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Abstract
Residual deformation (strain) exists in arterial vessels, and has been previously proposed to induce
homogeneous transmural strain distribution. In this work, we present analytical formulations that
predict the existence of a finite internal (homeostatic) pressure for which the transmural
deformation is homogenous, and the corresponding stress field. We provide evidence on the
physical existence of homeostatic pressure when the artery is modeled as an incompressible tube
with orthotropic constitutive strain-energy function. Based on experimental data of rabbit carotid
arteries and porcine coronary arteries, the model predicts a homeostatic mean pressure of ~90
mmHg and 70–120 mmHg, respectively. The predictions are well within the physiological
pressure range. Some consequences of this strain homogeneity in the physiological pressure range
are explored under the proposed assumptions.
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INTRODUCTION
The existence of residual stress in arteries is widely accepted and constitutive models are
formulated accordingly (e.g. see Rachev and Greenwald 2003 for a review). To account for
residual stress, Chuong and Fung (1986) modeled the artery as an open sector of a cylinder
that is first closed and then axially stretched to form the artery. This method, usually called
the opening angle method, has the advantage of an elegant mathematical formulation and
will be adopted here.
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The reason for the existence of residual stress in arteries is an open question. Chuong and
Fung (1986) proposed that residual stresses exist to reduce transmural stress gradients. An
alternative hypothesis was offered by Takamizawa and Hayashi (1987) who suggested that
the residual stress homogenizes the circumferential strain. Liu and Fung (1989) confirmed
this hypothesis as an adaptation principle in hypertension. Both approaches can be
considered applications of the Principle of Homeostatis, which recognizes the self-
regulatory nature of physiological systems. The first precise formulation of this idea is
credited to Claude Bernard (1878), who asserted that all ‘vital mechanisms’ preserve
‘constant the conditions of life in the internal environment’. Bernard’s insight was
developed most notably by Cannon (1929). Both authors were concerned exclusively with
the self-regulatory nature of the fluid matrix of the body, termed homeostasis by Cannon.
Cannon recognized that this concept of self-regulation had the potential to be extended to
‘other materials and environmental states, whose homeostasis is essentially important for
optimal activity of the organisms’. This homeostatic idea has been adapted to the
biomechanics of the arterial wall (see reviews by Kassab and Navia 2006, and Kassab
2008).

Here, we focus on the relation between residual stress and the homeostatic principle. We
hypothesize that when a residually pre-strained cylinder is inflated, there exists a pressure at
which the strain is transmurally homogeneous and that this pressure is the mean arterial
blood pressure. Here, we shall test this hypothesis with previously measured carotid (Fung et
al. 1979) and coronary data (Lu et al. 2003, Wang et al. 2006).

METHODS
Deformation of a Vessel

Let (R,Θ, Z) denote the cylindrical coordinates of the sector of an incompressible annular
sector of artery with opening angle α (Fig. 1a), denoted as zero stress state (ZSS), and (r,θ,
z) be the cylindrical coordinates of in a deformed configuration of the vessel (Fig. 1b),
denoted as loaded state, the deformation gradient tensor, F, is (e.g. Chuong and Fung 1986):

(1.1)

(R, r: radial coordinate at ZSS and loaded state, respectively) where λz(≥ 1) is the axial pre-
stretch. For convenience, we define dimensionless radial coordinate x ≡ r2/R2, such that the

inner deformed surface of the deformed vessel is , and the outer surface is

(1.2)

It can be further derived that

(1.3)

It is clear that when x1 or  equals 1/kλz, the transmural deformation gradient is
uniform:

Destrade et al. Page 2

J Theor Biol. Author manuscript; available in PMC 2013 June 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(1.4)

i.e., the vessel reaches homeostatic state. In the next sections, we will explore the conditions
for the existence of the homeostatic state.

