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Abstract
Instrumental learning involves corticostriatal circuitry and the dopaminergic system. This system
is typically modeled in the reinforcement learning (RL) framework by incrementally accumulating
reward values of states and actions. However, human learning also implicates prefrontal cortical
mechanisms involved in higher level cognitive functions. The interaction of these systems remains
poorly understood, and models of human behavior often ignore working memory (WM) and
therefore incorrectly assign behavioral variance to the RL system. Here we designed a task that
highlights the profound entanglement of these two processes, even in simple learning problems.
By systematically varying the size of the learning problem and delay between stimulus repetitions,
we separately extracted WM-specific effects of load and delay on learning. We propose a new
computational model that accounts for the dynamic integration of RL and WM processes observed
in subjects' behavior. Incorporating capacity-limited WM into the model allowed us to capture
behavioral variance that could not be captured in a pure RL framework even if we (implausibly)
allowed separate RL systems for each set size. The WM component also allowed for a more
reasonable estimation of a single RL process. Finally, we report effects of two genetic
polymorphisms having relative specificity for prefrontal and basal ganglia functions. Whereas the
COMT gene coding for catechol-O-methyl transferase selectively influenced model estimates of
WM capacity, the GPR6 gene coding for G-protein-coupled receptor 6 influenced the RL learning
rate. Thus, this study allowed us to specify distinct influences of the high-level and low-level
cognitive functions on instrumental learning, beyond the possibilities offered by simple RL
models.
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Introduction
Over the past decade, the computational framework of reinforcement learning (RL) (Sutton
& Barto, 1998) has enjoyed widespread use in the study of instrumental learning. This
increasing popularity is rooted in two main distinct factors. The first is that RL is a very
simple computational framework that can account for a variety of behavioral effects in
learning experiments across species. The second is that this same framework has also
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provided a principled basis for understanding the properties of a wide range of
neurobiological data. This framework has thus served as a highly successful methodological
and conceptual tool for linking brain function to behavior.

More precisely, RL algorithms are thought to be implemented by the corticostriatal circuitry
and its modulation by dopamine. In particular, phasic changes in the firing of dopaminergic
cells (Montague et al., 1996; Schultz, 1997; Bayer & Glimcher, 2005, etc.) have been shown
to encode a signal corresponding to the crucial RL quantity of the reward prediction error,
defined as the difference between the expected and observed values at a given point in time.
Activity and plasticity in striatal neurons, a major target of dopaminergic efferents, are
dynamically sensitive to these dopaminergic prediction error signals, which enable the
striatum to represent RL values (O'Doherty et al., 2004; Frank, 2005; Daw & Doya, 2006).
Behavioral predictions derived from this mechanistic corticobasal ganglia framework have
been widely confirmed in studies using a variety of methods including patients,
pharmacology, gene studies, etc. (Frank & Fossella, 2010). Further, neural correlates of RL
values and prediction errors have consistently implicated the striatum in monkey and rat
electrophysiology and human functional imaging (O'Doherty et al., 2004; Samejima et al.,
2005; Pessiglione et al., 2006; Lau & Glimcher, 2007; Jocham et al., 2011). Thus, although
this remains an active research area and aficionados continue to debate some of the details,
there is widespread general agreement that the basal ganglia (BG) and dopamine are
critically involved in the implementation of RL.

It should be noted that human instrumental learning experiments do not rely exclusively on
incremental learning from prediction errors, but probably involve a wider array of higher
level function, including executive functions and working memory (WM). This can be seen
in the wide recruitment of brain areas involved in such paradigms that strongly implicate the
prefrontal cortex, especially during early learning. Thus, attempting to quantitatively capture
instrumental learning will necessitate that the RL model accounts for the influences of these
higher order cognitive mechanisms. It is particularly crucial to be aware of this issue when
RL models are applied for the model-based analysis of neuroscientific data, including
electrophysiology (Corrado & Doya, 2007), functional magnetic resonance imaging
(O'Doherty et al., 2004, 2007; Seymour et al., 2004; Tanaka et al., 2004, 2006; Daw &
Doya, 2006; Pessiglione et al., 2006; Schönberg et al., 2007; Brovelli et al., 2008; Kahnt et
al., 2009), electroencephalography (Cavanagh et al., 2010) and genetic data (Frank et al.,
2007, 2009a; Doll et al., 2011).

Consider, for example, the RL model learning rate, which encodes the degree to which the
prediction error leads to an adjustment of expected action values. Thus, using a simple RL
framework, one could estimate the learning rate based on observed behavioral sequences of
choices, and expect this to represent the efficacy of the dopamine action on the striatum [as
one example, Kahnt et al. (2009) links the learning rate to midbrain–striatum connectivity].
However, because learning rates are fit to the behavioral organism as a whole, to the extent
that behavioral adjustments during learning involve WM and hypothesis testing, these
factors will greatly affect the estimated learning rate (Frank et al., 2007). Indeed,
associations between individual differences in learning rates and genetic factors controlling
striatal dopaminergic function (namely, DARPP-32 and DRD2) have only been revealed in
model fits to participant choices after initial learning has occurred (Frank et al., 2007; Doll
et al., 2011). Conversely, a genetic marker of prefrontal dopamine efficacy [namely,
catechol-O-methyl transferase (COMT)] related to executive function is predictive of
learning rates during initial acquisition (Frank et al., 2007) of model estimates of hypothesis
testing and strategic exploration (Frank et al., 2009a; Doll et al., 2011). Similarly, functional
imaging studies have shown that dopaminergic drugs modulate striatal reward prediction
error signals during learning, but that these striatal signals do not influence learning rates
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during acquisition itself; nevertheless, they are strongly predictive of subsequent choice
indices measuring the extent to which learning was sensitive to probabilistic reward
contingencies (Jocham et al., 2011).

In principle, with the appropriate model and task, one could separately identify integrative
RL components uncontaminated from higher order prefrontal functions. Although the
community has acknowledged this difficulty in identifying RL substrates, it has done so
(and attempted to remedy the problem) mostly in complex learning situations, or by trying to
explore specific influences on behavior (such as uncertainty). Here, we show that this mixed
influence of higher order WM and lower level RL components is present in a simple
instrumental learning task involving binary deterministic feedback. We show that simple RL
models might miss crucial aspects of behavioral variance, or incorrectly account for that
variance by attributing some observed effects to the wrong causes within the classic RL
framework.

