2(γ − β)(γ − 2α)r + γ2(3β2 − 3βγ + γ2)r2
�

− 3mrαγ2(γ − β)[4αβ + γ(r − α)] (S.34b)
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Solving either P (p∗1) = 0 or P (p∗2) = 0 for m, we obtain after some straightforward
manipulations that the critical value m∗ must be a solution of the following quartic equation:

[αβ(2β− γ)(α + β− γ + r) + γ(γ− β)rm]2[−ψ1 + 2ψ2rm + 27αγ2(γ− β)r2m2] = 0 , (S.35a)

where

ψ1 = α(γ − β)(α− β + r)2[4αβ(γ − α)(γ − β) + γ2r2] , (S.35b)

ψ2 = 2α2(γ − β)2(9βγ − 8αβ − αγ) + 3αγ(γ − β)(3βγ − 2αβ − αγ)r

+ 3αγ2(γ − β)r2 + 2γ3r3 . (S.35c)

The zero m = m0 arising from the first (linear) factor in (S.35a) does not give a valid
bifurcation point for internal equilibria for the following reason. The corresponding critical
value p0 (which, depending on the parameters, can be p∗1 or p∗2) is a double solution of P (p)
and has the property that A(p0) = B(p0) = 0. However, P (p) was derived from (S.28) and
(S.30) by squaring. Differentiating (γ − β)A(p) ±

√
QB(p) with respect to p and evaluating

at (p0, m0), we infer from the Implicit Function Theorem that p is uniquely determined by
m in a small neighborhood of m0 unless r assumes one of two specific values. One of them
leads to boundary equilibrium (thus not to an internal bifurcation). If we denote the other
by r0 (= β[α(γ − 4β) + β(γ − β)]/[γ(3β − γ]), then p0 = p1 = p2 holds at m0. Although
there is a bifurcation of three values p, only one of the resulting three branches gives rise to
an admissible equilibrium.

The second (quadratic) factor in (S.35a) provides two potential solutions. However, be-
cause ψ1 ≥ 0, one is negative. Therefore, the critical value we are looking for is given by

m∗ =
1

27αγ2(γ − β)r

�
−ψ2 +

�
ψ2

2 + 27αγ2(γ − β)ψ1

�

=
1

27αγ2(γ − β)r

�
−ψ2 + 2

�
α2(γ − β)2 + 3αβ(γ − β)(γ − α) + αγ(γ − β)r + γ2r2

�3/2
�

.

(S.36)

At this value, two equilibria with non-zero allele frequencies collide and annihilate each other.
Thus, m∗ is the critical value at which a saddle-node bifurcation occurs. This gives an
admissible bifurcation if both equilibria are internal (hence admissible) for either m < m∗ or
m > m∗.

If p∗1 = p∗2, i.e., if R = 0, a pitchfork bifurcation could occur at m∗. As a function of α,
β, and γ, the condition p∗1 = p∗2 can be satisfied at m∗ only for three different values of r, of
which at most two can be positive. It can be shown that at each of these values, one of the
emerging zeros of P (p) does not give rise to an admissible equilibrium (because D > 0 there).
Thus, only a saddle-node bifurcation can occur.
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We obtain the following series expansions for m∗. If β < 0 and γ is small, then

m∗ =
(α− β + r)2

8r
+

γ(α− β − 3r)(α− β + r)2

64αβr
+ O(γ2) . (S.37)

If γ = 0, this reduces to the expression given in Bürger and Akerman (2011).

If r is large, the following quasi-linkage-equilibrium (QLE) approximation is obtained:

m∗ =
α(γ − β)

4γ

�
1− 4βγ − 3αβ − αγ

2γr

�
+ O

�
1
r2

�
. (S.38)

S.5 The haploid two-locus selection model in the absence of migration

We assume m = 0. From Section S.3, we obtain the following properties of internal equilibria
(p, q,D). The LD is given by

D = D(p, q) = p(1− p)
γq − α

β − γ + γp
, (S.39)

where p �= 1− β/γ; cf. (S.25). For admissibility, we need

max[−pq,−(1− p)(1− q)] < D < 0 . (S.40)

For given p and if β �= 0, the coordinate q of an internal equilibrium can assume only one of
the following forms:

q1,2(p) =
1
2

�
1±

�

1− 4α(γ − α)p(1− p)
β(γ − β)

�
. (S.41)

By Theorem S.1, for given p, at most one of q1 = q1(p) or q2 = q2(p) can give rise to an
equilibrium.

Our goal here is to prove the following theorem:

Theorem S.2. Suppose (S.24) and m = 0.

1. The haploid dynamics (S.2) admits at most one internal equilibrium.

2. Depending on the parameters, the internal equilibrium is given by either
(p, q1(p), D(p, q1(p))) or (p, q2(p), D(p, q2(p))), where p is one of p1 or p2 in (S.45), and qi(p)
and D(p, qi(p)) are given by (S.41) and (S.39), respectively.

3. An internal equilibrium exists if and only if both M2 and M3 are asymptotically stable.
This is the case if and only if

γ > α and β > 0 and r > α− β . (S.42)
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4. The internal equilibrium is unstable whenever it exists.

5. If (S.42) does not hold, then M3 is globally asymptotically stable.

This theorem complements the results derived by Feldman (1971) and Rutschman

(1994) on the discrete-time dynamics of the haploid two-locus selection model. Rutschman
proved global convergence to a boundary equilibrium for all parameter combinations for which
no internal equilibrium exists. If transformed to the parameters used by Rutschman, condi-
tion (S.42) yields precisely the cases not covered by Rutschman’s Theorem 14. Because our
model is formulated in continuous time, the internal equilibrium can be determined by solving
quadratic equations. This is instrumental for our proof.

We assume β > 0 because otherwise q(t) → 0 as t → ∞ if m = 0 (this follows because
q̇ < 0 on D < 0 in this case, and we already know that all solutions eventually reach D ≤ 0 and
remain there). In addition, for m > 0 we showed that internal equilibria can exist only if α > 0
and γ > β. Because with m = 0 we have the additional model symmetry of exchangeable α

and β, we may assume
γ > α ≥ β > 0 . (S.43)

We need four lemmas to prove the above theorem.

Lemma S.2. The coordinate p of an equilibrium is a zero of the polynomial

P (p) = γ2r2p2 − r[2β(γ − β)(γ − 2α) + rγ2]p + β(γ − β)(α− β − r)(α + β − γ − r) . (S.44)

If r > 0, the two zeros of P are given by

p1,2 =
1
2

+
γ − 2α

r

β

γ

�
1− β

γ

�
± 1

2

�
1− 2β

γ

� �

1 +
4α(γ − α)

r2

β

γ

�
1− β

γ

�
(S.45)

and satisfy

|p1 − p2| =
�

1− 2β

γ

� �

1 +
4α(γ − α)

r2

β

γ

�
1− β

γ

�
>

����1−
2β

γ

���� . (S.46)

The minimum value of P is

P (pmin) =
−(γ − 2β)2

4γ2
[4αβ(γ − α)(γ − β) + γ2r2] < 0 , (S.47)

where
pmin =

1
2

+
1
r

β

γ

�
1− β

γ

�
(γ − 2α) . (S.48)

In addition, we have

P

�
β

γ

�
= β

�
1− β

γ

�
[(α− β)(α + β − γ)γ + (γ − 2α)(γ − 2β)r] (S.49a)

12 SI C. Bank, R. Bürger, and J. Hermisson



and

P

�
1− β

γ

�
= β

�
1− β

γ

�
[(α− β)(α + β − γ)γ − (γ − 2α)(γ − 2β)r] . (S.49b)

Proof. The expression P (p) follows from (S.33) because m = 0. The other statements are
derived readily.

An immediate consequence of (S.44) is that no internal equilibrium exists if r = 0 and at
most one if γ = 0.

Lemma S.3. (i) (p, q1(p)) can give rise to an internal equilibrium if and only if

Ã(p) = (γ − β)[(α− r)(γ − 2α) + γ(α− β)] + [2α(γ − α)(2β − γ) + rγ(γ − 2α)]p (S.50)

and
B̃(p) = −(γ − β)[β(γ − 2α) + γr] + rγ2p (S.51)

have opposite signs. Otherwise, (p, q2(p)) may give rise to an internal equilibrium.

