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Abstract
Hematopoietic stem cell transplantation is the oldest and successful form of stem cell therapy.
High dose therapy (HDT) followed by hematopoietic stem cell transplantation allows physicians
to administer increased amounts of chemotherapy and/or radiation while minimizing negative side
effects such as damage to blood-producing bone marrow cells. Although HDT is successful in
treating a wide range of cancers, it leads to lethal therapy-related myelodysplasia syndrome or
acute myeloid leukemia (t-MDS/AML) in 5–10% of patients undergoing autologous
hematopoietic cell transplantation for Hodgkin lymphoma and non-Hodgkin lymphoma. In this
study, we carried out metabolomic analysis of peripheral blood stem cell samples collected in a
cohort of patients before hematopoietic cell transplantation in order to gain insights into the
molecular and cellular pathogenesis of t-MDS. Nonparametric tests and multivariate analyses
were used to compare the metabolite concentrations in samples from patients that developed t-
MDS within 5 years of transplantation and the patients that did not. The results suggest that the
development of t-MDS is associated with dysfunctions in cellular metabolic pathways. The top
canonical pathways suggested by the metabolomic analysis include alanine and aspartate
metabolism, glyoxylate and dicarboxylate metabolism, phenylalanine metabolism, citrate acid
cycle, and aminoacyl-t-RNA biosynthesis. Dysfunctions in these pathways indicate mitochondrial
dysfunction that would result in decreased ability to detoxify reactive oxygen species generated by
chemo and radiation therapy, therefore leading to cancer causing mutations. These observations
suggest predisposing factors for the development of t-MDS.
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Introduction
Stem cell therapy is one of the most active new frontiers in biomedical research with the
potential to provide treatment for a variety of diseases and injuries for which the current
therapy is inadequate. Hematopoietic stem cell transplantation is the oldest and most
successful form of stem cell therapy. High dose therapy (HDT) followed by hematopoietic
stem cell transplantation allows physicians to administer increased amounts of
chemotherapy and/or radiation with subsequent rescue by autologous blood-producing bone
marrow or peripheral blood stem cells.1 Although HDT is successful in treating a wide range
of cancers, it leads to therapy-related myelodysplasia or acute myeloid leukemia (t-MDS/
AML) in 5–10% patients undergoing autologous hematopoietic cell transplantation (aHCT)
for Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL).2–5 The molecular
mechanisms that cause t-MDS/AML are unknown; epidemiologic studies suggest that pre-
aHCT therapeutic exposures, transplant conditioning regimens, autograft collection and
hematopoietic regeneration play a role in the development of t-MDS.2,6,7 The bone marrow
of patients that do not develop t-MDS/AML renew and produce blood cells normally;
however, this process becomes interrupted in response to chemotherapy or radiation in some
patients and damage to hematopoietic stem cells (HSCs) can propagate through future
differentiated cells ultimately leading to lethal disease.

Metabolomics is emerging as an important discipline in systems biology and directly reflects
acute cellular status.8, 9 Metabolomics also has the potential to discover new biomarkers for
disease diagnosis and prognosis.10–12 For example, a recent metabolomic study has
identified the metabolite known as sarcosine as playing an important role in prostate cancer
progression and as a biomarker for prostate cancer diagnosis.13 NMR or mass spectrometry-
based metabolomics have analyzed metabolites of total cell extracts. The advantage of
NMR-based analysis is that the signal intensity is directly proportional to the quantity of the
molecules that produce the signals;14 the levels of various metabolites are important
indicators of activities of different cellular pathways. In addition, NMR-based metabolomics
do not require extensive fractionation of the samples by chromatography methods, because
identification of individual metabolite from a mixture is achieved by examining multiple
resonances from the same molecule simultaneously, and multi-dimensional NMR methods
can be used to resolve resonance degeneracy occurring in a mixture of many metabolites.