In this study, we designed a new behavioral protocol to investigate the influence of higher
level cognitive systems in simple instrumental learning. We show that simple RL models
cannot account for the observed behavior, and propose a hybrid model that allows us to
separate the roles of capacity-limited WM from simple RL systems during learning. We
further show that a genetic marker of prefrontal cortex function is associated with the WM
capacity estimate of the model, whereas a genetic marker specific to BG function relates to
the RL learning rate.

Materials and methods
Experimental design

All subjects gave written informed consent and the study was approved by the Brown
University ethics committee. The task involved a straightforward instrumental learning
paradigm in which a single stimulus was presented and subjects had to learn which of three
responses to select based on binary deterministic feedback. To manipulate the WM demands
separately from the RL components, we systematically varied the number of stimuli,
denoted as set size nS, to which subjects had to learn the correct actions within a block.
There were six blocks in which nS = 2, four blocks in which nS = 3, and three blocks each of
nS = 4, 5, or 6 for a total of 19 blocks, and a maximum of 50 min.

Each block corresponded to a different category of visual stimulus (such as sports, fruits,
places, etc.), with the stimulus category assignment to block set size counterbalanced across
subjects. Block ordering was also counterbalanced within subjects to ensure an even
distribution of high / low load blocks across the duration of the experiment.

At the beginning of each block, subjects were shown the entire set of stimuli and encouraged
to familiarize themselves with them. They were then asked to answer as rapidly and
accurately as possible. Within each block, stimuli were presented in a pseudo-randomly
intermixed order, with a minimum of 9 and a maximum of 15 presentations of each
stimulus, up to a performance criterion of at least four correct responses out of the five last
presentations of each stimulus. As a motivational factor, subjects were given feedback
indicating the number of trials (and, thus, experiment time) saved by good performance after
each block.

Stimuli were presented in the center of the screen for 2 s, during which time subjects could
press one of three keys. Binary deterministic auditory feedback ensued (ascending tone for
correct, descending tone for incorrect), as well as a cumulating bar indicative of overall
block performance. The intertrial interval was 2.5 s.
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Subjects were instructed that finding the correct action for one stimulus was not informative
about the correct action for another stimulus. This was enforced in the choice of correct
actions, so that, for example in a block with nS = 3, the correct actions for the three stimuli
were not necessarily three distinct keys. This procedure was implemented to ensure
independent learning of all stimuli (i.e. to prevent subjects from inferring the correct actions
to stimuli based on knowing the actions for other stimuli).

Genetic sample
A total of 78 subjects (44 female) between the ages of 18 and 40 (mean 24.3 ± 5.7 years)
participated in the experiment in the Laboratory for Neural Computation and Cognition at
Brown University. We collected salivary DNA and investigated single nucleotide
polymorphisms (SNPs) in genes associated with dopamine function, which have been
previously linked to prefrontal and BG functions in learning in previous investigations (see,
for review, Frank & Fossella, 2010). Specifically, we assessed the val158met SNP within
the COMT gene (rs4680), an SNP within the PPP1R1B (DARPP-32) gene (rs907094), and
an SNP within the DRD2 gene (rs6277). COMT is an enzyme that breaks down extracellular
dopamine, with Val carriers showing more efficient COMT activity and hence lower
prefrontal dopamine levels (Gogos et al., 1998; Huotari et al., 2002; Matsumoto et al., 2003;
Slifstein et al., 2008). In contrast, DARPP-32 and DRD2 are far more concentrated in the
striatum, where they influence dopaminergic function (Frank & Fossella, 2010). In a recent
review, we identified novel non-dopaminergic candidate genes that should be investigated in
RL processes due to their selective effects on direct and indirect pathway function in the BG
(Frank & Fossella, 2010). We thus obtained genotype data on three of the most common
SNPs associated with BG function, but which have not yet been linked to behavior, for
exploratory purposes. These included SNPs within PDYN (rs2235749), a marker of direct
pathway function, and PENK1 (rs2609998) and GPR6 (rs4354185), markers of indirect
pathway function. Critically, unlike DRD2, which is only preferentially expressed in the
striatum but also to some extent in the frontal cortex, GPR6 is extremely specific to the
striatum (see Fig. 1) (Roth et al., 2006; Ernst et al., 2007; Lobo et al., 2007).

All subjects were successfully genotyped. Frequencies per allele were COMT 38 : 33 : 17
(Val/Val : Val/Met : Met/Met), DRD2 21 : 38 : 19 (C/C : C/T : T/T), DARPP-32 10 : 35 : 33
(C/C : C/T : T/T), PENK1 22 : 26 : 30 (T/T : C/T : TT), PDYN 13 : 34 : 31 (AA : AG : GG),
and GPR6 7 : 36 : 35 (AA : AG : GG). All SNPs were in Hardy–Weinberg equilibrium (χ2

values < 1.5, P values > 0.2), except PENK1.

The majority of the sample (51 subjects) classified themselves as Caucasian, 12 as Asian,
nine as African-American, and six as `other'. Nine individuals classified themselves as
Hispanic. Because population stratification represents a potential confound for the observed
genetic effects, several additional measures were taken to verify that the effects reported
herein were not due to admixture in the sample. Allele frequencies did not differ from
Hardy–Weinberg equilibrium in any subgroup when analyzed independently. There was
little evidence to suggest that the genetic effects observed in the present study were due to
population admixture in the sample (further tested in Results).

Genotyping method
The DNA was collected via 2 mL salivettes (DNA Genotek Oragene). Samples were
genotyped by the Mind Research Network (Albuquerque, NM, USA) using TaqMan primer
and probe pairs; the probes were conjugated to two different dyes (one for each allelic
variant). Taqman assays were designed and selected using the SNPBrowser program
(Applied Biosystems). The polymerase chain reaction mixture consisted of 20 ng of
genomic DNA, 1× Universal PCR Master Mix, a 900 nm concentration of each primer, and
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a 200 nm concentration of each probe in a 15 μL reaction volume. Amplification was
performed using the TaqMan Universal Thermal Cycling Protocol, and fluorescence
intensity was measured using the ABI Prism 7500 Real-Time PCR System. Genotypes were
acquired using the 7500 system's allelic discrimination software (SDS version 1.2.3).