(ii) Assume (S.43). If p1 and p2 are the two zeros of P (p), then B̃(p1)B̃(p2) < 0. Hence,
B̃(p) changes sign between p1 and p2. Because α > β, we have Ã(p1)Ã(p2) > 0 for every
r > 0 if and only if γ ≤ α+β. Hence, in this case, Ã(p) does not change sign between p1 and
p2.

(iii) Assume (S.43). If γ ≤ α + β and P has two zeros in (0, 1), at most one of them can
give rise to an admissible internal equilibrium (p, q1, D(p, q1).

Proof. (i) Since m = 0, we obtain from (S.29) A(p) = β(1−p)Ã(p) and B(p) = −(1−p)B̃(p),
which, on account of (S.31), proves (i).

(ii) These statements follow because

Ã(p1) =
γ − 2β

2γ2r

�
φ1 + φ2

�
4αβ(γ − α)(γ − β) + γ2r2

�
, (S.52a)

Ã(p2) =
γ − 2β

2γ2r

�
φ1 − φ2

�
4αβ(γ − α)(γ − β) + γ2r2

�
, (S.52b)

and

B̃(p1) =
γ − 2β

2

�
−γr +

�
4αβ(γ − α)(γ − β) + γ2r2

�
, (S.53a)

B̃(p2) =
γ − 2β

2

�
−γr −

�
4αβ(γ − α)(γ − β) + γ2r2

�
, (S.53b)
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where

φ1 = 4αβ(γ − β)(γ − α)(2α− γ) + 2αγ(γ − α)(γ − 2β)r + γ2(2α− γ)r2 , (S.54a)

φ2 = 2α(γ − α)(2β − γ) + rγ(γ − 2α) , (S.54b)

and

φ2
1 − φ2

2[4αβ(γ − α)(γ − β) + γ2r2]

= 4αβγ2(γ − α)(γ − β)[4α(α− β)(γ − α)(α + β − γ) + (2α− γ)2r2)] > 0 (S.55)

if α + β > γ.

(iii) This is an immediate consequence of (i) and (ii).

Lemma S.4. Under the assumption (S.43), (p, q1, D(p, q1)) can be an admissible internal
equilibrium only if one of the following three conditions is satisfied:

γ ≥ 2α and p < 1− β

γ
, (S.56a)

or
γ < 2α and p < min

�
β

γ
, 1− β

γ

�
, (S.56b)

or
γ < 2β and 1− β

γ
< p <

β

γ
. (S.56c)

Proof. We utilize the fact that an internal admissible equilibrium has to satisfy (S.40), where
D = D(p, q1) is given by (S.39). We consider two cases.

Case 1. p < 1− β
γ . Then D < 0 if and only if γq1 > α, which is satisfied if and only if one

of the following conditions holds:
γ ≥ 2α , (S.57a)

γ < 2α and p(1− p) <
β

γ

�
1− β

γ

�
. (S.57b)

Because p < 1 − β
γ , (S.57b) is equivalent to (S.56b). Thus, each of (S.56a) or (S.56b) is

necessary for admissibility of an equilibrium with p < 1− β
γ .

Case 2. p > 1− β
γ . Then D < 0 if and only if γq1 < α, which is satisfied if and only if

γ < 2α and 1− β

γ
< p <

β

γ
. (S.58)
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Clearly, this requires γ < 2β. Hence, (S.58) can be replaced by (S.56c).

We recall from Section S.3 that if p = 1−β/γ, there exists at most one internal equilibrium.

Lemma S.5. Under the assumption (S.43), (p, q2, D(p, q2)) can be an admissible internal
equilibrium only if

γ > 2α (S.59)

and
β

γ
< p ≤ 1− β

γ
(S.60)

hold.

Proof. Case 1. p < 1− β
γ . Then D < 0 if and only if γq2 > α, which can be satisfied only if

(S.59) and (S.60) hold.

Case 2. p > 1 − β
γ . Then D < 0 if and only if γq2 < α, which can be satisfied only if

p > max
�

β
γ , 1− β

γ

�
. Admissibility of an internal equilibrium also requires D(p, q2) > −pq2.

A straightforward calculation shows that, because p > 1− β
γ , this can hold only if α < β, i.e.,

if assumption (S.43) is violated.

Remark S.2. For convenience, we briefly recapitulate the following index theorem (Theorem
2 in Hofbauer 1990) which will play a decisive role in the proof of Theorem S.2. For every
dissipative semiflow on Rn

+ such that all fixed points are regular, the sum of their indices
equals +1. To apply this theorem, we note that system (S.1) satisfies the assumptions. (Here,
we assume m ≥ 0, because this remark will also be needed below when treating the case
m > 0.) (S.1) is obviously well defined on R4

+, R4
+ is forward invariant under (S.1) (i.e., if

xi = 0, then ẋi ≥ 0), and S4 is globally attracting in R4
+ under a modification of (S.1) that

does not change the dynamics on S4. To show the latter, we note that adding a sufficiently
large positive constant κ to each of the gametic fitnesses wi does not change the dynamics on
S4, but implies

d

dt

��

i

xi

�
=

�
1−

�

i

xi

�
[m + κx1 + (β + κ)x2 + (α + κ)x3 + (α + β − γ + κ)x4] < 0 (S.61)

if and only if
�

i xi > 1 and d
dt (

�
i xi) > 0 if and only if

�
i xi < 1.

In our case, the index of an equilibrium is (−1)m, where m is the number of negative
eigenvalues (they are always real). An internal equilibrium is always saturated. If it is
asymptotically stable, it has index 1. Equilibria on the boundary of the simplex are saturated
if and only if they are externally stable. This is the case if and only if no gamete that is
missing at the equilibrium can invade. Because S4 is attracting within R4

+, the index of an
asymptotically stable (hence, saturated) boundary equilibrium is 1.
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Now we are ready to prove the theorem.

Proof of Theorem S.2. 1. and 2. We assume (S.43). By Theorem S.1, for given p, only one
of q1(p) or q2(p) can give rise to an equilibrium. By Lemma S.4, q1(p) may give rise to an
internal equilibrium if either of the conditions (S.56a), (S.56b), or (S.56c) is satisfied. By
Lemma S.5, q2(p) may give rise to an equilibrium if (S.59) and (S.60) are satisfied.

If γ ≥ 2α, (S.49b) shows that P (1− β/γ) < 0 and Lemma S.2 implies that one zero of P

is greater than 1−β/γ. Hence, by (S.56a), only the zero of P which satisfies p < 1−β/γ can
give rise to an admissible equilibrium (p, q1, D(p, q1)). By Lemma S.5, (S.59) and (S.60), only
the zero p < 1− β/γ can give rise to an admissible equilibrium (p, q2, D(p, q2)). However, we
already know that at most one of q1(p) or q2(p) can yield an equilibrium.

If γ < 2α, then Lemmas S.4 and S.5 imply that only q1 can give rise to an equilibrium.
This requires that (S.56b) or (S.56c) apply. If (S.56c) applies, (S.46) shows that at most one
zero of P can satisfy this condition. If (S.56b) applies and γ ≤ α + β, we conclude from
Lemma S.3 (iii) that at most one zero can give rise to an equilibrium. If α+β < γ < 2α, then
(S.49a) yields P (β

γ ) < 0, whence one zero of P is bigger than β
γ , in contradiction to (S.56b).

This finishes the proof of the first statement and shows that an internal equilibrium can exist
only if (S.42) is satisfied.

3. and 4. It remains to prove that the internal equilibrium exists if (S.42) holds and that
it is unstable. This follows readily from the index theorem of Hofbauer (1990); see Remark
S.2. In our model, the only boundary equilibria are the four monomorphic states. M1 and
M4 are never saturated because they are unstable within S4. M2 and M3 are saturated if
and only if they are asymptotically stable within S4. Then, we have ind(M2) = ind(M3) = 1.
Hence there must exist an internal equilibrium with index -1. Such an equilibrium cannot be
stable.

Because M2 and M3 are both asymptotically stable if and only if (S.42) holds, statements
3 and 4 are proved.