Pressure-Radius Relationship
Since the passive response of arteries is of interest, we model the vessel wall as hyperelastic
material with strain energy-function W = W(F) (see a standard reference of Ogden 1997),
along with the assumption of incompressibility. The Cauchy stress σ, is σ = −qI+F ∂W/∂F,
whose non-zero components in axisymmetric deformations are:

(2.1)

and therefore

(2.2)

where, using the notation (1.1) and the definition of x, Ŵ′(x) ≡ W(λR (x), λΘ(x), λz) ∈ C2

(0, ∞) and the prime notation denotes differentiation. The equilibrium equations in θ and z
directions are satisfied identically, and that in the r (radial) direction is dσrr/dr + (σrr − σθθ)/r
= 0 subject to boundary conditions σrr(r1)=−P1 and σrr(r2)=−P2. Integration of this radial
equilibrium equation using the trivial identity dx/dr= 2rR−2 (1 − kλx) yields

(2.3)

From here on, we only consider vessels with stress free external boundary, i.e., P2=0, thus
P1=P (x1). Equation (2.3) determines the deformed inner radius x1 for prescribed pressure
P1. The corresponding transmural stresses can then be derived as:

(2.4)

where β is a constant (zero in this case to satisfy the boundary condition).

A question arises of whether the internal pressure P(x1) is well-defined when the vessel
reaches homeostatic state, i.e., when x1 =1/kλz. It will now be shown that not only is (2.3)
well-defined when x1 =1/kλz but also it is continuous there. First, note that trivially it
follows from (1.3) that:

(2.5)
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Since

(2.6)

P is therefore differentiable at x1 =1/kλz, and therefore continuous, since it follows from
L’Hospital’s Rule that

(2.7)

In addition to the differentiability assumption made previously, it is further assumed that
Ŵ(x) is a strictly convex function; i.e., Ŵ″ (x)>0. The necessity of this assumption to
ensure physically realistic behaviour of arterial tissue in response to mechanical forces has
been discussed in Holzapfel et al. (2000). It follows then from (2.6) that P is a monotonically
increasing function of x1.

Homeostatic Pressure
In the previous section, the value x1 =1/kλz was discussed as being the only possible
singular value of x1 in the definition of the pressure difference given in (2.3); and it was
shown that the pressure is in fact continuous there. The value x1 =1/kλz does, however, have
a characteristic that distinguishes it from all other values: it follows from (1.3) that when x1
=1/kλz, the deformation is transmurally homogeneous of the form (1.4). The radial
equilibrium equation then yields:

(3.1)

The corresponding radial stress σrr is therefore given by:

(3.2)

An imposition of the boundary conditions yields the blood pressure for the vessel to reach
homeostatic state, denoted Ph, as:

(3.4)

Noting at homeostatic state that x2 = x1 =1/kλz, we get r2/r1 = R2/R1, and thus Ph can be
determined by the zero-stress geometry, radii R1 and R2 and the opening angle index k, as:

(3.5)

The key hypothesis here is that the residual stresses attempt to maintain the artery in a state
of transmurally homogeneous strain at a certain physiological blood pressure. This then is a
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variation on the uniform strain hypothesis of Takamizawa and Hayashi (1987), who
proposed that ‘the artery undergoes a uniform circumferential strain throughout the wall in
the physiological loading state’.

Stress Distribution at Homeostatic Pressure
The constant strain fields (1.4) are accompanied by stress fields that are slowly varying
functions of the radial coordinate in a logarithm form. As can be derived from (3.2), the
radial stress is:

(4.1)

and the hoop (circumferential) stress is:

(4.2)

whose values on the inner and outer walls are respectively

(4.3)

At homeostatic strain state, the hoop stress gradient is essentially the same as that for the
radial stress, given that the difference is simply a constant 2ΩŴ′(Ω), as it follows from (3.5)

and (4.2) that σθθ (r) = σrr (r)+Ph everywhere. The outer hoop stress  is always tensile.
There is a critical arterial thickness ratio for the hoop stress, r2/r1=R2/R1 = e ≈ 2.72 at which
the inner hoop stresses is 0 and the outer hoop stress is Ph, respectively. In reality, the
thickness ratio of artery is much less than this value, such that the hoop stress is tensile
throughout the wall.