In this study, we carried out metabolomic analysis in order to gain insights into the
molecular and cellular pathogenesis of t-MDS/AML, and to identify biomarkers that allow
the identification of patients that are predisposed to the development of t-MDS/AML. We
have analyzed the metabolome of peripheral blood stem cell (PBSC) samples collected from
twelve patients before aHCT. These included six patients who subsequently developed t-
MDS/AML (“cases”) after undergoing aHCT for HL and NHL, and six patients who did not
(“controls”). Nonparametric tests and multivariate analyses were used to compare the
concentrations calculated from each sample. These analyses have identified metabolites that
show statistically significant differences between the t-MDS/AML cases and controls. The
top canonical pathways associated with these metabolites include alanine and aspartate
metabolism, glyoxylate and dicarboxylate metabolism, phenylalanine metabolism, citrate
acid cycle, and aminoacyl-t-RNA biosynthesis. These observations suggest predisposing
factors for the development of t-MDS/AML.

Experimental Procedures
Patient Selection and Sample Collection

PBSC samples were obtained pre-HCT. For the current study a nested case-control design
was used. Six patients who developed t-MDS/AML (“cases”) after undergoing aHCT for
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NHL or HL at the City of Hope National Medical Center were studied. Six controls were
selected from the prospectively followed study cohort of patients who had undergone aHCT
for HL or NHL, but did not develop t-MDS after aHCT. Information about the 6 patients
and 6 controls are given in Table 1. These studies were approved by the institutional review
board of City of Hope in accordance with an assurance filed with and approved by the
Department of Health and Human Services and met all requirements of the Declaration of
Helsinki. Informed consent was obtained from all subjects after the nature and possible
consequences of the studies were explained.

Sample Preparation for NMR Spectroscopy
For each sample, between 1–4 × 106 PBSCs were incubated in IMDM supplemented with
20% FBS and 2mM uniformly-labeled 13C-glutamine for 18 hours at 37°C. Cells were
pelleted and washed with PBS to remove any residual medium prior to recording the wet
mass. Cellular metabolites were extracted in a final ratio of methanol/chloroform/water of
2.0:2.0:1.8, as described previously.15 Briefly, the cell pellet was sonicated in 7.4 ml/g cold
methanol and 2.22 ml/g cold water at 25% duty cycle for 1 minute on ice. The homogenate
was transferred to a borosilicate glass culture tube and 3.7 ml/g cold chloroform was added.
The suspension was vortexed and kept at 4°C overnight. To this monophasic solution, 3.7
ml/g cold chloroform and 3.7 ml/g cold water were added, and the solutions were vortexed
and centrifuged for 5 minutes. The upper hydrophilic layer and the lower lipophilic layer
were carefully transferred to clean tubes and dried in a speed-vac concentrator.

1H NMR Spectroscopy
Hydrophilic samples dried from the methanol-water fractions were each resuspended in 400
μl 100% D2O containing 6.4 μM DSS (4,4-dimethyl-4-silapentane-1-sulfonic acid;
Cambridge Isotope Laboratories, MA). The internal standard DSS served as a chemical shift
reference and a concentration standard. One-dimensional spectra of polar samples were
acquired at 25°C on a Bruker Avance 600 spectrometer using a sequence with water
suppression method WATERGATE W5; 1024 transients and 32 K data points were
collected with a spectral width of 16 ppm.

Dried lipophilic samples were each resuspended in 400 μl deuterated chloroform containing
0.05% v/v tetramethylsilane (TMS; Cambridge Isotope Laboratories, MA) as a chemical
shift reference. Standard one-dimensional 1H spectra were acquired at 25°C on a Bruker
Avance 600 spectrometer with a 90° RF pulse, 10 K data points, and a spectral width of 13
ppm. Due to the small quantity of available sample, 8 K transients were recorded to achieve
a better signal-to-noise ratio.

NMR Data and Statistical Analysis
Spectra of hydrophilic samples were imported into the Chenomx NMR Suite Processor
(version 6.1, Chenomx Inc., Edmonton, Canada) for Fourier transformation, a cubic-spline-
based baseline adjustment and phasing. Chemical shifts were referenced to the methyl
protons of DSS. The integral of the DSS methyl proton peak was set within Chenomx to
represent 6.4 μM DSS. The Chenomx NMR Suite Profiler was used to identify metabolites
by fitting compound signatures from the provided NMR spectral library. Metabolite
concentrations were calculated using Chenomx by determining heights of compound
signatures that best fit the sample spectra. The table of identified and calculated
concentrations were exported and saved in an Excel worksheet. The concentrations were
converted from micromolar units to nanomoles per 3 × 106 cells by multiplying the sample
volume and adjusting for the number of cells in the sample. Individual Mann-Whitney tests
were performed using StatistiXL software (version 1.8; StatistiXL, Nedlands, Western
Australia) for each of these metabolites to compare their quantities between patient groups.
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Metabolite quantities for each sample were used as an input for analysis using
MetaboAnalyst;16 data were row-wise normalized to constant sum and column-wise
normalized by log2 transformation prior to principal components analysis (PCA), partial
least squares-discriminant analysis (PLS-DA), and Pearson’s r correlation.

