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Summary

One of the major obstacles in dissecting the mechanism of pathology in
human primary biliary cirrhosis (PBC) has been the absence of animal
models. Our laboratory has focused on a model in which mice, following
immunization with a xenobiotic chemical mimic of the immunodominant
autoepitope of the E2 component of pyruvate dehydrogenase complex (PDC-
E2), develop autoimmune cholangitis. In particular, following immunization
with 2-octynoic acid (a synthetic chemical mimic of lipoic acid-lysine located
within the inner domain of PDC-E2) coupled to bovine serum albumin
(BSA), several strains of mice develop typical anti-mitochondrial autoanti-
bodies and portal inflammation. The role of innate immune effector cells,
such as natural killer (NK) cells and that NK T cells, was studied in this model
based on the hypothesis that early events during immunization play an
important role in the breakdown of tolerance. We report herein that, follow-
ing in-vivo depletion of NK and NK T cells, there is a marked suppression of
anti-mitochondrial autoantibodies and cytokine production from autoreac-
tive T cells. However, there was no change in the clinical pathology of portal
inflammation compared to controls. These data support the hypothesis that
there are probably multiple steps in the natural history of PBC, including a
role of NK and NK T cells in initiating the breakdown of tolerance. However,
the data suggest that adaptive autoimmune effector mechanisms are required
for the progression of clinical disease.
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Introduction

Primary biliary cirrhosis (PBC) is an autoimmune disease of
the liver characterized by specific destruction of the small
bile ducts and the presence of readily detectable levels of
anti-mitochondrial antibodies (AMA) [1–3]. Recently, we
reported that natural killer (NK) cells are involved in the
destruction of cholangiocytes and NK T cells are partly
responsible for the exacerbation of disease in PBC [4–6].
While these data are consistent with the view that innate
immune effector mechanisms serve as a bridge to acquired
immunity, and the data imply a major role for innate immune
effector mechanisms in the initiation of pathogenesis of

human PBC [7,8], the precise details of how such innate
immune effector mechanisms influence the generation of
pathogenic acquired immune responses remains poorly
understood. To address this issue, we used a xenobiotic model
of human PBC to examine the precise role of NK and NK T
cells [9]. Results of the studies reported herein show that the
in-vivo depletion of NK and NK T cells prior to immuniza-
tion in this murine model of human PBC markedly delayed
the generation of both anti-mitochondrial antibodies (AMA)
and autoreactive T cell responses. Despite the reduction
in the autoreactive T and B cell responses to mitochond-
rial autoantigens, the specific degree of portal inflammation
was unchanged, emphasizing the lack of an absolute
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requirement for the NK/NK T-associated innate immune
effector mechanisms in the initiation of a breakdown of
tolerance and a potential major role of a continued adaptive
response in the natural history of disease.

Materials and methods

Murine immunization

Female C57BL/6J (B6) mice aged 8–9 weeks were obtained
from Kyudo (Kumamoto, Japan) and maintained in venti-
lated cages under specific pathogen-free conditions. Each
mouse was immunized intraperitoneally with a mixture
of 2-octynoic acid-bovine serum albumin (2OA-BSA) con-
jugate (100 mg/25 ml) incorporated in complete Freund’s
adjuvant (CFA; Sigma-Aldrich, St Louis, MO, USA) con-
taining 10 mg/ml of Mycobacterium tuberculosis strain
H37Ra. The mice subsequently received biweekly booster
doses of 2OA-BSA incorporated in incomplete Freund’s
adjuvant (IFA; Sigma-Aldrich), as reported previously [9].
Groups of these 2OA-BSA-immunized mice were either
treated intravenously with 100 mg of NK1·1 antibody
(Cedarlane, Alexis, NC, USA) to deplete NK cells or NK T
cells (group A, n = 32) or treated with control mouse
immunoglobulin (group B, n = 32) every week before 2OA-
BSA treatment and up to the time of killing. As negative
controls, female B6 mice (group C, n = 12) were immunized
with BSA incorporated in CFA (Sigma-Aldrich) and
boosted using the same dose and schedule as the experi-
mental mice. Sera and spleens were collected before and at
every 6 weeks post-immunization to 24 weeks. Serological
AMA was determined by enzyme-linked immunosorbent
assay (ELISA) [10] and spleen mononuclear cells were iso-
lated for detection of NK1·1-positive cells by flow cytom-
etry and enzyme-linked immunospot (ELISPOT) assay. In a
nested study, liver samples were collected from eight mice
from groups A and B and three mice from group C, each at
6, 12, 18 and 24 weeks, and subjected to histological analysis
[11–13].