Results
Behavioral analysis

Overall, performance was quite good (see Fig. 2A); for all set sizes, the final accuracy
(defined as the mean performance over the last two trials of each stimulus) was > 94%, and
the time to asymptote (defined as mean number of stimulus presentations per block) was <
11. As expected, learning varied as a function of set size, in terms of both trials to asymptote
and mean performance over the whole block (r = 0.3 and r = −0.53, both P values < 10−4).
The final asymptotic accuracy was high for all set sizes (ranging from 94% to 97%).

We next sought to investigate the source of the decrease in learning performance linked to
larger set sizes. We identified two potentially separable causes: WM load and delay. With
limited WM capacity, subjects might only be able to maintain the response–outcome
associations for a subset of the stimuli; this limitation would be more evident for larger set
sizes as capacity was exceeded. Furthermore, even if a given stimulus association was
updated into WM, the delay until that same stimulus was next observed was on average
longer for larger set sizes, thus increasing the opportunity for memories to be degraded due
to decay or due to having updated other stimuli in the interim, given limited resources.
Although memory load and average delay were both highly correlated with set size, these
two factors can be studied orthogonally in our experimental design. Indeed, although
memory load was fixed within a block, delay was locally variable within each block.

To investigate this issue, we assessed the degree to which memory deviated from optimal as
a function of delay. We thus restricted our analysis to trials for which the subject had already
responded correctly to the given stimulus at least once, such that any deviation from
optimality thereafter reflected degraded memory (given the deterministic reinforcement
contingencies). As expected, performance decreased with increasing delay (Fig. 2B and C),
especially with increasing set size. This set-size effect was not solely due to larger delays for
higher set sizes, e.g. the same pattern observed for a delay of > 2 was observed with a delay
of exactly 3 (data not shown).

In addition to these robust effects of delays and set sizes, we also observed a surprising
negative effect of set size for delay 1, which, although more subtle, was nevertheless
significant (see Fig. 2B). This indicated that, when the same stimulus was presented twice in
a row, subjects were more likely to make an error in the second trial after having just
responded correctly to that stimulus for lower set sizes. This finding may reflect a lower
degree of task engagement for easier blocks, leading to a slightly higher likelihood of
attentional lapses. Indeed, repetition errors were overall faster than correct repetitions (t =
4.4, P < 10−4), and this effect was greater for lower set sizes (P = 0.05), indicating a faster/
less accurate speed–accuracy trade-off in these blocks.

In order to analyze the different effects in a more principled way, we employed logistic
regression. We analyzed the proportion of correct responses on these trials as a function of
three variables.

1. The set size, determining the overall load in which this trial was embedded.

2. The delay in the number of trials since the subject correctly responded to the
current trial's stimulus.
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3. The total number of previous correct responses for the current trial's stimulus.

We performed this logistic regression within each subject, and then assessed significance
across the whole group. This analysis allowed us to test whether there were effects of set
size independent of delay and vice versa. There was a main effect of set size (t = −6.6, P <
10−4) and a main effect of number of correct repetitions (t = 14, P < 10−4), with performance
advantages for both decreasing set sizes and increasing number of correct repetitions.
Although the negative effect of delay was not significant, delay interacted with the number
of correct repetitions (t = 1.9, P = 0.06), indicating that it was detrimental to performance
during early learning, with a diminution of this effect over time (see Fig. 2C). The set-size
effect also interacted with the number of correct repetitions (t = 4.4, P < 10−4), such that the
effect of set size decreased with learning. These results support the notion that, with higher
set sizes as WM capacity was exceeded, subjects relied on more incremental RL, and less on
delay-sensitive memory.

The predicted probabilities from the logistic regression were qualitatively similar to the
observed learning curves (see Fig. 3, top), showing that these three predictors captured a
substantial degree of behavioral variance. Importantly, the logistic regression also allowed
us to investigate the effects of a single factor controlling for the other factor, and to replot
the corrected learning curves. We thus computed predicted probabilities fixing the delay to
the minimal value of 1, to generate delay-corrected learning curves (Fig. 3, bottom left).
Conversely, we fixed the set size to the minimal value of 2 to generate set-size-corrected
learning curves (Fig. 3, bottom right). As expected from the significant effect of both
predictors, the block set-size effect remained in corrected learning curves, showing that
neither predictor alone can account for slower learning in higher load blocks. Note that in
the set-size-corrected learning curves there remained differential effects of set size, due to
the larger delays with increasing set size.

Next, we examined multiple computational models that tested the relative influences of WM
and RL mechanisms and their interactions. We focus here on five alternative models. As a
baseline, we introduce a basic RL model. The other four models include an RL model with
variable learning rate, an RL model with forgetting, a pure WM model, and a model
incorporating both WM and RL.

Models
Pure reinforcement learning model, two parameters (RL2)—We begin with the
standard RL model, in which for each stimulus (or state), s, and action, a, the expected
reward Q(s, a) is learned as a function of reinforcement history. Specifically, the Q value for
the selected action given the stimulus is updated upon observing each trial's reward
outcome, rt, as a function of the prediction error between expected and observed reward

(1)

where αRL is the learning rate. Choices are generated probabilistically as a function of the
difference in Q values between the available actions using the softmax choice rule:

(2)

where βRL is an inverse temperature determining the degree to which differences in Q
values are translated into a more deterministic choice.
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In this two-parameter model, learning for each stimulus is determined only by the sequence
of actions and rewards for that specific stimulus. In particular, it is unaffected by the relative
sequence of other stimuli, delay, or the number of stimuli in the set (see Fig. 4). Thus, this
model cannot predict any effect of set size or delay. It serves as a benchmark to evaluate
other models and to control for general effects of learning across the block. It also
corresponds to the generic corticostriatal learning model.