Spectra from lipophilic samples were collected as discussed above, with a few
modifications. Spectra of hydrophilic samples were imported into the Chenomx NMR Suite
Processor for Fourier transformation, 1-Hz line broadening, cubic-spline-based baseline
adjustment and phasing; chemical shifts were referenced to the methyl protons of TMS. The
Chenomx NMR Suite Profiler was used for spectral binning; the spectral regions between
0.75–6 ppm were divided into 0.025 ppm bin windows and the values normalized to the total
area of the spectrum. The regions above 6 ppm and less than 0.75 contained only noise and
the chemical shift reference, respectively, and were therefore excluded from analyses. The
bins were exported and used as input for the MetaboAnalyst software. Baseline noise cutoff
was set to 7×10−5. Bins were row-wise normalized to constant sum and column-wise
normalized by log2 transformation prior to principal components analysis (PCA), partial
least squares-discriminant analysis (PLS-DA), and Pearson’s r correlation.

Results
NMR Profiling of Hydrophilic Metabolites in pre-HCT PBSC Samples

Figure 1 shows representative 1H NMR spectra of the control lymphoma patients and the t-
MDS/AML case patients. Most of the information is located in the upfield region between 0
and 4 ppm, which corresponds to aliphatic groups of metabolites. There are clear differences
in spectral intensity of some compounds such as dimethylamine, glutamine, glutamate,
glutathione, and leucine, in these instances. The Chenomx Profiler was utilized to identify
the compounds visible in the spectra; however, some resonances remained unidentified in
the library. As noted previously,15 sample contamination from the communal speed-vacuum
led to variant peaks 2.9, 3, and 8 ppm from N,N-dimethylformamide and were excluded
from concentration analyses.

Nonparametric tests analyses were used to compare the concentrations calculated from each
sample. From the approximately 50 metabolites identified, Mann-Whitney test classified six
as statistically significant (p < 0.05; Figure 2). Pyruvate is on average lower in the samples
from control patients than those from patients that develop t-MDS. However, 2-oxoglutarate
(α-ketoglutarate) levels are higher on average in the control samples than t-MDS cases.
These metabolites are directly linked to mitochondrial function. Additionally, PBSC cells
from t-MDS/AML patients have increased levels of the amino acids alanine, leucine, and
phenylalanine. Alanine is derived from pyruvate directly, and its increased level is
correlated to the increased levels of pyruvate. Leucine and phenylalanine are synthesized in
the mitochondria from acetyl-CoA, which is also derived from pyruvate. The increased
levels of these metabolites in t-MDS/AML patients could be due to the reduced utilization of
these compounds or due to their increased synthesis. Nonetheless, these results suggest
different mitochondrial activity in t-MDS/AML patients relative to the controls.

Multivariate analyses were also applied to identify differences between the two groups of
patients. Principal components analysis (PCA) was used to analyze the concentrations of the
identified metabolites. PCA shows that the two groups are not fully separated by the two
largest principle components, PC1 and PC2 (Figure 3a). The two groups, however, can be
better separated by the three largest principle components, PC1, PC2 and PC3 (Figure 3b).
The difficulty in separating the two groups is likely due to the fact that their metabolomic
differences that separate control and t-MDS/AML samples are overshadowed by the
intrinsic variations found from patient to patient. Thus an alternative statistical method was
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applied to further examine the data. Analysis by partial least squares-discriminated analysis
(PLS-DA) is a supervised method increasingly used in metabolomics when clusters are not
distinctly separated by PCA. PLS-DA also provides identification of the metabolites that
affect the separation. The same input used for PCA was used for PLS-DA and the results are
shown in Figure 4. There is a clear distinction between control and t-MDS/AML case
samples along the latent variable (LV) 1 axis, which correspond to the component with the
highest differences (Figure 4a). The distinction is independent of the smaller components,
LV2 and LV3 (Figure 4b).