Flow cytometric analysis of the cell surface antigens

Two-colour flow cytometry was performed on cell suspen-
sions using a fluorescence activated cell sorter (FACS)Caliber
flow cytometer (BD Biosciences, San Jose, CA, USA), as
described previously [14]. Cell surface monoclonal antibod-
ies utilized included anti-CD3 and NK1·1 (BD Biosciences).
Splenic mononuclear cells (2·5–5·0 ¥ 105) were stained for
cell surface antigen expression at 4°C in the dark for 30 min,
washed twice in 2 ml phosphate-buffered saline containing
1% bovine serum albumin and 0·01% sodium azide, and
were fixed in 200 ml of 1% paraformaldehyde. Isotype-
matched control antibodies were used to determine the
background levels of staining.

Peptide synthesis

Murine PDC-E2 peptides encompassing the inner lipoyl
domain, which correlates with human PBC-specific T cell
epitopes [15], were synthesized by fluorenylmethyloxycar-
bonyl (Fmoc) chemistry and the peptide purity was more
than 80%, as determined by high performance liquid
chromatography (HPLC). The synthetic peptide sequences
were aa 232–246 (GTVQRWEKKVGEKLS), aa 236–250
(RWEKKVGEKLSEGDL), aa 240–254 (KVGEKLSEGDL-
LAEI), aa 244–258 (KLSEGDLLAEIETDK), aa 248–262
(GDLLAEIETDKATIG), aa 252–266 (AEIETDKATIG-
FEVQ), aa 256–270 (TDKATIGFEVQEEGY) and aa 260–
274 (TIGFEVQEEGYLAKI), all purchased from Genenet
(Fukuoka, Japan).

Detection of AMA

AMA was determined by ELISA using the triple-expression
hybrid clone, pML-MIT-3 (pML-MIT-3-ELISA) [10,16,17].
Briefly, recombinant proteins containing the AMA-reactive
immunodominant epitopes localized to the three distinct
lipoyl domains of human pyruvate dehydrogenase complex
(PDC)-E2 [18], bovine branched chain 2-oxo acid dehydro-
genase complex (BCOADC)-E2 [19] and rat 2-oxoglutarate
dehydrogenase complex (OGDC)-E2 [10] were cloned and
co-expressed in the plasmid vector, pGEX-4T-1 (Pharmacia,
Alameda, CA, USA) and the product used as antigen. Sero-
logical AMA was determined using serum samples at a 1:250
dilution and the bound antibodies were detected by
peroxidase-conjugated goat anti-mouse immunoglobulin
(diluted 1:50 and 100 ul/well; Dako, Glostrup, Denmark).
The optical density (OD) was determined using a microplate
reader at 450 nm.

Evaluation of splenic PDC-E2 peptide-specific T cell
responses by ELISPOT

Splenic mononuclear cells were obtained from mice before
and at 6, 12, 18 and 24 weeks post-immunization and were
treated with either NK1·1 antibody (n = 8 each time) or with
control immunoglobulin (n = 8 each time) or negative
control (n = 3 each time). A total of 1 ¥ 106 cells were dis-
pensed into each well of a 24-well plate and cultured with
murine PDC-E2 synthetic peptides, as mentioned below.
After 3 days of culture, viable splenocytes were harvested and
ELISPOT assays were performed [RSD ELISPOT set, mouse
interferon (IFN)-g ELISPOT set, Minneapolis, MN, USA].
Briefly, 96-well nitrocellulose plates were coated with an
optimized capture monoclonal antibody (mouse anti-
IFN-g) in phosphate-buffered saline (PBS) and incubated
overnight at 4°C. Unbound antibody was removed by
washing with PBS containing 0·05% Tween (PBS-Tween).
Viable cells were added at 3 ¥ 105 cells/well in 100 ml RPMI-
1640 in triplicate. The plates were incubated at 37°C, 5% CO2
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for 24 h; the plates were then washed, labelled with biotin-
labelled anti-IFN-g and developed by incubation with
streptavidin–alkaline phosphatase, followed by incubation
with a final substrate solution (BD™ AEC substrate reagent
set, San Diego, CA, USA). The reaction was stopped by
rinsing the contents with distilled water, and the number of
spots was counted by using a KS ELISPOT Reader (Zeiss,
Thornwood, NY, USA). Known positive and negative
samples were included throughout. In addition, antigen-
specific spot-forming cells (SFC) were quantitated as SFC in
the presence and absence of antigen and the net SFC
calculated. The average number of SFC in the absence of
antigen was fewer than 10 (data not shown).