Multiple learning rate reinforcement learning model (RL6 and RL10)—To
account for different learning curves in an RL framework, we simply allow the learning rate
αRL to vary as a function of set size. This model is of course more complex (having six
parameters), but allows us to assess whether learning rates vary systematically by set size.
We also tried various variants of this model, including a 5 β single learning rate model and
even a 5 β, 5 α model (10 parameters). Because most experiments only include one set size,
this last 10-parameter model effectively treats different set sizes as different experiments.

Forgetful reinforcement learning (RLF) model—In this model, Q learning and action
selection occur as in Eqns 1 and 2 from model RL2. Additionally, we include a
supplementary effect of forgetting across time; at each trial, for all stimulus–action pairs (s,
a), we decay Q values towards their initial values

(3)

where Q0 = 1 / nA is the initial Q value for all actions, representing random policy, and ∊
controls the degree of forgetfulness.

Thus, with increasing delay between repeated encounters with the same stimulus, the more
the learned Q values will have decayed. Consequently, with ∊ > 0, this three-parameter
model predicts a decrease in performance in higher set-size blocks, due solely to the
increased average delay between stimulus repetitions for higher set sizes (see Fig. 4).

Reinforcement learning + working memory model—In the RL + WM model, action
selection derives from a mixture of a pure simple RL model (i.e. RL2) applied to all set
sizes, together with a limited capacity WM component. We simulated WM as the encoding
of an observed event that, if maintained in memory, could serve to immediately and robustly
affect behavior. That is, perfect memory could be represented by a Q learning system with a
learning rate of 1 (which is optimal for a deterministic task). However, memory degrades
over time and is capacity-limited. For the degradation effect, we implement a decay as in the
RLF model so that, after RL update, for all (s, a) at each trial

(4)

The probability of action selection according to the WM component is then pWM(a) =
softmax(βWMQWM). As in earlier models, the probability of action selection for the RL
component is pRL (a) = softmax(βRLQRL). As stated thus far, the WM component captures
forgetting but does not yet account for the known limited capacity of WM. This capacity
limitation is factored into the mixture weight w(t) determining the probability that action
selection is governed by the RL or WM component

(5)
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Crucially, the mixing parameter w(t) varies as a function of time and is dependent on block
set size relative to individual capacity size C. In particular, if set size nS ≤ C, all stimuli can
be remembered deterministically, whereas if set size nS > C, a given stimulus can only be
probabilistically stored in WM, with probability C / nS. Thus, the likelihood pWM has to be
adapted to reflect this probability. Specifically, the likelihood pWMC that the capacity-
limited WM component would correctly predict the current reward observation rt is

(6)

In words, the likelihood varies directly with the relative capacity to set-size ratio, such that,
when capacity is exceeded (C / nS < 1), the WM component is less likely to correctly predict
the reward, with increasing contribution of randomness. In contrast, the likelihood term
corresponding to the RL model pRL is not capacity-limited and is computed in a
straightforward manner from the RL Q values

(7)

Given these two likelihoods, pWMC and pRL, the relative reliability of the WM compared
with the RL system is then inferred over time to influence the mixture weight according to a
Bayesian model averaging scheme

(8)

Thus, with high confidence in the WM system (when set size is within capacity), action
selection is primarily determined by WM, whereas as capacity is exceeded there is an
increasing contribution of RL. Initial mixture weights are initialized to represent initial
confidence in WM efficiency, again assuming a fixed C

(9)

This initialization reflects the fact that participants are more likely to begin with a high WM
contribution when they are shown stimulus sets with low set size.

This six-parameter model (βRL, αRL, C, βWM, w0, ∊) can simulate both delay and set-size
effects independently, due to forgetting and capacity, respectively. It also predicts that,
whereas WM should be a better predictor of outcomes initially (due to faster learning rate),
over time, RL should supersede WM. Indeed, incremental accumulation of RL values should
perfectly predict the outcomes, whereas WM is still subjected to decay and capacity limits.
This corresponds to automated or habitual choice, and predicts a reduction of the frequency
effect over time. Note that it also involves only a single RL process that does not differ
between set sizes, and has no forgetting.

Pure working memory model (no reinforcement learning)—As a control, we also
fitted and simulated a pure WM model. This model corresponds to the WM part of the
previous model, mixed with random action selection when capacity is exceeded (i.e. no RL
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component). Mixture weight is then fixed to the initial mixture weights in the previous
model. This model may predict both set-size and delay effects (see Fig. 4).

Model comparisons—For all models, we used the standard fitting procedure of selecting
model parameters that maximized the likelihood of observed action choices conditioned on
the history of observations and the model parameters. We verified that the parameters of the
full RL + WM model are identifiable by generating data from this model for various
parameter values, and then recovering these values to a satisfying degree of precision.
Although we focus our analysis using maximum likelihood estimates for each individual
participant, we also confirmed that the results reported below hold for a simple hierarchical
fitting procedure in which summary statistics for each parameter were estimated across the
entire group of subjects and which then acted as priors for the estimation of individual
subject parameters (Daw, 2011).

For absolute fit measures, we first present pseudo-r2 values, which scale the log likelihood
in comparison to that of a random model selection. However, as this is a deterministic
learning task, with relatively good performance, any model predicting an overall increase in
accuracy with time will capture much of the variance relative to chance. Thus, we used the
RL2 model as a baseline, and rescaled loglikelihood measures for each model relative to this
baseline

(10)

For model comparison, we penalized more complex models (with more parameters) by
computing the Akaike information criterion (AIC) for each subject. We also report
exceedance probabilities reflecting the likelihood that each model is the best of all candidate
models given the distribution of AIC values across all subjects (Stephan et al., 2009). (We
also verified that the AIC statistic more appropriately reflects model fit than the alternative
Bayesian information criterion. In particular, simulations confirmed the often observed
result that the Bayesian information criterion overpenalizes model complexity; when
generating data from the RL + WM model, AIC correctly identified this model as the best fit
to the generated data, whereas the Bayesian information criterion statistic overpenalized this
model.)

We then generated simulated data from each model using the best-fit parameters for each
subject from each model. This procedure allows us to determine whether the model fits
capture key qualitative features of the data. Twenty simulated experiments were generated
with each subject's individual sequence of stimuli and parameters, and then averaged to
represent that subject's contribution. Choice probabilities were then averaged across subjects
(see Fig. 4). Similar results were obtained when simulating models with median fitted
parameters across the group.