Metabolites contributing to the distinction of the t-MDS/AML and control groups were
identified. In addition to those found to be significant by nonparametric testing, more
compounds have been identified that separate the two groups by PLS-DA (Fig. 5). Seven
compounds are commonly found as discriminators between the t-MDS/AML cases and
controls by both nonparametric testing and multivariate analysis. They are pyruvate, 2-
oxoglutarate, 3-methylhistidine, butyrate, 1-methylhistidine, caprylate, and 2-
hydroxybutyrate. Variable Importance in Projection (VIP) implicated additional eight
metabolites, whose concentrations are important features that separate the two groups (Fig.
5a). Correlation analysis also recognized the trends in the concentration levels of various
metabolites associated with the two groups (Fig. 5b); correlation coefficients close to +1 or
−1 are deemed strong correlations. A total of 30 metabolites were identified by the different
statistical analyses as discriminators between the two groups of patients.

To gain insights into dysfunctions of the biological pathways associated with t-MDS/AML,
the connections between the metabolites that discriminate the case group from the control
group were established through the use of the Metabolomics module of Ingenuity Pathways
Analysis (IPA, Ingenuity® Systems, www.ingenuity.com) (Fig. 6). Most of these
metabolites are connected with each other through a direct chemical reaction (indicated by
solid lines). Only three metabolites, caprate, caprylate, and cholate, are connected to the
other metabolites indirectly (dashed lines). Three metabolites are connected to AMP, whose
level was not significantly different according to the statistical analyses. An enzyme,
phosphoenolpyruvate carboxykinase 1 (PCK1), was needed to connect pyruvate to caprate,
suggesting that the activity of the enzyme is different between the two groups. Canonical
pathways analysis identified the pathways from the IPA library of canonical pathways that
were most significantly different between patients that develop and did not develop t-MDS
(Table 2). The top canonical pathways are alanine and aspartate metabolism, glyoxylate and
decarboxylate metabolism, phenyalanine metabolism, citrate cycle, aminoacyl-tRNA
biosynthesis, and butanoate metabolism. All of these pathways are implicated by four or
more molecules.

NMR Profiling of Lipophilic Metabolites in pre-aHCT PBSC samples
Spectra from the chloroform extracted fractions also showed significant differences between
the two outcome groups (Figure 7). The Chenomx library does not currently include lipid
groups, therefore, assignments were made with comparisons to published lipid NMR
data.17–21 The most prominent resonances observed were those from lipid/cholesterol
methyl (0.8–1.1 ppm) and methylene (1.1–1.4 ppm) protons, and lipid propionyl (1.4–1.7
ppm) protons, originating from different lipid molecules that contain such functional groups.
Because of resonance degeneracy of lipid molecules in general, NMR spectra do not identify
individual lipid molecules. Therefore, statistical analysis was carried out by comparing
signal intensity (given as integration) of defined spectral regions. PCA and PLS-DA
analyses were applied to identify the spectral features distinguishing the two groups of
patients. Again, the largest principle components of PCA analysis did not allow separation
of the two groups (Fig. 8). However, PLS-DA analysis provided good separation using the
largest three latent variables (LV1–LV3) (Fig. 9).
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In similar fashion to the analysis of the hydrophilic metabolites, VIP and correlation
analyses were used to determine spectral features that contribute to the successful separation
of the patient groups by PLS-DA. The regions common to these results are 1.8–2.0 ppm (-
CH2-CH=), 2.30–2.325 ppm (-CH2-COOH), 4.05–4.075 ppm (-CH2-O-P-), 4.175–4.2 ppm
(-CH2-O-CO-R-, -O-CH2-CH2-N+-), and 5.35–5.40 ppm (-HC=CH-). Correlation analysis
also identified increased intensities within the 1.45–1.50 ppm area, corresponding to the
resonances from –CH2-CH2-COOH, from the control patient samples. These results indicate
differences in the lipid synthesis and/or modifications between the two groups of samples.
The cellular pathways identified from hydrophilic samples discussed above can lead to the
differences in the lipophilic molecules observed here. For example, increase in signal
intensity at 5.35–5.40 ppm (-HC=CH-) was shown to correlate to mitochondria damage
from chemotherapeutic drugs.22,23 Taken together, the lipophilic fractions have also
indicated intrinsic cellular dysfunctions in patients that develop t-MDS in comparison to the
controls.

