Expression of a Truncated Form of the Endoplasmic Reticulum Chaperone Protein, σ 1 Receptor, Promotes Mitochondrial Energy Depletion and Apoptosis*§ Received for publication, February 3, 2012, and in revised form, May 10, 2012 Published, JBC Papers in Press, May 22, 2012, DOI 10.1074/jbc.M112.349142 Norifumi Shioda[‡], Kiyoshi Ishikawa[‡], Hideaki Tagashira[‡], Toru Ishizuka[§], Hiromu Yawo[§], and Kohji Fukunaga^{‡1} From the [‡]Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578 and the [§]Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan **Background:** An ER-associated chaperone protein, $\sigma 1$ receptor ($\sigma_1 R$), regulates ER/mitochondrial Ca²⁺ mobilization through the IP₃ receptor. **Results:** We identify a novel short splicing variant of σ_1 R, termed σ_1 SR, and demonstrate its dominant negative function. **Conclusion:** σ_1 SR interferes with σ_1 R function in mitochondrial Ca²⁺ mobilization and ATP production under ER stress conditions. **Significance:** In contrast to σ_1 R function, σ_1 SR has detrimental effects on cell survival. The σ 1 receptor (σ_1 R) regulates endoplasmic reticulum (ER)/ mitochondrial interorganellar Ca2+ mobilization through the inositol 1,4,5-trisphosphate receptor (IP₃R). Here, we observed that expression of a novel splice variant of $\sigma_1 R$, termed short form $\sigma_1 R$ ($\sigma_1 SR$), has a detrimental effect on mitochondrial energy production and cell survival. σ_1 SR mRNA lacks 47 ribonucleotides encoding exon 2, resulting in a frameshift and formation of a truncated receptor. σ_1 SR localizes primarily in the ER at perinuclear regions and forms a complex with σ_1 R but not with IP₃R in the mitochondrion-associated ER membrane. Overexpression of both $\sigma_1 R$ and the truncated isoform promotes mitochondrial elongation with increased ER mitochondrial contact surface. $\sigma_1 R$ overexpression increases the efficiency of mitochondrial Ca^{2+} uptake in response to IP_3R -driven stimuli, whereas σ_1 SR overexpression reduces it. Most importantly, $\sigma_1 R$ promotes ATP production via increased mitochondrial Ca²⁺ uptake, promoting cell survival in the presence of ER stress. By contrast, σ_1 SR suppresses ATP production following ER stress, enhancing cell death. Taken together, the newly identified σ_1 SR isoform interferes with σ_1 R function relevant to mitochondrial energy production under ER stress conditions, promoting cellular apoptosis. Mitochondrial Ca^{2+} uptake derived from IP_3R -mediated Ca^{2+} release is facilitated by interaction between IP_3R and voltage-dependent anion channels in the MAM (4,7,8), and several IP_3R -binding molecular chaperones regulate mitochondrial Ca^{2+} influx from the ER (9). Among them, the $\sigma 1$ receptor (σ_1R) , which was cloned by Hanner *et al.* (10), was recently identified as an ER-associated chaperone protein (11). σ_1R can also translocate from the ER to the MAM or plasma membrane to modulate diverse cellular activities, including lipid metabolism (12) and N-methyl-D-aspartate receptor activity (13). Functional analyses in Chinese hamster ovary (CHO) cells reveal that the σ_1R stabilizes the conformation of the MAM-associated IP_3R type-3 in the ER, positively regulating Ca^{2+} influx into mitochondria. In addition, σ_1R knockdown in CHO cells facilitates ER stress-induced cell death (11). ${\rm Ca^{2^+}}$ transport between the ER and mitochondria plays important roles in neurodegenerative diseases, such as Alzheimer, Parkinson, and Huntington disease (14). Indeed, $\sigma_1 {\rm R}$ ligands are considered therapeutic targets for several psychiatric and neurodegenerative diseases (15–17). However, how these ligands mediate neuroprotective effects remains ² The abbreviations used are: ER, endoplasmic reticulum; ALS, amyotrophic lateral sclerosis; ATP5A1, ATP synthase; IP₃, inositol 1,4,5-trisphosphate; IP₃R, inositol 1,4,5-trisphosphate receptor; MAM, mitochondrion-associated ER membrane; Mfn2, Mitofusin-2; PACS-2, phosphofurin acidic cluster sorting protein 2; PERK, RNA-dependent protein kinase-like ER kinase; σ_1 SR, short form σ 1 receptor; σ_1 R, σ 1 receptor; mt, mitochondrial; ICM, intracellular like medium; eGFP, enhanced GFP; erRFP, ER-targeted RFP. Endoplasmic reticulum (ER)²/mitochondrial Ca²⁺ transport contributes to many cellular processes, including ATP generation and cell survival (1, 2). ER inositol 1,4,5-trisphosphate receptors (IP₃Rs) are localized in the mitochondrion-associated ER membrane (MAM) (3, 4), where the IP₃R plays critical roles in mitochondrial Ca²⁺ transport. Ca²⁺ overload through IP₃R promotes apoptosis under pathological conditions (5). By contrast, mitochondrial Ca²⁺ uptake through IP₃R is crucial for basal mitochondrial ATP production required to maintain normal cellular biogenesis (6). ^{*} This work was supported by a grant-in-aid for scientific