Model results—All models afforded good fits to the data (minimum average pseudo-
r2was for RL2 at 0.55), and all but the simpler model RL2 reproduced qualitatively the
observed set-size effect on behavior (see Fig. 4).

Note first that the RL + WM model accounts best for subjects' data across all criteria
(significantly better AIC than all other models, exceedance probability of 1.0 across the
whole group, and high proportion of subjects best fitted by RL + WM; see Fig. 5). Thus,
accounting for both capacity-limited WM and RL provides a better fit of the data than either
process on its own (i.e. pure WM or pure RL models). Importantly, there was no trade-off in
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estimated parameters between the two main parameters of interest: capacity and RL learning
rate, as would be revealed by a negative correlation between them. In addition to these fit
measures, a few interesting points should be noted about the best-fitting parameters of
various models.

First, RL6 can provide a better qualitative fit to the data than RL2, by allowing RL
parameters to vary independently across set sizes and hence capture the differential learning.
Notably, the fitted learning rates α in RL6 systematically decreased with set size, thus
accounting for slower learning in higher load learning situations. Note, however, that in
addition to the fact that this model is clearly not parsimonious, it is also not sufficient to
account for all set-size effects; even without penalizing for model complexity, it did not
provide a better fit than the RL + WM model, which has a single set of RL parameters. This
is also true of the model RL10, which effectively treats different set sizes as different
experiments modeled with different RL parameter pairs (α, β) and thus has 10 parameters:
even so, this models provides significantly worse likelihood than the RL + WM model,
showing that it is missing crucial aspects of the variance (see Fig. 5).

Second, adding the forgetting parameter to the basic RL model (i.e. RLF) improved the fit
significantly, showing that an important part of set-size effects could be accounted for by
taking delay effects into account. Although delay effects are more germane to the WM than
the RL system, this finding is particularly relevant for other experiments where only one set
size is used, and suggests that some behavioral variance due to WM can be accounted for by
incorporating this simple forgetting mechanism. Indeed, the best fitting softmax inverse
temperature parameter β was significantly greater for RLF than RL2, probably because
lower values are needed in RL2 to account for errors, whereas in RLF these are largely
explained by an explicit forgetting mechanism (Table 1).

Interestingly, the best-fitting RL + WM model yielded parameter estimates for capacity with
average values between 3 and 4 (mean C = 3.7 ± 0.14, Table 1). This is within the expected
bounds of human WM capacity. It also best captures the qualitative learning pattern (see
Fig. 4), despite a slight underestimation (present equally in all models) of initial
performance in low load blocks (nS = 2 and nS = 3). We hypothesize that this might be due
to not taking into account an increase in WM performance when set size is under capacity,
thus affording possible redundant encoding of information [e.g. the slots + averaging model
of Zhang & Luck (2008)]. However, additional parameters would be needed to estimate this
effect and more work is needed to clarify this point.

Genetic results—We investigated the hypothesis that WM effects play a strong role in
RL experiments by assessing the effect of prefrontal dopamine efficiency on performance,
through the val158met polymorphism in the COMT gene (Egan et al., 2001; Tunbridge et
al., 2004; Frank et al., 2007, 2009b; Slifstein et al., 2008; de Frias et al., 2010). In
accordance with the existing literature, we hypothesized that carriers of the Val allele would
have less efficient WM, and thus would show specific reductions in aspects of learning that
depend on WM compared with Met/Met homozygous subjects.

Importantly, the RL + WM model provided the best fit to the data for both groups across all
fit criteria, with an exceedance probability no lower than 0.997 (although fit values overall
were larger for the Met/Met group, due to overall better performance), allowing us to
interpret parameter differences for this model between the groups. Notably, there was a
significant effect of COMT genotype on the WM capacity parameter (Fig. 6D), with
significantly greater capacity for Met/Met (N = 17) than Val (N = 61; Wilkoxon z = 2.5, P =
0.012). There was no group difference for any other model parameter. This effect also did
not interact with ethnicity (F = 0.64, ns), and indeed the mean capacity values for each
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genotype were nearly identical in Caucasians alone and in the smaller non-Caucasian
sample.

We next investigated the origin of this capacity effect in the behavior. Figure 6 (top) shows
behavioral learning curves for the Met/Met group and Val group. Although both groups
learned to similar asymptotic levels in all block set-size conditions, initial learning was
specifically slower for Val in higher load conditions. To further investigate this genetic
effect, we concentrated on performance in the third to fifth presentation of each stimulus as
the most representative of learning speed (because subjects require a minimum of two trials
of experience to be able to know the correct motor response, given that there are three
possible responses). Indeed, optimal learners would be perfect on these `middle trials'. The
middle performance in high load blocks (nS = 5, 6; Fig. 6C) was significantly lower for Val
carriers compared with the Met/Met group (t = 2.03, P = 0.045), which was not the case for
low load blocks (t = 0.92, ns). The interaction between COMT genotype and load condition
(high vs. low) on these middle trial performances approached significance (t = 1.86, P =
0.067).

We also searched for neural correlates of the slow but integrative accumulation of evidence
represented in the RL part of the RL + WM model. We investigated polymorphisms in genes
that have previously been found to be implicated in such learning, and associated with
striatal function in the Go and No-Go pathways, DARPP-32 and DRD2, respectively (see
e.g. Frank et al., 2007, 2009a; Doll et al., 2011), with the hypotheses that they might affect
the model parameters specifically related to RL (βBG, αBG). However, we found no effects
of these genes on these parameters (or any other parameter).

In a somewhat more exploratory but still hypothesis-driven analysis, we investigated
variants in three non-dopaminergic genes that have been shown to be specifically expressed
in the BG and can thus serve as indexes of BG function. The three polymorphisms analyzed
were selected from those identified by Frank & Fossella (2010) as candidates for the
analysis of RL given their specificity to striatal function. In particular, GPR6 is very
specifically expressed in the human striatum, including the caudate, putamen and nucleus
accumbens and not in the cortex or any other area (see Fig. 1) (Roth et al., 2006; Ernst et al.,
2007). Although the impact of this gene on human behavior has not yet been investigated,
GPR6 has been implicated in instrumental learning in mice (where it is also striatal-
specific). In particular, knock-out of GPR6 resulted in improvements in BG-dependent
instrumental learning (Lobo et al., 2007) without having any other phenotypes. We thus had
a strong a-priori hypothesis that this gene would impact the BG-specific part of the model.
Nevertheless, because there are not previous reports of GPR6 effects on human behavior, we
considered this analysis to be exploratory together with that of two other striatal
polymorphisms. Thus, for significance testing, we corrected for multiple comparisons across
these three exploratory SNPs.