5. Let us first assume β ≤ 0. Then (S.18) implies Ẋ ≥ 0 if p < 1, and Ẋ = 0 only if
x3 = 0. Because ẋ3 > 0 on x3 = 0 except on the invariant edges p = 0 or q = 1, we infer
p(t)→ 1. If p = 1, then ẋ3 = x3(1− x3)(γ − β) yields the assertion.

Now assume β > 0. A simple calculation shows that

ẋ3 + ẋ4 = αx1x3 + (α− β)x2x3 + (α− γ)x2x4 + (α + β − γ)x1x4 ≥ 0 (S.62)

if α ≥ γ (> β), and equality holds at most at edges of S4. From this, it is an easy exercise to
prove convergence of M3.
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Finally, assume β > 0, γ > α, and r < α − β, which requires α > β. Then global
convergence to M3 follows from the inequality

ẋ3 = αx1x3 + (α− β)x1x4 + (γ − β)x3x4 − (α− β − r)D ≥ 0 , (S.63)

which holds if D ≤ 0 (as is sufficient; see Section S.2.4), and a simple investigation of the
dynamics on the edges of S4.

S.6 Weak migration

With the aid of perturbation theoretical methods, we can derive the equilibrium and stability
structure of our model for weak migration from the model without migration. Theorem 4.4 of
Karlin and McGregor (1972b) implies that every equilibrium that is asymptotically stable
for m = 0, persists for sufficiently small m > 0 and remains asymptotically stable. Stable
equilibria on the boundary may move into the interior of the state space. Equilibria that are
unstable if m = 0 remain unstable if m > 0. However, unstable equilibria at the boundary
may leave the state space as m becomes positive. Application of this theorem requires that
all equilibria in the unperturbed system are hyperbolic, i.e., they have no eigenvalues with
zero real part. Theorem 5.4 in Bürger (2009) ensures global asymptotic stability of the
perturbed equilibrium, at least if γ and m are small enough.

For our model these perturbation results in conjunction with Theorem S.2 and Lemma
S.1 immediately yield the following result.

Theorem S.3. If m > 0 is sufficiently small, the following equilibrium configurations can
occur.

1. If (S.42) holds, there exists one unstable internal equilibrium, one asymptotically stable
internal equilibrium (the perturbation of M3), and M2 is asymptotically stable. Neither SA
nor SB is admissible.

2. Otherwise, i.e., if γ < α or β < 0 or r < α−β, the perturbation of the equilibrium M3

is globally asymptotically stable (at least if γ is small). The equilibrium M2 is unstable, and
the equilibria SA and SB may be admissible. If SA or SB is admissible, it is unstable.

The coordinates of the internal equilibria can be determined explicitly to first order in m.
The coordinates (p, q,D) of the stable equilibrium (IDMI) are

�
1− m(α + r)

α(α− β + r)
,

m(γ − β + r)
(γ − β)(α− β + r)

,− m

α− β + r

�
. (S.64)
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S.7 The complete equilibrium and stability structure

Now we are in the position to prove our main results about the equilibrium and bifurcation
structure. We continue to assume (S.24), because we have already shown that otherwise an
internal equilibrium (a DMI) cannot exist and global convergence to a boundary equilibrium
occurs (Section S.2). Throughout, we always consider bifurcations as a function of (increasing)
m.

We define

mA =
(α− γ)(γ − β)

α

�
1 +

α + β − γ

r

�
, (S.65a)

mB =
−βα

γ − β

�
1 +

γ − β − α

r

�
, (S.65b)

m2 = α− β − r (S.65c)

and note that mA, mB, and m2 are the critical values of m above which SA, SB, and M2,
respectively, are asymptotically stable provided they are admissible (Section S.1). We also
recall the definitions of m∗ (S.36) and of

m−
max =






mA if γ < min[α,α + β,β + r] , (S.66a)

mB if γ ≥ α + β = min[α,α + β,β + r] , (S.66b)

m2 if γ ≥ α + β = min[α,α + β,β + r] ; (S.66c)

cf. Appendix A.2.

Theorem S.4. The following three types of bifurcation patterns can occur:

Type 1.

• If 0 < m < m∗, there exist two internal equilibria; one is asymptotically stable (IDMI),
the other (I0) is unstable. The monomorphic equilibrium M2 is asymptotically stable.

• At m = m∗, the two internal equilibria collide and annihilate each other by a saddle-node
bifurcation.

• If m > m∗, M2 is the only equilibrium; it is asymptotically stable and, presumably,
globally stable.

Type 2. There exists a critical migration rate m̃ satisfying 0 < m̃ < m∗ such that:
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• If 0 < m < m̃, there is a unique internal equilibrium (IDMI). It is asymptotically stable
and, presumably, globally stable.

• At m = m̃, an unstable equilibrium (I0) enters the state space by an exchange-of-stability
bifurcation with a boundary equilibrium.

• If m̃ < m < m∗, there are two internal equilibria, one asymptotically stable (IDMI), the
other unstable (I0), and one of the boundary equilibria is asymptotically stable.

• At m = m∗, the two internal equilibria merge and annihilate each other by a saddle-node
bifurcation.

• If m > m∗, a boundary equilibrium asymptotically stable and, presumably, globally stable.

Type 3.

• If 0 < m < m−
max, a unique internal equilibrium (IDMI) exists. It is asymptotically stable

and, presumably, globally stable.

• At m = m−
max, IDMI leaves the state space through a boundary equilibrium by an exchange-

of-stability bifurcation.

• If m > m−
max, a boundary equilibrium is asymptotically stable and, presumably, globally

stable.

Remark S.3. 1. Each of the bifurcation patterns of Type 2 and 3 include several subcases
because the equilibria SA and M2 or SB and M2 may merge and thereby exchange stability.
This may occur below or above m∗. If such a bifurcation occurs, then it is always M2 that
becomes stable, and SA or SB leave the state space through M2.

2. The conjectures about global asymptotic stability of a boundary equilibrium if m > m∗

(Type 1 or Type 2) or if m > m−
max (Type 3) are supported by extensive numerical iterations

which provided no incidence of limit cycles or complex attractors. Global stability of M2 has
been proved if m > m2 (Section S.2.2).

3. The conjectures about global stability of the internal equilibrium in patterns of Type
2 and Type 3 are supported by extensive numerical iterations. For sufficiently small m and
γ, they follow from Theorem 5.4 in Bürger (2009). For tight linkage and independent loci,
limit cycles and complex attractors are excluded in Sections S.8.1 and S.8.2.

Proof of Theorem S.4. Theorem S.3 provides all equilibrium configurations for small m. Lemma
S.1 provides control over the boundary equilibria. As m increases, they can vanish but not
emerge. They can also become asymptotically stable as m increases. For sufficiently large m,
there is always a globally asymptotically stable boundary equilibrium. By Theorem S.1, the
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number of internal equilibria is at most three. In addition, internal equilibria can emerge or
vanish only either by a saddle-node bifurcation (Section S.4) or because an equilibrium enters
or leaves S4 through one of boundary equilibria, when an exchange of stability occurs. A
bifurcation involving the two internal equilibria can occur at most at one value of m, namely
at m∗ (S.36). An exchange-of-stability bifurcation can occur only at the values mA, mB, or
m2. If it occurs, then the respective boundary equilibrium is asymptotically stable for every
larger m for which it is admissible. By the index theorem of Hofbauer (1990), cf. Remark
S.2, the sum of the indices of all saturated equilibria equals 1.

If Case 1 of Theorem S.3 applies, then M2 is asymptotically stable for every m > 0, and
it is the only boundary equilibrium. Hence, its index is 1. The index of the stable internal
equilibrium is also 1. Because the sum of the indices of the internal equilibria must be 0, the
index of the unstable equilibrium is -1. Because at most one bifurcation involving the two
internal equilibria can occur and because for large m, M2 is globally asymptotically stable,
the bifurcation must be of saddle-node type in which the equilibria collide and annihilate each
other (but do not emerge). In principle, the internal equilibria could also leave S4 through
a boundary equilibrium (in this case, it must be M2). However, by the index theorem, they
can do so only simultaneously. This occurs if and only if m∗ = m2, which is a non-generic
degenerate case. Because the sum of indices of the internal equilibria must be zero, no
equilibrium can enter the state space. These considerations settle the bifurcation pattern of
Type 1.