Orthotropic Constitutive Model
The standard mathematical model of anisotropic passive arterial response was introduced by
Fung and co-workers (e.g. Chuong and Fung 1986) as:

(5.1)

where Q is a quadratic function of components of the Green-Lagrange strain E = (FTF−I)/2.
For an axisymmetric deformation of interest, the quadratic function has the form:

(5.2)

The derivative of W with respect to the variable x is given by:

(5.4)

Re-evaluation of this derivative at the homogeneous deformation state, x = 1/(kλz), leads to
the following homeostatic pressure:

Destrade et al. Page 5

J Theor Biol. Author manuscript; available in PMC 2013 June 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(5.6)

where

(5.7)

An alternative approach for formulation of strain-energy density functions for soft fibrous
tissues with anisotropic material behaviour is possible (e.g., Weinberg et al. 2007) but will
not be considered here.

Mechanical Data
We use two sets of experimental data to test the above derived formulations. The first data
were acquired by Fung et al. (1979) on rabbit carotid arteries. The second data include
triaxial mechanical test of eight porcine left anterior descending (LAD) arteries (Lu et al.
2003). Briefly, LAD segments, 3–4 cm long and numbered as L1-L8, were dissected from
fresh porcine hearts. Each specimen was mounted to test axial stretch and inflation in an
organ bath at room temperature. After the vessels were preconditioned (cyclically loaded to
minimize the viscous response), short rings (1–2 mm) were cut from the proximal and distal
LAD artery for measurement of the inner and outer radius R1 and R2 and opening angle α
for the zero-stress state (Fig. 1a), as listed in Table 1. During the experiment, the axial
stretch λz was varied from 1.2 to 1.4 in increments of 0.1, and the internal pressure was
continuously varied from 0 to 200 mmHg at constant λz. The outer radius r2 of the deformed
vessel and the axial force were recorded. The inner radius r1 was calculated by the
incompressible condition.

RESULTS
We tested the anisotropic prediction of Ph for rabbit carotid arteries (Fung et al. 1979). In the
current notation, the geometrical and residual stress data where R1 = 3.92mm, R2 = 4.52mm,
k = 2.52 and λz = 1.02. The material parameters in Eqs. (5.1) and (5.2) were given by
Chuong and Fung (1986) as c = 22.4kPa, 1{b1 ~ b6}= {1.0672, 0.4775, 0.0499, 0.0903,
0.0585, 0.0042}. These values lead to homeostatic pressure of Ph = 11kPa (~80mmHg)
which is well within the normal physiological range of blood pressure for rabbits (see, for
example, Rees et al. 1989).

The porcine LAD using an orthotropic Fung model (5.1), whose material parameters c and
{b1-b6} were previously fitted to biaxial tests (Wang et al. 2006), and are given in Table 1
for completeness. The homeostatic pressure Ph was calculated for each LAD artery by Eq.
(5.6) with physiological axial stretch λz = 1.35, and the results are given in Table 1. It is
shown that the value of Ph ranges from range of 70 to 120 mmHg, with a mean value of 88
mmHg, which is also within the normal physiological range.

DISCUSSION
The review article of Rachev and Greenwald (2003) summarizes the evolution of the
concept that tubular structures (e.g. arteries) are residually strained and stressed. It is now
widely accepted that mathematical models of arteries should incorporate some measure of
this residual stress in order to accurately and reliably predict the response of arteries to
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mechanical forces. Here, we show an important consequence of residual stress is the
existence of homeostatic uniform transmural strain at physiological blood pressure.

The validation of existence of physiological homeostatic pressure Ph of rabbit carotid
arteries and porcine LAD in anisotropic models is significant as the predicted homeostatic
pressure Ph is consistent with both the experimental data for the residual stretch and the
experimentally-based anisotropic mathematical models. It should be noted that the
homeostatic pressure physiologically is not necessary the peak pressure, which is typically
near 120 mmHg for human carotids and porcine LAD. Rather, it appears to be the mean
pressure which is more accurately captured by the anisotropic as opposed to the isotropic
models (data not shown).