Interestingly, we found a strong gene dose effect on the RL learning rate parameter αBG (see
Fig. 6E, r = 0.33, P = 0.002), which was also significant in a non-parametric analysis
comparing GG with A carriers (t = 2.5, P = 0.015). This effect did not interact with ethnicity
(F = 1.26, ns) and remained significant in the group of 51 Caucasians (t = 2.6, P = 0.011).
There was no effect of GPR6 on any other model parameters, and no other gene effect
survived significance after correction for multiple comparison. In particular, as a post hoc
comparison, we checked that there was no effect of GPR6 on the WM specific model
parameter capacity C (F = 0.18, P = 0.67).

Given this highly specific effect of GPR6 on the RL learning rate, we reasoned that this
effect should be observable in behavioral analysis. In particular, the contribution of the
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incremental RL system should have the greatest effect in late learning trials, due to more
learning, and especially for high load (for which it would supersede WM due to capacity
limits). Indeed, relative to GG homozygotes, A carriers showed specific impairments in high
vs. low load blocks for late learning trials (t = 2.17, P = 0.03), but not early learning trials (t
= 0.9, ns; although there was a global impairment irrespective of load during early learning;
P = 0.027). Note that this is the opposite pattern to that found for the COMT polymorphism,
where there was an interaction effect with load when WM was more prevalent on early
trials, and no interaction on late trials (t = 1.2, ns).

There was also no correlation between allelic expression in GPR6 and COMT genotypes (r
= 0.05, P = 0.54), thus indicating that the genetic effects are independent. Taken together,
these results show a double dissociation between the genes indexing prefrontal cortex and
basal ganglia function (COMT and GPR6) on model parameters indicating WM vs. RL
influence on learning behavior.

Discussion
Human learning involves a network of cognitive processes and a multitude of neural
mechanisms. The vast majority of neuroscientific studies of RL have focused on
mechanisms underlying the class of `model-free' RL algorithms; they capture the
incremental learning of values associated with states and actions, without considering the
extent to which the subject (human, animal, or computer model) can explicitly plan which
actions to make based on their knowledge about the structure of the environment. Although
the use of these simple model-free algorithms, and mechanistic implementations thereof in
BG circuits, has been extremely profitable, it is also acknowledged that they only capture a
component of instrumental learning. Indeed, another class of `model-based' RL algorithms
considers explicitly the subject's tendency to build a world model.

Many types of world model learning have been investigated, including learning of sequential
hierarchies (Botvinick et al., 2009; Daw et al., 2011; Ribas-Fernandes et al., 2011),
environment volatility (Behrens et al., 2007), and abstract structure (Doya, 2002; Hampton
et al., 2006; Imamizu et al., 2007; Frank & Badre, 2011, Collins & Koechlin, unpublished
data). Some of these works also propose arbitrations between different parallel ways of
using model information (e.g. see Lengyel & Dayan, 2007 for a three-controller system). A
popular version of `model-based' RL concentrates on the construction of a world model that
learns sequential dependencies, in terms of transition probabilities, from one state to the next
and how they are affected by the agent's actions. Planning is implemented by searching a
tree of these transition probabilities (e.g. in forward direction from the current state to
arbitrary depths of anticipated future states/actions) to select the path with the highest
expected value. Theoretical work has suggested the existence of parallel striatal model-free
and prefrontal model-based controllers (Daw et al., 2005). Notably, these authors explicitly
consider the notion that, although the model-based system is more flexible, it also affords
additional computational cost associated with searching the tree, and eventually gives way to
a model-free system as state-action values become well learned.

It is clear that one such computational cost is the capacity limitation of WM, which would
be required to maintain a set of if/then relationships in mind in order to plan effectively.
Indeed, this distinction between model-free and model-based control is closely related to a
similar distinction in the cognitive psychology of dual systems linked to automatic,
associative processing vs. controlled, deliberative but capacity-limited processing (Evans,
2003; Sloman & Hagmayer, 2006). This secondary process is often attributed to the
prefrontal cortex and its involvement in WM.
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In this study, we have shown that these higher level processes, including capacity-limited
WM with decay, are crucially involved in even simple learning tasks typically studied with
traditional model-free RL algorithms, in such a way that is not accommodated by these
algorithms. Indeed, we showed that, if such algorithms are used, the parameters necessarily
adjust to accommodate behavioral variance, but then these parameters are no longer
estimates of the intended RL processes and are therefore misleading. Even when separate
RL parameters were estimated for each set size in our experiment (an implausible, non-
parsimonious model with 10 parameters), it did not provide as good a fit to the data as did
our simpler hybrid model estimating WM contributions together with a simple process.
Moreover, we showed separable individual differences in learning that are attributed to
genetic variance in prefrontal and striatal mechanisms.

The experimental protocol allowed us to determine that variance in behavior was explained
separately by two characteristics of WM: its capacity and its stability. Indeed, behaviorally,
learning was slower in problems with greater load, but there were minimal differences in
asymptotic performance. Furthermore, although performance was initially highly subject to
degradation due to the delay since the presented stimulus was last observed, this delay effect
disappeared over learning.

We designed a new mixture model allowing us to separately represent contributions of the
RL–BG system and WM–prefrontal cortex system, as well as the dynamic allocation of
responsibility to each in action selection. The RL part of the model is the simplest version of
the widely used Q-learning algorithm, where action values for each stimulus are learned
independently from those of other stimuli, and are insensitive to delay or capacity. The WM
part of the model is sensitive to load effects, and representations of observed events decay
over time. Further, the dynamic allocation of action selection to the different systems takes
into account the limited capacity of the WM system and the relative reliability of each
system over time. As such, with increasing experience, the RL system accumulates
sufficient evidence and, because of its lack of capacity limitations or memory decay, it
eventually supersedes the WM system. This point is reminiscent of that of Daw et al. (2005),
but here the arbitration between the RL and WM systems is determined by direct estimates
of their relative values or reliabilities, rather than the uncertainties about them.