If Case 2 of Theorem S.3 applies, then, for small m, the boundary equilibria are unstable,
hence not saturated, and do not contribute to the sum of indices. Since then the indices
of internal equilibria must sum up to 1, the only possible bifurcation that does not entail
the stability of a boundary equilibrium would be a pitch-fork bifurcation of the internal
equilibrium which, by Section S.4, does not occur. (Indeed, because m∗ is the only value at
which a bifurcation among internal equilibria can occur, and because for large m a boundary
equilibrium is globally asymptotically stable, the three equilibria emerging by a pitchfork
bifurcation would have to leave the state space through boundary equilibria. This, however,
cannot occur, as follows easily from the results about linear stability in Section S.1.) Thus,
any further bifurcations involve a boundary equilibrium. There are two possibilities.

(i) An equilibrium enters S4 at some value m̃ (which can only be one of mA, mB, or
m2) through one of the unstable boundary equilibria by an exchange-of-stability bifurcation.
If m > m̃, there is one asymptotically stable boundary equilibrium, an unstable internal
equilibrium (the one that entered S4), and one asymptotically stable internal equilibrium.
Now a reasoning analogous to that applied above to Case 1 of Theorem S.3 establishes the
bifurcation pattern of Type 2.

(ii) The internal equilibrium leaves S4 by exchange of stability through one of the bound-
ary equilibria at m−

max. This becomes asymptotically stable then and, presumably, globally
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stable. At larger values of m no equilibrium can enter S4 through one of the (other) unstable
boundary equilibria, because this would either lead to two simultaneously stable boundary
equilibria, which is impossible (Lemma S.1), or this had to occur at the same value at which
the hitherto stable boundary equilibrium merges with M2 and leaves the state space. This,
too, is impossible because the sum of the indices of the new stable boundary equilibrium
and the new unstable internal equilibrium would be zero. Thus, we have established the
bifurcation pattern of Type 3 and excluded all other possibilities.

Our final goal is to assign the respective parameter combinations to the three bifurcation
patterns determined above. As in Appendix A.3, we distinguish four selection scenarios:

Selection scenario 1: 0 < α < β < γ

Selection scenario 2: 0 < β < α < γ

Selection scenario 3: γ − α < 0 < γ − β < α

Selection scenario 4: β < 0 < α < γ − β

From Appendix A.2, we recall the following definitions

rA = (γ − α)
3(γ − β)− α

2γ − α
, (S.67a)

rB = β
3α + β − γ

β + γ
, (S.67b)

r2 =
3α(γ − β)−

�
α(γ − β)(4βγ + 5αγ − 9αβ)

2γ
. (S.67c)

Now we define
f2(r) = α(β − α)(γ − β) + 3α(γ − β)r − γr2 . (S.68)

Then r2 is the smaller of the two zeros of f2 (provided they are real).

We note the following properties of f2 and r2:

(i) f2(0) < 0 if and only if α > β;
(ii) f2 is concave and assumes its maximum at r2,max = 3

2α(1− β
γ ) > 0. The larger of the two

zeros of f2 is always greater (or equal) than α;
(iii) f2(r) < 0 for every r if and only if 4βγ + 5αγ − 9αβ < 0;
(iv) r2 is real if and only if 4βγ + 5αγ − 9αβ ≥ 0, and r2 > 0 if, in addition, α > β.
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We define

r∗2 =

�
r2 if r2 is real ,

min[α, γ − β] otherwise .
(S.69)

In selection scenarios 1 and 2, r2 is always real. If r2 is not real, we have r∗2 = β − γ in
selection scenario 3, and r∗2 = α in scenario 4. An important observation is that in selection
scenario 4

r∗2 < α if and only if γ(α + β) > β(2α + β) . (S.70)

Lemma S.6. Assume selection scenario 4, i.e., β < 0 and γ > α + β.

1) An unstable internal equilibrium enters the state space through M2 at m = m2 (and
exists if m = m2 + �, � > 0 small) if

r ≤ α and f2(r) > 0 (S.71)

or, equivalently, if
r∗2 < r ≤ α . (S.72)

2) The stable internal equilibrium leaves the state space through M2 at m = m2 if

r ≤ α and f2(r) ≤ 0 (S.73)

or, equivalently, if
r ≤ min[α, r∗2] . (S.74)

Proof. The lemma follows from studying the perturbation of M2 near m2. To obtain D to
first order in �, one has to derive p and q up to second order in �.

1) If m = m2 + � (� > 0), to leading order in �, the perturbation analysis yields

p(�) =
(γ − β)D(�)
r − γ + β

, q(�) = 1− αD(�)
r − α

, D(�) = �
−(r − α)(r − γ + β)

f2(r)
. (S.75)

Because we know that D(�) < 0 holds at every equilibrium and because α < γ−β, (S.71) fol-
lows. The equivalence of (S.71) and (S.72) follows easily from the properties of f2 summarized
above.

2) If m = m2 − � (� > 0), to leading order in �, the perturbation analysis yields the same
expressions for p(�) and q(�), and

D(�) = �
(r − α)(r − γ + β)

f2(r)
. (S.76)

Now, (S.73) and (S.74) follow as above. If r = r2, then f2(r) = 0. This case is degenerate
because m2 = m∗ and the outgoing and incoming equilibria collide at M2 and annihilate each
other.
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Lemma S.7. Assume selection scenario 2, i.e., 0 < β < α < γ.

1) An unstable internal equilibrium enters the state space through M2 at m = m2 (and
exists if m = m2 + �, � > 0 small) if

r2 < r < α− β . (S.77)

2) The stable internal equilibrium leaves the state space through M2 at m = m2 if

r ≤ r2 . (S.78)

Proof. The proof is analogous to that of Lemma S.6 upon noting that m2 > 0 if and only if
r < α− β, and that α− β < min[α, γ − β] holds.

Next, we define
fB(r) = β(3α + β − γ)− r(β + γ) (S.79)

and note that fB(r) = 0 if and only if r = rB. In addition, we have

rB > α if and only if

�
γ > −β and γ(α + β) < β(2α + β) , or

γ < −β and γ(α + β) > β(2α + β) .
(S.80)

In selection scenario 4, we obtain

r∗2 < α if and only if

�
rB < α and γ > −β , or

rB > α and γ < −β .
(S.81)

If r2 is real, this follows immediately from (S.70) and (S.80), or from the observation f2(α) +
αfB(α) = 0. Otherwise, it follows because 4βγ+5αγ−9αβ < 0 implies γ(α+β) < β(2α+β).

Lemma S.8. Assume selection scenario 4, i.e., β < 0 and γ > α + β.

1) An unstable internal equilibrium enters the state space through SB at m = mB (and
exists for m = mB + �, � > 0 small) if and only if

r > α and fB(r) < 0 . (S.82)

This holds in precisely the following cases:

r > max[α, rB] and γ > −β , (S.83a)

α < r < rB and γ < −β , (S.83b)

α < r <∞ and γ = −β < 3α + β . (S.83c)
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2) The stable internal equilibrium leaves the state space through SB at m = mB if and only
if

r > α and fB(r) ≥ 0 . (S.84)

This holds in precisely the following cases:

r > max[α, rB] and γ < −β , (S.85a)

r = rB > α , (S.85b)

α < r < rB and γ > −β , (S.85c)

α < r <∞ and γ = −β ≥ 3α + β . (S.85d)

Proof. The lemma follows from studying the perturbation of SB near mB. We recall from
above (S.9) that SB is admissible for m = mB if and only if mB < −β. Under the assumptions
of the lemma, this reduces to r > α.

1) If m = mB + � (� > 0), the perturbation analysis (for p and q terms of order �2 are
required to obtain D to order �) yields

p(�) = rD(�)
γ − β

α(α + β − γ)
, D(�) = �

(α + β − γ)(α− r)
rfB(r)

. (S.86)

q(�) is needed only to get D. Because we know D(�) < 0 holds at every equilibrium, condition
(S.82) follows. The particular cases follow easily by studying fB.

The proof of 2) is analogous. The difference is that the perturbation analysis yields

D(�) = −�
(α + β − γ)(α− r)

rfB(r)
. (S.87)

If r = rB, then fB(r) = 0. This case is degenerate because mB = m∗ and the outgoing and
incoming equilibria collide at SB and annihilate each other.