Discussion
The NMR-based metabolomic analyses have found significant differences between PBSC
obtained from patients who develop t-MDS/AML and those from patients who do not
develop t-MDS/AML. These differences have suggested cellular pathways whose
dysfunctions are associated with the development of t-MDS/AML in patients undergoing
aHCT for HL and NHL. These dysfunctions could be caused by pre-aHCT therapeutic
exposures, transplant conditioning regimens, autograft collection and hematopoietic
regeneration, as found to associate with t-MDS/AML development by epidemiology
studies.2,6,7 The top canonical pathways include alanine and aspartate metabolism,
glyoxylate and dicarboxylate metabolism, phenylalanine metabolism, citrate acid cycle, and
aminoacyl-t-RNA biosynthesis. All of these pathways are indicated by at least four
molecules and related to mitochondria function.

Dysfunctions in the above mentioned cellular pathways will result in decreased ability of the
cells to tolerate chemotherapy and radiation, leading to DNA mutations. For example,
decreased glutathione production is associated with t-MDS/AML cases (Fig. 5b), suggesting
decreased ability of these patients to detoxify reactive oxygen species generated by chemo
and radiation therapy. We attempted to use 13C-labeled glutamine to follow its
mitochondrial metabolism to further confirm differences in mitochondria functions within
the PBSC samples as was previously shown in cultured breast cancer cells;15 however, these
primary cells grew too slowly to utilize glutamine, and as such, measurable levels of the
labeled glutamine and its metabolites were not detected from cellular extracts by 1H-13C-
HSQC.

Although the number of samples in each group is limited, due to the limited amount of
PBSC samples available, the conclusion described here is very consistent with cellular
pathway analysis carried using microarray studies of gene expression profiles for the same
set of patient samples.24 The microarray analysis was carried out specifically for the CD34+