It is of interest to note the crucial role played in confronting qualitative predictions from
models with key features of the behavior for identifying valid models. Indeed, although
quantitative measures of fit, such as likelihood and the AIC, are essential to inform on the
predictive power of a model trial-by-trial, they can be somewhat misleading by themselves.
Firstly, they are most often interpreted as measures of relative fit in comparison to other
models, rather than absolute fit, as absolute values such as pseudo-r2 depend heavily on
experimental design. Secondly, penalization of parameter complexity can be imperfect and
lead to inappropriate model selection. It is therefore essential to demonstrate that the model
used to fit the data can reproduce the behavioral effects of interest, here most evident in
terms of effects of set size and delay.

In addition to capturing the key features of the behavioral data with relatively few
parameters, this RL + WM model also allowed us to separately estimate WM capacity and
RL learning rates. Notably, the capacity estimate ranged between 3 and 4 for most subjects,
coherent with the widely accepted values in the existing literature (Cowan, 2010).
Furthermore, having factored out these WM contributions, we also obtained a more
reasonable estimate of a single RL learning rate (a value of 0.16, rather than the much higher
values obtained, especially for lower set sizes, in the pure RL models). Finally, individual
differences in WM capacity and RL learning rate were separately predicted by COMT and
GPR6 genotypes.
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The current exercise also serves to illustrate that the quality and interpretability of model fits
depend not just on the suitability of the model itself, but on the task conditions manipulated
by the experiment. Most RL experiments do not vary the stimulus set size, so that (again
regardless of whether WM is built into the model) the load aspect of WM influence on
learning would not be easily observed. However, many experiments do include randomized
sequences of multiple stimuli, and in these cases the effects of variable delay and time-
dependent WM effects could potentially be observed. Indeed, we found that the simple RLF
model, which includes a simple time-decay mechanism in a basic RL framework, accounts
for significantly more variance than RL2. Thus, accounting for this decay mechanism should
significantly improve model fit to human instrumental learning experiments. However, two
problems will remain. Firstly, this decay is fixed over trials, whereas we showed here that
these WM effects disappear as RL learning progresses. Secondly, this RLF formulation
includes in a single value system the effects of different neural mechanisms, thus making it
more difficult to dissociate their actual correlates. As an example, had we only considered
the basic RLF and RL2 models, we would have concluded that the RLF model provided the
best fit to the data and then would be justified in analyzing its parameters. Post hoc
inspection of these parameters revealed strong effects of COMT on all three RLF parameters
(such that one might have incorrectly attributed COMT effects in modulating the RL
learning rate), and no effect of GPR6 on any of them (as if it did not affect learning rate).

Instead, devising a model that dissociates the relative influences of RL and WM on learning
behavior has allowed us to exhibit a double dissociation on the neural correlates of
instrumental learning. COMT polymorphisms selectively predicted differences in the WM
capacity of subjects, as exhibited in a selective effect on performance in higher load
problems, and GPR6 polymorphism selectively predicted differences in the RL learning rate.
No other effects on other parameters of these two genes were observed. The model thus
successfully allowed us to dissociate separate influences on learning from separate neural
systems, in separate components of the model. Of course, we acknowledge that the same
logic brought forth in the preceding paragraph may also apply to our analysis; perhaps if we
had developed a yet better fitting model, we might have derived different conclusions about
the neurogenetic components. In fact, this is a problem that pervades all of science, not just
RL model fitting. As such, our assignment of neurogenetic effects on specific model
parameters awaits further replication across other tasks, manipulations, etc. Nevertheless, it
is important to emphasize that we also found clear behavioral correlates for these effects that
are independent of the specific model (COMT on accuracy in early learning trials with
increasing load, and GPR6 on general learning speed).

The effects of the val158met COMT polymorphism have been widely studied in the
executive function literature, showing better WM, attention or goal-directed performance for
homozygous met allele carriers (Egan et al., 2001; Goldberg & Weinberger, 2004; Blasi et
al., 2005; Bruder et al., 2005; Frank et al., 2007, 2009a; Tan et al., 2007; Green et al., 2008;
Doll et al., 2011). A recent meta-analysis showed that the COMT genotype reliably affects
prefrontal activation (effect size d = 0.73), with an advantage for met carriers in executive
function (Mier et al., 2010). Indeed, the COMT gene codes for the COMT enzyme that
degrades extracellular dopamine. Met-allele versions of this enzyme are less efficient in
degrading dopamine, thereby enabling sustained dopamine levels to persist in the PFC, and
promoting the stability of actively encoded WM representations (Durstewitz & Seamans,
2008; Durstewitz et al., 2010). Although COMT is also present in the BG, the effects of its
manipulation appear to be relatively negligible, due to the presence of much more efficient
active dopamine transporters for reuptake (Gogos et al., 1998; Sesack et al., 1998; Huotari et
al., 2002; Matsumoto et al., 2003; Tunbridge et al., 2004). Consistent with these findings,
we found here that COMT homozygous met-allele carriers exhibited significantly higher
estimated WM capacity than did val carriers. Note that the effect was found specifically on
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the discrete capacity limitation parameter (Zhang & Luck, 2011). Other model parameters
implemented more continuous aspects of WM limitations, through precision or temporal
stability (Bays & Husain, 2008), but the COMT effects were selective to the discrete
capacity.

In stark contrast to the extensive literature on COMT, to our knowledge there are no existing
human behavioral studies examining GPR6. However, because this gene is very specifically
expressed in the BG, in the indirect pathway in particular (Roth et al., 2006; Ernst et al.,
2007; Lobo et al., 2007), and because GPR6 mutations affect instrumental conditioning in
rodents (Lobo et al., 2007), the current GPR6 SNP was recently identified as a strong
candidate for the non-dopaminergic investigation of BG-specific RL processes in humans
(Frank & Fossella, 2010). In this study, GPR6 polymorphism was strongly correlated to the
BG learning rate parameter of the model, thus relating directly this general, widespread,
slow and robust accumulation process of evidence to the BG function.