Theorem S.5. 1. Bifurcation patterns of Type 1 occur in

Selection scenario 1 if and only if r > β − α ;
Selection scenario 2 if and only if r ≥ α− β .

2. Bifurcation patterns of Type 2 occur in

Selection scenario 2 if and only if r2 < r < α− β ;

Selection scenario 3 if and only if one of the following holds:
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(a) r∗2 < r ≤ γ − β,

(b) r > max[γ − β, rA] and γ > 1
2α,

(c) γ − β < r <∞ and γ = 1
2α > 3β,

(d) γ − β < r < rA and γ < 1
2α.

Selection scenario 4 if and only if one of the following holds:

(a) r∗2 < r ≤ α,

(b) r > max[α, rB] and γ > −β,

(c) α < r <∞ and γ = −β < 3α + β,

(d) α < r < rB and γ < −β.

3. Bifurcation patterns of Type 3 occur in

Selection scenario 2 if and only if r ≤ r2 ;
Selection scenario 3 if and only if one of the following holds:

(a) r ≤ min[γ − β, r∗2],

(b) γ − β < r ≤ rA and γ > 1
2α,

(c) γ − β < r <∞ and γ = 1
2α < 3β.

(d) r ≥ max[γ − β, rA] and γ < 1
2α.

Selection scenario 4 if and only if one of the following holds:

(a) r ≤ min[α, r∗2],

(b) α < r ≤ rB and γ > −β,

(c) α < r <∞ and γ = −β ≥ 3α + β,

(d) r ≥ max[α, rB] and γ < −β.

If γ = 0 and β < −α < 0, which is subsumed in selection scenario 4(a), all possible
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bifurcation diagrams are displayed in Figure 1 of Bürger and Akerman (2011). Each of
the bifurcation patterns of Type 2 or 3 is governed by one of these bifurcation diagrams.
Thus, the only fundamentally new bifurcation patterns that arise in the present, much more
general model, are of Type 1.

Proof of Theorem S.5. 1. The statement about bifurcation patterns of Type 1 is an immediate
consequence of condition (S.42) in Theorem S.2, (S.24), and Theorem S.4.

2. The statement about selection scenario 2 follows from Lemma S.7, that about scenario
4 from Lemmas S.6 and S.8 by employing (S.70), (S.80), and (S.81). The statements about
selection scenario 3 follow from those about scenario 4 by the model symmetry noted below
(A.6).

3. The statement about selection scenario 2 is a consequence of Lemma S.7, that about
scenario 4 of Lemmas S.6 and S.8 together with (S.70), (S.80), and (S.81). The statements
about scenario 3 follow from those about scenario 4 by the model symmetry.

Remark S.4. If, in selection scenario 4, γ(α + β) < β(2α + β) and γ < −β hold, then for
every r > 0 a bifurcation pattern of Type 3 occurs, whence Type 2 (or Type 1) never occurs.
These two conditions are satisfied whenever −β > max[2α, γ]. The first assertion follows
immediately from Lemmas S.6 and S.8 by recalling (S.70), (S.79), and (S.80), the second is
obvious.

Therefore, in the local-adaptation scenario with a slope-type fitness function, at most
one internal equilibrium (which then is globally asymptotically stable) occurs whenever the
selection intensity on the two loci differs by more of a factor of two. Thus, bistable equilibrium
patterns can occur in the local adaptation scenario only if the selection strength on both loci
is sufficiently similar and the recombination rate is about as strong as the selection intensity.

S.8 Further limiting cases and perturbation results

S.8.1 Tight linkage

First, we treat the case r = 0. From Section S.1 we recall that the monomorphic equilibrium
M2 is asymptotically stable if m > α − β (hence, whenever β > α), and the polymorphic
equilibrium R0 is asymptotically stable if m < α − β. The single-locus polymorphisms SA
and SB do not exist.

We infer global convergence to the (unique) asymptotically stable equilibrium because

V = V (x1, x2, x3, x4) = w + m lnx2 (S.88)
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is a Lyapunov function on the state space S4 (cf. Passekov 1978; Hofbauer 1985; Bürger

and Akerman 2011). That V is a Lyapunov function follows from equations (2.13) - (2.16)
on p. 103 in Bürger (2000) by taking into account that, here, selection acts on haploids and
by observing that, if r = 0, the system (1) is formally equivalent to a one-locus selection-
mutation model with four alleles and so-called house-of-cards mutation. To see this, set all
mutation rates to types 1, 3, and 4 (gametes ab, Ab, AB) zero, and assume that each of types
1, 3, and 4 mutates to type 2 (aB) at rate m. Therefore (p. 103 in Bürger 2000), (1) is a
generalized gradient system. This implies that every trajectory converges to an equilibrium.

As a consequence, for sufficiently small r, every trajectory in the perturbed system con-
verges to an equilibrium provided all equilibria are hyperbolic if r = 0. Thus, in particular,
(generic) global convergence to the unique stable equilibrium follows. The crucial point is
that the above result for r = 0 implies that the chain-recurrent points of (1) are exactly the
equilibria (Lemma 2.2 in Nagylaki et al. 1999). Therefore, the proof of Theorem 2.3 in
Nagylaki et al. (1999) applies unaltered.

If linkage is tight, the coordinates of the (globally) stable internal equilibrium can be
approximated by perturbing the equilibrium R0 (S.11). One obtains

p̂ = 1− m

α− β

�
1 + r

β(β − α) + m(α + β)
α(α− β)

�
+ O(r2) (S.89a)

q̂ =
m

α− β

�
1− r

(α + β − γ)(m + β − α)
α(α− β)(γ − β)

�
+ O(r2) (S.89b)

D̂ =
m

α− β

�
1− m

α− β

� �
1− r

(γ − β)(α− β) + m(α + β − γ)
α(α− β)(γ − β)

�
+ O(r2) . (S.89c)

S.8.2 Independent loci

Under the assumption of linkage equilibrium (D = 0), the dynamics (S.2) reduces to the much
simpler, two-dimensional form

ṗ = p[α(1− p)− γ(1− p)q −m] , (S.90a)

q̇ = (1− q)[βq − γpq + m] . (S.90b)

The coordinates and local stability properties of the possible boundary equilibria (M2, SA,
SB) are obtained from Section S.1 by letting r → ∞ (if necessary). There may exist up to
two internal equilibria which can be determined explicitly:

p̂± = 1− γ − β

2γ
(1∓R) , q̂± =

α

2γ
(1∓R) , (S.91)
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where

R =

�

1− 4mγ

α(γ − β)
. (S.92)

The equilibrium (p̂+, q̂+) corresponds to IDMI, (p̂−, q̂−) to I0. The first one is asymptotically
stable whenever it exists, the second one is unstable. It is easy to check directly, but also a
straightforward consequence of Theorem S.4, that (p̂+, q̂+) is admissible if and only if

selection scenario 1 or 2 applies and m ≤ m∗ , (S.93a)

selection scenario 3 applies and m ≤
�

mA if γ ≤ 1
2α ,

m∗ if γ > 1
2α ,

(S.93b)

selection scenario 4 applies and m ≤
�

mB if γ ≤ −β ,

m∗ if γ > −β ,
(S.93c)

where we have mA = (α− γ)(γ − β)/α, mB = −αβ/(γ − β), and m∗ = 1
4α(1− β/γ).

(p̂−, q̂−) is admissible if and only if

γ > max[12α,−β] and max[mA, mB] < m < m∗ . (S.94)

Then, and only then, both internal equilibria coexist. In this case, we have β/γ < p̂− < p̂+ <

1.

By the studying the nullclines of (S.90a), we can exclude the existence of periodic orbits.
We have ṗ = 0 if and only if p = 0 or q = KA(p), where

KA(p) =
α(1− p)−m

γ(1− p)
, (S.95)

and we have q̇ = 0 if and only if q = 1 or q = KB(p), where

KB(p) =
m

γp− β
. (S.96)

The intersection points of KA and KB in the (open) square (0, 1) × (0, 1) are the internal
equilibria. It is easy to check that both KA and KB are strictly monotone decreasing in p,
that KA is convex, and KB is concave. Whether they intersect once or twice, the (two or
three) areas between them are always positively invariant. This excludes the existence of
periodic orbits because a periodic orbit has to enclose an equilibrium.