Histological analysis of murine liver sections

Immediately after killing, liver was harvested, cut into small
fragments and fixed in 10% buffered formalin, embedded in
paraffin, and cut into 5-mm sections. Liver sections were
deparaffinized, stained with haematoxylin and eosin and
evaluated under light microscopy by a ‘blinded’ qualified
pathologist; the degree of liver inflammation, portal inflam-
mation, bile duct damage, parenchymal inflammation and
granuloma was scored as described previously [20–22].
Briefly, each section (except for those that showed bile
duct damage or granuloma) was scored as either 0 = no
significant change, 1 = minimal, 2 = mild, 3 = moderate or
4 = severe pathology. The sections that showed bile duct
damage and granuloma were scored as either 0 = no
significant observation, 1 = low frequency observed or
2 = frequently observed.

Statistical analysis

All experiments were performed in triplicate and the data
points shown are means of these triplicate analyses. The data
are expressed as mean � standard deviation (s.d.), and the
significant differences between samples was determined
using Student’s t-test. All analyses were two-tailed and
P-values < 0·05 were considered significant. Statistical analy-
ses were performed using Intercooled Stata 8·0 (Stata Corp,
College Station, TX, USA).

Results

Depletion of NK and NK T cells

To evaluate the role of NK and NK T cells, we depleted NK
and NK T cells by administering NK1·1 antibody. This treat-
ment was confirmed to be effective due to the marked reduc-
tion in the frequency of NK1·1-positive NK cells or NK T
cells by Stanford flow cytometry (Fig. 1).

Anti-mitochondrial antibodies

At both 6 and 12 weeks post-immunization, serum AMA were
decreased significantly in the NK1·1-depleted mice immu-

nized with 2OA-BSA (n = 8) compared to sera from control
mice immunized with 2OA-BSA. Interestingly, however,
after 18 weeks there was no significant difference
in AMA titres in the two groups of animals (Fig. 2). As
expected, there were no detectable AMA in BSA control mice.

Detection of IFN-g-secreting T cells recognizing mouse
PDC-E2 peptides

We evaluated T cell responses to PDC-E2 at 6, 12, 18 and 24
weeks using our ELISPOT assay in individual NK1·1-
depleted and control 2OA-BSA immunized mice (Fig. 3). As
noted, the numbers of IFN-g-secreting T cells from the
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Fig. 1. Effect of natural killer (NK)1·1 antibody deletion. Cell surface

markers were determined in spleen mononuclear cells by flow

cytometry. Splenic mononuclear cells contained 30·7% CD3–NK1·1–

cells, 29·5% CD3+NK1·1– cells, 36·8% CD3–NK1·1+ cells and 3·1%

CD3+NK1·1+ cells (a). After NK1·1 antibody treatment, NK1·1-positive
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Fig. 2. Antibody to mitochondrial antigens. Quantification of

anti-mitochondrial antibody (AMA) in the sera by enzyme-linked

immunosorbent assay (ELISA) at 6-week intervals after immunization

shows significant increases in optical density (OD). Sera obtained

from mice before and at 6, 12, 18 and 24 weeks post-immunization

were treated with either natural killer (NK)1·1 antibody (n = 8

each time) or with control immunoglobulin (n = 8 each time)

or negative control (n = 3 each time). In immunized mice,

NK1·1 antibody-treated mice had lower OD than control

immunoglobulin-treated mice (P < 0·05) within 12 weeks.
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control 2OA-BSA-immunized mice both at 6 and 12 weeks
were significantly higher than the 2OA-BSA-immunized
NK1·1-depleted group. However, the mean number of such
IFN-g-secreting T cells was similar in both groups at 18 and
24 weeks.

Histological studies

The coded series of liver tissues from the various groups of
mice were studied by a pathologist blinded to the groupings
of the donor mice. As seen in Fig. 4, there were no major
differences in the degree of lymphoid cell infiltration in
tissues from mice treated with the NK1·1 antibody compared

with tissues from the control mice at 24 weeks. Both the
levels of bile duct lesions and lymphoid cell infiltration
appear to be mild in the NK1·1-depleted and control mice.
These data suggest that NK1·1 depletion initiated prior to
immunization does not appear to influence the degree of
lymphoid cell infiltrates and/or severity of the ductal lesions
(data not shown).