hematopoietic stem cells isolated from PBSC. More than thirty-five samples from t-MDS
patients and fifty control samples were analyzed and have identified similar cellular
pathways as identified by NMR-based metabolomics of the entire PBSC. Because other cells
in PBSC are all differentiated from CD34+ stem cells, they likely carry similar cellular
dysfunctions due to similar genetic backgrounds, consistent with the similar cellular
dysfunctions found by NMR-based metabolomics of PBSC and microarray analysis of gene
expression profiles of CD34+ stem cells. Thus, the conclusions obtained from NMR-based
metabolomics are further supported by microarray analysis using a larger sample size. All of
these results indicate that differences in patients, representing predisposing factors
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contributing to risk of t-MDS/AML, can be identified months to years prior to the
development of t-MDS/AML. These results support the efforts to discover biomarkers for
identification of patients at risk prior to exposure to further stem cell damaging therapy.
Because PBSC is blood producing stem cells, similar metabolic signatures may also occur in
plasma or serum samples for discovery of feasible biomarkers. Such biomarkers will allow
physicians to properly allocate resources to follow selected patients more closely than all
patients, and will have a major impact in enhanced overall outcome.
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Figure 1.
Proton NMR spectra of the hydrophilic metabolites from PBSC samples. The intensity of
the downfield region is increased to facilitate identification of resonances. Spectra in black
represent typical results for a control patient, while those in red represent those for a t-MDS
patient.
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Figure 2.
Nonparametric testing of PBSC metabolites. (A) Metabolites significantly altered in PBSC
samples from cases (red) compared with controls (blue) are shown (MWU p<0.05; n=6
each). (B) Metabolites with possible alterations in cases (red) compared to controls (blue)
(MWU 0.05 < p <0.15; n=6 each).
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Figure 3.
Principal components analysis of metabolic profile differences between patient groups. (A)
PCA scores of components 1 and 2 of calculated hydrophilic metabolite levels from control
PBSC samples (green) and t-MDS patient PBSC (red). (B) PCA scores of components 1, 2,
and 3 for the control PBSC (green) and t-MDS/AML PBSC (red). The explained variances
are shown in parentheses.
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Figure 4.
Partial least squares discriminant analysis of metabolite concentrations between patient
groups. (A) PLS-DA scores of latent variables 1 and 2 of calculated hydrophilic metabolite
levels from control PBSC samples (green) and t-MDS/AML patient samples (red). (B) PLS-
DA scores of latent variables 1, 2, and 3 for the control PBSC (green) and t-MDS/AML
PBSC (red). The explained variances are shown in parentheses.
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Figure 5.
(A) Top 15 important features identified by PLS-DA. (B) Top 25 important features selected
by correlation analysis with positive correlation coefficients indicate metabolites increased
in control PBSC, while negative correlations are associated with increased levels in tMDS/
AML cases.
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Figure 6.
Schematic representation of the interaction between significantly relevant hydrophilic
metabolites. Ingenuity Pathway software was used to search connections between selected
metabolites. Direct biochemical reactions are indicated by solid arrows; indirect effects are
represented by dashed arrows.
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Figure 7.
Proton NMR of lipophilic fractions from PBSC samples. The intensity of the downfield
region is increased to facilitate identification of resonances. Spectra in black represent
typical results for a control patient, while those in red present those for a t-MDS/AML
patient.
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Figure 8.
Principal components analysis of lipophilic profile differences between patient groups. (A)
PCA scores of components 1 and 2 from spectral binning of control PBSC samples (green)
and t-MDS/AML patient PBSC (red) spectra. (B) PCA scores of components 1, 2, and 3 for
the control PBSC (green) and t-MDS/AML PBSC (red). The explained variances are shown
in parentheses.
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Figure 9.
Partial least squares discriminant analysis of metabolite concentrations between patient
groups. (A) PLS-DA scores of latent variables 1 and 2 of lipophilic spectral bins from
control PBSC samples (green) and t-MDS/AML patient samples (red). (B) PLS-DA scores
of latent variables 1, 2, and 3 for the control PBSC (green) and t-MDS/AML PBSC (red).
The explained variances are shown in parentheses.
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Figure 10.
(A) Top 15 important spectral bins identified by PLS-DA. (B) Top 25 important spectral
bins selected by correlation analysis, with positive correlation coefficients correlating with
control PBSC (increased levels compared to cases) and negative correlations indicating
correlation with t-MDS/AML cases (increased levels compared to controls.
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Table 2

Top Canonical Pathways identified through Ingenuity Pathway Analysis

Ingenuity Canonical Pathway p-value Significant Metabolites

Alanine and Aspartate Metabolism 1.25E-06 L-alanine, pyruvic acid, L-malic acid, L-aspartic acid, 2-oxoglutaric acid, succinic
acid

Glyoxylate and Dicarboxylate Metabolism 1.03E-04 pyruvic acid, L-malic acid, formic acid, 2-oxoglutaric acid, succinic acid

Phenylalanine Metabolism 2.1E-04 pyruvic acid, L-phenylalanine, benzoic acid, succinic acid

Citrate Cycle 2.57E-04 pyruvic acid, L-malic acid, 2-oxoglutaric acid, succinic acid

Aminoacyl-tRNA Biosynthesis 3.92E-04 L-alanine, L-isoleucine, L-leucine, L-phenylalanine, L-aspartic acid

Butanoate Metabolism 5.19E-04 pyruvic acid, 2-oxoglutaric acid, butyric acid, succinic acid

Valine, Leucine and Isoleucine Biosynthesis 7.35E-04 L-isoleucine, L-leucine, pyruvic acid

Glutamate Metabolism 8.14E-04 glutathione, L-malic acid, 2-oxoglutaric acid, succinic acid

Pyruvate Metabolism 0.0035 pyruvic acid, L-malic acid, formic acid

Cysteine Metabolism 0.0035 L-alanine, glutathione, pyruvic acid

Histidine Metabolism 0.00527 L-aspartic acid, 2-oxoglutaric acid,3-methylhistidine

Nitrogen Metabolism 0.0075 L-phenylalanine, formic acid, L-aspartic acid

Arginine and Proline Metabolism 0.0509 pyruvic acid, L-aspartic acid, adenine

Fisher’s exact test was used to calculate a p-value determining the probability that the association between the genes in the dataset and the
canonical pathway is explained by chance alone.
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