The domain of attraction of IDMI contains at least all initial conditions with p > p̂+ and
q < q̂+. In particular, this includes the island – continent, continent – continent and secondary
contact scenarios. In contrast, all points in the region p < p̂+ and q > q̂+ are outside of the
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attraction domain and converge to a boundary equilibrium. This region includes the starting
conditions for the continent – island and the island – island scenario.

From the coordinates of the equilibrium in terms of haplotype frequencies we obtain the
level of population differentiation,

x̂3 =
−αβ + βγ + γ2

2γ2
+

αβ − βγ + γ2

2γ2

�
1 +

4mγ

αβ − αγ
− 2

m

γ
. (S.97)

In the limit of strong epistasis, γ →∞, this expression simplifies to

x̂∗3 =
1
2

�
1 +

�
1− 4m

α

�
. (S.98)

S.8.3 Strong recombination

By assuming that both selection and migration are weak relative to recombination, we can
derive a quasi-linkage-equilibrium (QLE) approximation for the internal equilibria. Formally,
we fix r > 0 and assume α = �a, β = �b, γ = �c, and m = �µ, where a, b, c, and µ are
constants and � → 0. It is straightforward to verify the results stated below by using an
algebraic formula manipulation program (see the supporting online Mathematica notebook).

To first order in 1/r, the coordinates of the two possible internal equilibria are

p̂± = 1− γ − β

2γ

�
1∓R

�
(S.99a)

− γ − β

2γ2r

�
2αβ + γ(m− β)±Rα

β(γ − β)(2α− γ) + mγ(γ − 5β)
4mγ − α(γ − β)

�

q̂± =
α

2γ

�
1∓R

�
(S.99b)

+
α

2γ2r

�
(γ − α)(γ − 2β) + mγ ±R(γ − β)

α(γ − α)(γ − 2β) + mγ(5α− 4γ)
4mγ − α(γ − β)

�

D̂± = −αβ(γ − α)(γ − β)
2γ3r

(1∓R)

− m

r

�
1− β

γ
− α

2γ

�
1− 3β

γ

�
± α

2γ

�
1− β

γ

�
R

�
, (S.99c)

where we could return to the original parameters because they occur only as ratios. The
stable equilibrium is (p̂+, q̂+, D̂+). Because the QLE approximation is the result of a singular
perturbation (Bürger 2009)), it is necessary to develop p̂± and q̂± to order r−2 to obtain
D̂± to order r−1.

The QLE approximation (S.38) for m∗ is readily obtained from (S.99) by solving p̂+ = p̂−
for m.
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File S2: Analysis of the diploid model

By assuming Hardy-Weinberg proportions at every time instance, which requires sufficiently
weak evolutionary forces, the structure of the dynamical equations for the diploid model
becomes the same as that for the haploid model, Eq. (1),

ẋ1 = x1(w1 − w −m)− rD , ẋ2 = x2(w2 − w −m) + rD + m ,

ẋ3 = x3(w3 − w −m) + rD , ẋ4 = x4(w4 − w −m)− rD ,
(S.100)

but with the marginal fitness values

w1 = βx2 + αx3 + (α + β − γ1)x4,

w2 = β + βx2 + (α− γ1)x3 + (α + β − γ2)x4,

w3 = α + (β − γ1)x2 + αx3 + (α + β − γ3)x4,

w4 = α + β − γ1 + (β + γ1 − γ2)x2 + (α + γ1 − γ3)x3 + (α + β + γ1 − γ4)x4,

(S.101)

and the mean fitness

w = 2
�
βx2 + αx3 + (α + β− γ1)x4− γ1x2x3 + (γ1− γ2)x2x4 + (γ1− γ3)x3x4 + (γ1− γ4/2)x2

4

�
.

(S.102)
For the special case Γ = (γ/2, γ, γ, 2γ) and in linkage equilibrium (x1x4 = x2x3), we obtain
w = 2

�
βx2 + αx3 + (α + β − γ)x4

�
. In this case, the dynamical equations for the two-

dimensional system with p = x3 + x4 and q = x2 + x4 reduces precisely to the corresponding
equations for the haploid model. For all other choices of epistasis parameters, the dynamics
of the diploid model is much more complex. Therefore, our analytical results are incomplete.
They are presented below and, in more extensive form, in the supplementary Mathematica
OS.

S.9 Existence and linear stability of boundary equilibria

For m = 0, all four monomorphic equilibria exist and stability conditions can readily be
derived (see the Mathematica OS). We find the following conditions for asymptotic stability:

M1 : α < 0, β < 0, and r > α + β − γ1 , (S.103a)

M2 : α < γ2, β > 0, and r > α− β − γ1 , (S.103b)

M3 : α > 0, γ3 > β, and r > β − α− γ1 , (S.103c)

M4 : α > γ4 − γ2, β > γ4 − γ3, and r > γ4 − γ1 − α− β . (S.103d)

Compared with the haploid case, two additional boundary equilibria, denoted by S̃A and S̃B,
can exist for the diploid model if m = 0. These equilibria exist if locus A or B are over- or
underdominant when the derived allele (B or A) at the other locus is fixed. They can be
stable only in the case of overdominance. In particular, an overdominant equilibrium S̃A with
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coordinates p = (γ4−γ2−α)/(γ4−2γ2) and q = 1 exists if γ2 < α < γ4−γ2. An overdominant
boundary equilibrium S̃B with p = 1 and q = x4 = (1−x3) = (γ4−γ3−β)/(γ4−2γ3) exists if
γ3 < β < γ4−γ3. Note that overdominance is only a necessary, but not sufficient condition for
stability of S̃A or S̃B in the full model. Sufficient conditions can be derived from the Jacobian
(see the Mathematica OS) but result in complicated cubic equations for the eigenvalues.

If m > 0, boundary equilibria can exist only at the edges p = 0 (implying x3 = x4 = D = 0)
or q = 1 (i.e., x1 = x3 = D = 0) of the state space. The only monomorphic equilibrium to
fulfill this condition is M2 (fixation of the continental haplotype). For an arbitrary point on
the edge x3 = x4 = 0, the eigenvalues of the Jacobian are as follows:

λ1 = β − 2βx2 −m

λ2,3 =
1
2

�
β + 2α− r − γ1 − 2βx2 − γ2x2 − 2m

±
�

(β − r − γ1 + 2γ1x2 − γ2x2)2 + 4rx2(β − γ1 + 2γ1x2 − γ2x2)
�

(S.104)

Setting x2 = 1, we obtain the stability conditions for M2:

m > max[−β,α− β − γ1 − r, α− γ2]. (S.105)

As in the haploid case, these conditions correspond to the invasion criteria for the three other
haplotypes, ab, Ab, and AB. Additional boundary equilibria, with a single polymorphic locus,
can exist if m > 0. In Section S.13 below, we analyze the stability of these equilibria for a
particular choice of the epistasis parameters.

S.10 Global stability of the boundary

Here, we derive sufficient conditions for global convergence to the boundary. Alternatively,
these may be viewed as necessary conditions for the existence of a DMI (i.e., a stable internal
equilibrium). The following assumptions on epistasis will be required:

0 ≤ γ1 ≤ min[γ2, γ3] and max[γ2, γ3] ≤ γ4 , (S.106)

γ1 + γ4 ≥ γ2 + γ3 . (S.107)

Clearly, the recessive and the co-dominant model with Γ0 := (0, γ, γ, 2γ) and Γ1 := (γ/2, γ, γ, 2γ)
satisfy these assumptions. In addition, we shall need the following condition on the selection
parameters:

β ≥ max[γ2, γ3, γ4 − γ1] . (S.108)

Throughout the following, we always assume (S.106). The results below hold whenever
m ≥ 0 and r > 0.
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Theorem S.6. Each of the following assumptions ensures that all trajectories converge to an
equilibrium at the boundary of the state space S4:

(i)
α ≤ 0 and (S.107) ; (S.109)

(ii)
α ≥ 0 and (S.107) and (S.108) ; (S.110)

(iii)
m ≥ max[14α,α + γ1 − β, γ2 − γ3] and (S.107) . (S.111)

Remark S.5. In (i), assumption (S.107) is needed only for technical reasons. Without
it, internal equilibria could be excluded, but not limit cycles or other complex attractors.
Importantly, the proof shows that any internal equilibrium, hence every DMI, will be in
negative linkage disequilibrium.