However, we also note that, in contrast to our previous studies (Frank et al., 2007, 2009b;
Doll et al., 2011), we did not observe an effect of SNPs impacting striatal dopaminergic
function (DARPP-32 and DRD2) on RL parameters. However, the present experiment was
designed to specifically assess the effects of WM on learning much more than the effects of
incremental BG learning. In particular, feedback was binary and deterministic. In contrast,
previous experiments reporting effects of these SNPs have all required subjects to
discriminate between subtly different reinforcement probabilities of positive and negative
outcomes. A direction for future research would be to test the hybrid WM and RL model in
an experiment allowing equal differentiation on both systems. Given the selective presence
of GPR6 in the indirect pathway (Lobo et al., 2007), and computational models of this
pathway, we can predict that this SNP would be specifically related to individual differences
in learning from negative prediction errors (Frank, 2005; Frank & Fossella, 2010).

Limitations
The proposed WM part in the RL + WM model proposed remains very simple. Although we
hypothesize a limited capacity, we do not attempt to identify which specific events are
stored in memory and which are not, but simply account for the probability of any one of
them being stored, given capacity limits and memory decay. This probability is modeled in
the simplest way, with an equal probability of each stimulus being stored in memory.
Although this allowed us to capture most WM effects in a simple model, it is an
approximation that deserves more attention in future research. For example, this probability
might dynamically change over time, with the possibility of an event being replaced in
memory by other intervening stimuli. Indeed, it is possible that such updating effects are in
part responsible for the delay effects within the WM module, currently represented as a
simple passive decay. More work is thus needed to distinguish this possibility.

Although our results and discussion may imply that the BG is selectively involved in
incremental motor action value learning, in other work we have emphasized an analogous
role of other BG circuits in the learning of when and when not to gate information into WM
(Frank et al., 2001; O'Reilly & Frank, 2006; Frank & Badre, 2011; Collins & Frank,
unpublished data; see also Todd et al., 2008; Gruber et al., 2006). This role of the BG in
updating WM is also supported by empirical studies with patients, pharmacological
manipulations, and neuroimaging (Cools et al., 2007; Moustafa et al., 2008; Baier et al.,
2010). As in most RL tasks, the current task does not impose demands on learning which
stimulus information is relevant to update and which is not. We anticipate that neurogenetic
studies will reveal that learning when and when not to gate information into WM will load
on BG genes (Frank & Fossella, 2010). Indeed, some evidence indicates that improvements
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in performance due to cognitive training on WM updating tasks are related to striatal
activation (Dahlin et al., 2008).

Conclusion
In this study, we have illustrated the necessity to account for higher cognitive contributions
to instrumental learning paradigms. Indeed, we showed that simple RL models of these tasks
failed to account for the observed effects of memory load and time delay on performance.
Moreover, incorporating these effects into the model was crucial for properly assigning
behavioral variance to its proper causes when relating behavior to neurogenetic correlates.
This new model, which dynamically balanced both PFC–WM and BG–RL aspects in
learning, allowed us to show that, although learning was affected by both prefrontal function
and BG function markers, the former is attributable to variance in WM capacity, whereas the
latter is attributable to the overall incremental learning speed.

Abbreviations

AIC Akaike information criterion

BG basal ganglia

COMT catechol-O-methyl transferase

RL reinforcement learning

SNP single nucleotide polymorphism

WM working memory.
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Fig. 1.
GPR6 expression is specific to the striatum. Relative expression of GPR6 for individual
tissues in postmortem human brain. Note the highly specific expression in the striatum
(accumbens and putamen). Reproduced from Roth et al. (2006).
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Fig. 2.
Behavioral results. (A) Proportion of correct responses as a function of the number of times
that each stimulus was presented, plotted separately for each set size. Error bars reflect
SEM. (B) Proportion of correct responses as a function of the trial interval since the current
stimulus was last reinforced (delay), separately for each set size. (C) Proportion of correct
responses as a function of the delay, for early learning trials (one to three correct responses
for the current stimulus) or late learning trials (seven or more correct responses). The effect
of delay disappears over learning.
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Fig. 3.
Logistic regression. Top left: Observed proportion of correct responding for a given stimulus
as a function of the number of previous correct trials for that stimulus, separately for each
set size. Top right: Predicted probability from logistic regression controlling for other factors
(delay since last stimulus-specific correct trial, set size, and their interactions). Bottom:
Corrected learning curves, plotting predicted probabilities from logistic regression with one
predictor value artificially fixed. Bottom left: Delay-corrected learning curve (delay
predictor fixed to minimum delay). Bottom right: Set-size-corrected learning curve (set size
predictor fixed to minimum set size).
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Fig. 4.
Model results. Learning curves as a function of set size for each model, generated using
best-fit parameters for each subject given the model. Models: RL2, two-parameter RL
model; WM, pure WM model; RL6, RL model with five learning rates + one softmax
temperature; RLF, three-parameter forgetful model; RL + WM, mixture RL and WM model.
Subjects, observed learning curves across all subjects (from Fig. 2).
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Fig. 5.
Model fits. Left: Relative increase in likelihood compared with simple RL2 (see Eqn 10).
All pairwise comparisons are significant. Right: Difference in model's AIC compared with
baseline (negative values indicate better fit penalizing for additional parameters). All
pairwise comparisons are significant. Models: RL2, two-parameter RL model; WM, pure
WM model; RL6, RL model with five learning rates + one softmax temperature; RLF, three-
parameter forgetful model; RL10, RL model with five learning rates + five softmax beta
parameters; RLWM, mixture RL and WM model.
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Fig. 6.
Gene effects. Top: COMT behavioral effects. (A) Learning curves for homozygous Met
carriers and (B) Val carriers. (C) Proportion of correct responses in middle trials as a
function of genotype and set size. Val carriers exhibited a specific impairment in high load
blocks compared with Met/Met for middle trials (but not for later learning trials as the WM
component is superseded by RL). (D) Fitted capacity (C) parameter from the RL + WM
model for COMT and GPR6 genotypes. (E) Fitted BG learning rate parameter αBG from the
RL + WM model for COMT and GPR6 genotypes. * indicates a significant gene effect (P <
0.05).
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