Discussion

Recent work has emphasized that the unique destruction of
biliary cells requires the triad of macrophages from patients
with PBC, biliary epithelial cell apotopes and AMAs; this
leads to a burst of proinflammatory cytokines [23]. In addi-
tion, there is evidence that NK cells are involved in biliary cell
cytotoxicity, and in this respect it is noteworthy that there is
considerable heterogeneity among the NK and perhaps also
the NK T cell lineages [24,25]. Thus, previous dogmas with
regard to NK cells require re-examination, particularly with
regard to function, as there is now evidence for NK cell
memory and a regulatory function has also been ascribed to
NK cells [25]. One of the strongest cases for NK cell hetero-
geneity comes from studies of the phenotypical and func-
tional differences of the NK cell lineages that reside within
the gut compared with the blood and lymph nodes [26,27].
Thus, while organ-resident NK cells control the magnitude
of organ inflammation, they also have a role concurrently in
influencing the generation of autoimmunity and pathology
[28,29]. Peripherally derived NK cells have an impact upon
autoimmune responses which are manifested by their ability
to synthesize cytokines rapidly that, in turn, influence the
quality and quantity of acquired immune responses [30–34].
While the CD1d-deficient mouse [35–38] and the use of
a-GalCer to activate NK T cells [39–41] are both available
to perform standard addition/subtraction experiments in
efforts to define a role for the NK T cell lineage, reagents are
not readily available for a similar study of the role of NK
cells. This is due to the fact that the use of the classical NK1·1
monoclonal antibody (mAb) to deplete NK cells also deletes
NK T cells, because the latter lineage also expresses NK1·1.
As NK T cells have been shown to contribute to the exacer-
bation of disease in PBC [5,6], results of the findings
reported herein indicate that the depletion of both NK
cells and NK T cells prior to immunization has a minimal
role in the overall breakdown of tolerance. Thus, and as
shown herein, while depletion of NK1·1 cells appeared to
delay significantly the generation of autoimmune-specific
acquired humoral and cellular responses, the data indicate
clearly that depletion of the NK1·1 lineage did not lead
to any detectable differences in the pathology seen in the
NK1·1-depleted versus control mice.

It is well known that liver contains NK cell subsets which
have reduced effector function [42,43], but under appropri-
ate inflammatory conditions become potent killers [44]. NK
cells sense normal or abnormal cells with their inhibitory
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Fig. 3. Enzyme-linked immunosospot assay (ELISPOT) assay

[interferon (IFN)-g] of 2-octynoic acid-bovine serum albumin

(2OA-BSA)-immunized mice with natural killer (NK)1·1 antibody

and with control immunoglobulin. Cytokine production of splenic

mononuclear cells in response to pyruvate dehydrogenase complex
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Fig. 4. Microscopic examination of liver tissue from 2-octynoic

acid-bovine serum albumin (2OA-BSA) with natural killer (NK)1·1

antibody and control immunoglobulin. (a) Light microscopy (¥400)

with NK1·1 antibody shows mild infiltration of lymphocytes in portal

tracts, particularly surrounding damaged intralobular bile ducts. (b)

Light microscopy (¥400) with control immunoglobulin demonstrates

similar findings to those shown in (a).
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or activating receptors [32]. Thus, under normal circum-
stances, NK cells will not damage autologous cells due to the
engagement of inhibitory receptors. Nevertheless, NK cells
have the capacity to spontaneously kill autologous immature
dendritic cells [45], stromal cells or fibroblasts [46], and
under special conditions such as the presence of restricted
innate immune stimulation NK cells destroy autologous
biliary epithelial cells [24]. The natural history of autoim-
mune cholangitis in this model requires, first, the loss of
tolerance to PDC-E2 and secondly, the inflammatory portal
infiltrates in liver. Our data imply that there are different
phases to the natural history of disease, a theme which is
similar to our previously published work [47,48]. In other
words, one factor which can facilitate the onset of autoim-
munity is NK and NK T cell populations. However, once
tolerance is initiated, the disease will be perpetuated via
other mechanisms, again highlighting the promiscuous
nature of autoimmunity and the involvement of multiple
effector pathways.
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