It is not difficult to show that the assumption (S.108) in (ii) can be replaced by the weaker
assumption

β ≥ max[γ2 − α, γ3, γ4 − γ3, γ4 − γ1 − α] . (S.112)

The proof is based on several lemmas.

Lemma S.9. If m + γ1 + γ4 ≥ γ2 + γ3, then every ω-limit is contained in the set {D ≤ 0}.
Any internal ω-limit points have to satisfy D < 0. In particular, the conclusions apply if
m ≥ 0 and (S.107) hold.

For the proof, define
Z =

x2x3

x1x4
. (S.113)

Then the lemma follows from the identity

(x1x4)2Ż = rD(x1x2x3 + x2x3x4 + x1x2x4 + x1x3x4)

+ x1x3x4 {m + x2[x2(γ2 − γ1) + x3(γ3 − γ1) + x4(γ1 + γ4 − γ2 − γ3)]} . (S.114)

Lemma S.10. (i) Assume α ≤ 0 and D ≤ 0. Then (x1/x3)̇ ≥ 0, and the inequality is strict
in the interior of the state space.

This follows immediately from the identity

x2
3

�
x1

x3

�˙

= −αx1x3 − r(x1 + x3)D + x1x3[γ1x2 + (γ3 − γ1)x4], . (S.115)
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Lemma S.11. (i) Assume α ≤ 0 and D ≥ 0. Then (x2/x4)̇ ≥ 0, and the inequality is strict
in the interior of the state space.

This follows immediately from the identity

x2
4

�
x2

x4

�˙

= mx4 + r(x2 + x4)D − αx2x4

+ x2x4[γ1x1 + γ2x2 + (γ3 − γ1)x3 + (γ4 − γ2)x4] . (S.116)

Lemma S.12. Assume α + β ≥ max[γ2, γ3, γ4 − γ1]. Then (x1/x4)̇ ≤ 0 if D(x1 − x4) ≤ 0
and the set {x1 ≤ x4} is forward invariant.

The proof follows from the identity

x2
4

�
x1

x4

�˙

= rD(x1 − x4)− x1x4[x1(α + β − γ1) + x2(α + β − γ2)

+ x3(α + β − γ3) + x4(α + β − γ4 + γ1)] . (S.117)

Lemma S.13. Let
Y =

x1 + x3

x3 + x4
. (S.118)

Assume α > 0 and (S.108). Then Ẏ ≤ 0 on the set {x1 ≤ x4}.

The proof follows from the identity

(x3 + x4)2 Ẏ = −αx1(x3 + x4) + γ1x2x3(x1 − x4)− x4[x2
1(β − γ1) + x2(x1 + x3)(β − γ2)

+ x3(2x1 + x3)(β − γ3) + x1x4(β − γ4 + γ1) + x3x4(β − γ4 + γ3)] . (S.119)

Lemma S.14. Assume m ≥ max[α − β, γ2 − γ3]. Then (x2/x3)̇ ≥ 0 holds on the forward-
invariant set {x2 ≥ x3} ∩ {D ≤ 0}.

The proof follows from the identity

x2
3

�
x2

x3

�˙

= −rD(x2 − x3) + γ1x2x3(x2 − x3) + mx3(x1 + x3) + mx3x4(x1 + x3 + x4)

+ (m− α + β)x2x3 + (m + γ3 − γ2)x2x3x4 . (S.120)

Lemma S.15. Let
X =

x1 + x3

x1 + x2
. (S.121)

Assume α > 0 and m ≥ max[14α,α + γ1 − β, γ2 − γ3]. Then Ẋ ≤ 0 on the set {x3 ≥ x2}.
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This statement follows from the identity

(x1 + x2)2 Ẋ = −m(x1 + x3)2 + αx1x3 − (m− α− γ1x3 + β)x2x3 − (m + β)x1x2

− (m− γ2 + γ3)x2x4(x1 + x3) + γ1x
2
2x

2
3 + (γ3 − γ1)x1x4(x3 − x2) (S.122)

because −m(x1 + x3)2 + αx1x3 ≤ −1
4α[(x1 + x3)2 − 4x1x3] = −1

4α(x1 − x3)2 ≤ 0.

Proof of Theorem S.6. (i) We start by noting that, because we assume r > 0, the only
positive-invariant subsets of the boundary are the four edges of the simplex corresponding
to fixation of one of the alleles. On these edges, convergence to equilibrium occurs always.
Hence, it is sufficient to consider the fate of solutions starting in the interior of the state space.

The first statement follows immediately from Lemmas S.10 and S.11. For the second
statement, Lemma S.9 guarantees that every ω-limit is contained in the positive-invariant set
{D ≤ 0}, whence Lemma S.10 yields the result.

(ii) By Lemma S.9, it is sufficient to show that there are no ω-limit points satisfying
D < 0. Because {D ≤ 0} is forward invariant, Lemma S.12 shows that all trajectories in
{x1 ≥ x4} ∩ {D ≤ 0} enter the region {x1 ≤ x4} ∩ {D ≤ 0} and remain there. Now Lemma
S.13 yields the result.

(iii) By Lemma S.9, it is sufficient to show that there are no ω-limit points satisfying
D < 0. Application of Lemmas S.14 and S.15 yields the assertion.

Remark S.6. The following simple results can also be proved:

1. If (S.107) and α + β ≥ max[γ2, γ3, γ4 − γ1] hold, then any DMI (if it exists) satisfies
D < 0 and x1 ≤ x4.

2. If (S.107) and α + β ≤ min[γ2, γ3, γ4 − γ1] hold, then any DMI (if it exists) satisfies
D < 0 and x1 ≥ x4.

Under the assumption of linkage equilibrium, the dynamical equation for p can be written
as

ṗ = p
�
α−m− αp− q(1− p)

�
2γ1(1− q)(1− p) + γ2q(1− p)

+ 2(γ3 − γ1)p(1− q) + (γ4 − γ2)pq
��

. (S.123)

We thus see that p is a Lyapunov function and p(t) → 0 as t → ∞ if γ4 ≥ γ2, γ3 ≥ γ1, and
m > α (here it is not necessary to assume (S.106), (S.107), or (S.108)).
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S.11 Tight linkage

Arguments analogous to those in Section S.8.1 yield that, if r = 0,

V = V (x1, x2, x3, x4) = 1
2w + m lnx2 (S.124)

is a Lyapunov function, whence the dynamics is gradient-like. Again, the proof of Theorem
2.3 in Nagylaki et al. (1999) applies and shows that for sufficiently small r every trajectory
converges to an equilibrium point (provided every equilibrium of the unperturbed system is
hyperbolic). For small r, the asymptotically stable equilibria are obtained by perturbation of
the asymptotically stable equilibria for r = 0. In particular, if there is a unique asymptoti-
cally stable equilibrium for r = 0, then its perturbation is globally asymptotically stable for
sufficiently small r. It is worth emphasizing that this holds for arbitary fitness assignments
(such that all equilibria are hyperbolic).

S.12 Internal equilibria: Weak migration

In addition to our results from Lyapunov functions, we obtain conditions for the existence of
a DMI under weak migration from perturbation arguments. On the one hand, the existence
of a stable equilibrium with positive frequency of the island haplotype (x3 > 0) for m = 0
implies the existence of a DMI for sufficiently small m > 0. On the other hand, if a stable
equilibrium with x3 > 0 does not exist if m = 0, a DMI cannot be maintained for small m.

Extensive computer simulations confirm that there are always uniquely defined maximum
rates of gene flow, m±

max, which separate the domains in which a locally or globally stable
DMI exists (if m < m±

max) from the region in which a DMI does not exist (m > m±
max). We

note that although this conjecture is highly plausible, we do not have a rigorous proof beyond
the cases treated in the previous section. These arguments imply that m+

max > 0 if there is
a stable equilibrium with x3 > 0 for m = 0, and m+

max = 0, otherwise. Similarly, we can
conclude that m−

max > 0 if the only stable equilibrium for m = 0 is one with x3 > 0.