It has been hypothesized that residual stresses may also result from growth and remodeling
of arterial tissue and osmotic pressures (Guo et al., 2007). Regardless of the mechanism of
residual stress and strain, an important consequence may be to maintain the artery in a state
of homogeneous strain at mean blood pressure. This is a generalisation of the uniform strain
hypothesis of Takamizawa and Hayashi (1987), who proposed that ‘the artery undergoes a
uniform circumferential strain throughout the wall in the physiological loading state’. It is a
generalization because it is suggested here that the full strain field is homogeneous and not
just the circumferential component. Other investigations of the relation between residual
strains and strain distribution include the study of Kaazempur-Mofrad et al. (2003) who
determined the effect of residual strains on the cyclic stress and strain distributions in the
large arteries as they undergo phasic pressure changes.

This theory of homogeneous strain at mean blood pressure may hold under compensatory
pathological conditions such as hypertension. This stipulation is not new as Fung and Liu
(1989) proposed that the increase in opening angle and accompanying residual stress serves
to maintain uniform stress and strain gradients in hypertension. The increase in residual
stress in blood vessels in response to hypertension has been well documented (see the
review in Fung 1993). Thus, even though the elevation of mean blood pressure in
hypertension causes the residual stresses to be increased, we speculate that the vessel will
still attempt to maintain homogenous strain at this condition. Using engineering systems
terminology, this is an example of ‘sub-optimization’, where a subsystem is optimised to the
detriment of the overall system depending on the magnitude of the perturbation.

The opening angle method, together with an axial pre-stretch, is used here. One novelty is
that an elegant relation is obtained between the mean blood pressure and the residual stress
that implies homogeneous strain. This equation relates the blood pressure to both the
thickness of the arterial wall and the residual stress. This relation can be inverted to obtain
the in vivo residual stress state, provided the corresponding strain-energy function is known.

The derived relation between blood pressure and residual stress can be used to validate the
constitutive model: a simple substitution of a proposed strain-energy function with typical
values assumed for the residual stress should yield a value for the blood pressure close to 90
mmHg. This was illustrated with an example strain-energy function from the literature. An
additional interesting utility of this formulation is as a constitutive constraint, with one of the
model parameters determined from this relation. This could be particularly useful for a
parameter that is difficult to determine experimentally.

Critique of Model
Arteries are composite structures, containing three histologically different layers (i.e.,
intima, media and adventitia). For normal artery at physiological pressures, however, the
media of the artery dominates the mechanical response (e.g., Ogden and Schulze-Bauer
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2000). Consequently, a single-layer artery model has been assumed here to strike a balance
between physical realism and mathematical complexity necessary to introduce the concept
of homeostatic strain and to deduce the consequence on physiologic loading (pressure).
Clearly, this establishes a foundation for additional layers of complexity in future works. A
homeostatic strain hypothesis for multiple layer composite models will be considered as
well as the effect of smooth muscle tone in future studies.

We also note that the opening angle method adopted here has limitations; e.g., the torsional
residual stresses are not considered and an assumption that residual stresses are
homogeneous in the axial direction. Regardless, the major experimentally observed
components of the residual stress are adequately captured by this well-accepted approach.
Alternative approaches can be considered in future studies to further test the hypothesis
advanced here.

Conclusion and Significance
In conclusion, it was shown that there exists a finite internal pressure at which the strain is
homogeneous for an artery. A model of literature data shows that this pressure is
approximately the mean blood pressure. This assumption is broadly compatible with
representative existing models of arterial response to mechanical forces and has implications
for growth, remodelling and disease.
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• A homeostatic pressure exists for which the transmural vessel strain is
homogenous.

• The homeostatic pressure is equivalent to the mean blood pressure.

• Consequences of strain homogeneity are explored under the proposed
assumptions.

Destrade et al. Page 10

J Theor Biol. Author manuscript; available in PMC 2013 June 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Deformation of arterial wall from open sector (zero-stress reference configuration) (a) to
loaded state (b) under inner and outer constant hydrostatic pressures applied on the faces.
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