Our numerical analysis of the diploid model (see the Mathematica OS) indicates that for
m = 0 there are no stable equilibria in the interior of the state space. As we have seen above,
two boundary equilibria with x3 > 0 may exist if m = 0: the monomorphic equilibrium M3

and the single-locus polymorphism S̃B. A necessary condition for the asymptotic stability of
at least one of these boundary equilibria is

β < max[γ3, γ4 − γ3] . (S.125)

Given our numerical evidence, this translates into a necessary condition for a stable DMI
(hence, for m+

max > 0) with weak migration. We note that this condition is slightly more
stringent than the negation of (S.108). In addition, we already know from Theorem S.6 that
α > 0 is another necessary condition.
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Sufficient conditions for m+
max > 0 can, in principle, be derived from a full linear stability

analysis of M3 and S̃B for m = 0. In general, however, the conditions for the stability of S̃B
are not transparent. For the special case of independent loci (r → ∞), we find that S̃B is
stable if and only if γ3 < β < γ4 − γ3 and α > α∗, where

α∗ =
(β − γ3)[2(γ3 − γ1)(γ4 − γ3 − β) + (β − γ3)(γ4 − γ2)]

(γ4 − 2γ3)2
. (S.126)

Note that α∗ > 0 if γ3 < β < γ4 − γ3.

If we exclude overdominance at the locus B (and, hence, S̃B can not be stable) further
analytical results can be derived. In particular,for weak migration, any stable DMI must be a
perturbation of the island equilibrium M3. A perturbation analysis to first order in m yields
the coordinates {x1, x2, x3} of PM3:

PM3 :
�

mr

α (r + α− β + γ1)
,

m

r + α− β + γ1
, 1− m (rα + (r + α) (γ3 − β))

α (r + α− β + γ1) (γ3 − β)

�
. (S.127)

The coordinate x3 measures the level of population differentiation which is analyzed further
in the main text.

For all our analytical and numerical derivations, we have assumed that the epistasis coef-
ficients are non-decreasing with the number of A/B conflicts, i.e., 0 ≤ γ1 ≤ min[γ2, γ3] and
max[γ2, γ3] ≤ γ4. This condition is essential for our results. Additional internal equilibria can
be found for other choices of the γi. In particular, we found numerically that stable internal
equilibria are possible for α = β = 0 (and even for α < 0) if γ1 � min[γ3, γ4] (for examples
see the Mathematica OS).

S.13 Stability conditions for the recessive and the co-dominant model

Here, we consider the diploid model with the simplified epistasis scheme Γ = (γ1, γ, γ, 2γ).
Obviously, both the recessive model with Γ0 = (0, γ, γ, 2γ) and the co-dominant model with
Γ1 = (γ/2, γ, γ, 2γ) follow this scheme. In the following lemma, we collect some important
consequences for this choice of the epistasis parameters. They all follow from our above
analysis and elementary calculations.

Lemma S.16. Elementary facts for the diploid model with Γ = (γ1, γ, γ, 2γ).

1. Overdominance or underdominance of single loci does not occur.

2. The model is symmetric under the exchange of the haplotypes ab and AB. As in the
haploid case, this symmetry is reflected by an invariance of the model under the trans-
formation α→ γ − β and β → γ − α.
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3. α > 0 and γ > β are necessary conditions for the existence of a DMI.

In the absence of overdominance, we find that the boundary equilibria SA and SB exist
under the same conditions and with the same coordinates as in the haploid case (Section S.1).
The stability conditions are different, however. Evaluation of (S.104) at x2 = −m/β leads to
the stability conditions for SB. In analogy to (S.10), explicit bounds on the migration rate
m can be derived, however, the expressions are lengthy. Due to the model symmetry, the
stability conditions for the SA equilibrium can be obtained directly from the corresponding
conditions for SB. For explicit results, we focus on the limiting cases with r = 0 and r →∞.
We always assume α > 0 and γ > β.

If r = 0, the equilibrium SB is asymptotically stable if and only if

−β > m > max
�
−β(β + 2α− γ1)

γ
,

−β
�
αγ + βγ1 − γ2

1 +
�

(αγ + βγ1 − γ2
1)2 − 4αγ1(γ − γ1)(β + α− γ1)

�

2γ1(γ − γ1)

�
.

(S.128)

For independent loci (r → ∞), and assuming γ ≥ γ1, the stability condition for SB can be
expressed as

−β > m >
−β

�
β − 2γ1 +

�
(2γ1 − β)2 + 4α(γ − 2γ1)

�

2(γ − 2γ1)
, (S.129)

For the recessive model, in which γ1 = 0, we can summarize the stability conditions for
the boundary equilibria as follows. If r = 0, condition (S.128) can never be fulfilled and the
equilibria SA and SB are never stable. The monomorphic equilibrium M2 is stable if and only
if m > α− β. For r →∞, the stability conditions for the three boundary equilibria are

M2 : m > max[−β,α− γ], (S.130a)

SA : α− γ > m > (α− γ)
γ − α +

�
(γ − α)2 + 4γ(γ − β)

2γ
, (S.130b)

SB : − β > m > −β
β +

�
β2 + 4αγ

2γ
. (S.130c)

For the co-dominant model, in which γ1 = γ/2, we obtain for r = 0:
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M2 : m > max[−β,α− β − γ/2, α− γ], (S.131a)

SA : α− γ > m >
2(γ − β)(α− γ)

γ
, (S.131b)

SB : − β > m >
−2αβ

γ
. (S.131c)

As noted above, the dynamics of the co-dominant diploid model coincides with the haploid
dynamics in the limit r → ∞. Thus, also the stability conditions and maximum rates of
gene flow coincide and can be taken from there (Eqs. (10)–(12) in the main text). Using our
results for the stability of boundary equilibria for the recessive and the co-dominant model, the
analytical results for the maximum rate of gene flow m−

max in the Section Results: Diploid

Model of the main text can easily be derived.

In addition, explicit results for m+
max for the co-dominant model with tight linkage can be

deduced. Their derivation is provided in the supplementary Mathematica OS.
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File S3: Stability regions of DMI equilibria in the diploid model

In this section of the OS, we show the DMI pattern for several different diploid models. All
plots show the scaled maximum migration rates for local stability (solid lines) and the areas
of global stability (shaded) against the scaled strength of the incompatibility, γ/α – similar
to figure 3, but on a slightly different scale. The data was obtained numerically using the
functions in the Mathematica OS. For better comparison, plots of the haploid and the recessive
and codominant diploid model treated in the main text are also included.
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Figure S1: Haploid model
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Figure S2: Recessive model, Γ = (0, γ, γ, 2γ)
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Figure S3: Codominant model, Γ = (γ/2, γ, γ, 2γ).
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Figure S4: Γ = (0, γ, 0, 2γ): very similar to Γ = (0, γ, γ, 2γ) (see Fig. S2) and thus to the
haploid case, but for β > 0 with overdominance at the B locus as soon as 2γ > β. As a
consequence, the minimal γ to maintain a stable DMI is reduced to β/2. Also, a globally
stable DMI may exist even for β > α, since the overdominant genotype AABb is the fittest
genotype for β < 2α.
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Figure S5: Γ = (0, 0, γ, 2γ): still similar to Γ = (0, γ, γ, 2γ) (see Fig. S2) and the haploid
model, but now with overdominance at the A locus for 2γ > α. Due to the high fitness of
the AaBB genotype in this case, the stability regions for a DMI are somewhat reduced. In
particular, global stability for β > 0 becomes more difficult.
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Figure S6: Γ = (0, 0, 0, 2γ): the overdominance effects at the A locus (disfavoring DMIs)
and at the B locus (favoring DMIs) partly cancel, resulting in stability regions that are once
again similar to the haploid model (Figure S2).
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Figure S7: Γ = (2γ, 2γ, 2γ, 2γ) (dominant DMI): very similar to the codominant case (see
Fig. S3). For β > 0 and γ > β/2 underdominance at the B locus for pA = 1. As a consequence,
a DMI can never be globally stable for β > 0.
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Figure S8: Γ = (γ/50, γ/5, γ/5, 2γ): very similar to Γ = (0, 0, 0, 2γ) (Fig. S6) and thus the
haploid case (Figure S2).
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Figure S9: Γ = (γ/50, γ/5, γ/5, 2γ) on a larger scale: Now the pattern looks very similar to
the codominant model (Figure S3).
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