research on innovative areas (Foundation of Synapse and Neurocircuit Pathology), Grants-in-aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 22390109 and 24659024 (to K. F.) and 23790072 and 23110501 (to N. S.), and from the Smoking Research Foundation (to K. F.). S This article contains supplemental Figs. 1–4 and Table 1. The nucleotide sequence(s) reported in this paper has been submitted to the GenBank™/EBI Data Bank with accession number(s) AB721301. ¹To whom correspondence should be addressed: Dept. of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba Aoba-ku, Sendai 980-8578, Japan. Tel.: 81-22-795-6836; Fax: 81-22-795-6835; E-mail: kfukunaga@m.tohoku.ac.jp. unclear. More recently, $\sigma_1 R$ mutations have been observed in patients with dementia attributable to frontotemporal lobar degeneration (18) or juvenile amyotrophic lateral sclerosis (19). Interestingly, the latter apparently promotes nuclear transport of mutant forms of $\sigma_1 R$. In this study, we observed a novel σ_1 R splicing variant in mouse brain, namely a short form (σ_1 SR) lacking 47 bp of exon 2. σ_1 SR protein is primarily expressed in the ER, where it interacts with $\sigma_1 R$. Interestingly, $\sigma_1 SR$ overexpression decreased mitochondrial Ca²⁺ uptake in response to IP₃R-mediated stimulation, indicating that it antagonizes $\sigma_1 R$ activity. Moreover, σ_1 SR overexpression promoted autophagic apoptosis, consistent with IP₃R destabilization and decreased ATP production attributable to reduced mitochondrial Ca²⁺ uptake. Our results show for the first time that σ_1 SR interferes with mitochondrial ATP biogenesis by inhibiting σ_1 R function following ER stress. #### **EXPERIMENTAL PROCEDURES** Sequencing and Construction of Expression Vectors Encoding σ₁R Isoforms—Total RNAs were prepared from mouse brain hippocampus using TRIzol LS reagent (Invitrogen) according to the manufacturer's protocol. mRNA was reverse-transcribed into single-stranded cDNA using an oligo(dT) primer (Promega, Madison, WI) and Moloney murine leukemia virus-reverse transcriptase (Invitrogen). DNA sequences of $\sigma_1 R$ isoforms amplified by PCR using specific 5'- and 3'-primers and primer sequences are shown in supplemental Table 1. All DNA sequences were determined at the Fasmac DNA Sequence Service (FASMAC Co., Ltd., Atsugi, Japan). To construct expression vectors, PCR amplification products were digested with XhoI and BamHI and ligated with purified XhoI- and BamHIdigested pmCherry-N1 or pEGFP-N1 vector (Clontech) in the sense orientation. Cell Culture, Transfection, and Production of Stably Transfected Cell Lines—Neuro-2a cells from a mouse neuroblastoma C1300 tumor were obtained from the Human Science Research Resources Bank (IFO50081) (Osaka, Japan). Neuro-2a cells were grown in Dulbecco's minimal essential medium (DMEM) supplemented with 10% heat-inactivated fetal bovine serum (FBS) and penicillin/streptomycin (100 units/100 μg/ml) in a 5% CO₂ incubator at 37 °C. Cells were transfected with expression vectors using Lipofectamine 2000 (Invitrogen), and experiments were performed 48 h later as described (20). $\sigma_1 R$ small interfering (si)RNA (sense, 5'-ACACGTGGATGGTGG-AGTA-3', and antisense, 5'-TACTCCACCATCCACGTGT-3') was purchased from Exigen (Tokyo, Japan). Transfections were performed with 100 nm σ_1 Rs siRNA according to the methods of Ref. 21. Stably transfected Neuro-2a cells were prepared as described (22). Briefly, cells were transfected with $\sigma_1 R$ or σ_1 SR cDNA in pmCherry-N1 expression vectors as described above. Transfected cells were plated in medium containing 1000 µg G418/ml, and G418-resistant colonies were isolated. Immunoprecipitation and Immunoblotting—Immunoprecipitation and immunoblotting analysis were performed as described (20). 12-Week-old male C57BL/6J mouse brains were immediately removed from euthanized mice and perfused in ice-cold buffer for 3 min (0.32 M sucrose, 20 mM Tris-HCl, pH 7.4), and olfactory bulb, cortex, hippocampus, striatum, and brainstem were dissected. These samples and Neuro-2a cells were homogenized in buffer containing 50 mm Tris-HCl, pH 7.4, 0.5% Triton X-100, 0.5 M NaCl, 4 mm EDTA, 4 mm EGTA, 1 mm Na₃VO₄, 50 mm NaF, 1 mm DTT, 2 μg/ml pepstatin A, and 1 μg/ml leupeptin, then treated with Laemmli sample solution, and boiled for 3 min. Antibodies included the following: rabbit polyclonal antibodies against the N-terminal cytosolic domain (52-69 amino acids) (1:1000) and C-terminal lumenal domain (143–165 amino acids) of $\sigma_1 R$ (1:1000; a kind gift of Dr. Teruo Hayashi, NIDA, Baltimore); GFP (1:2000; Clontech); calcineurin (1:1000) (23); voltage-dependent anion channel (1:1000; Cell Signaling Technology, Beverly, MA); CREB-2 (1:200; Santa Cruz Biotechnology, Santa Cruz, CA); LC-3 (PM036, 1:1000; MBL, Nagoya, Japan); rabbit monoclonal antibody against phospho-PERK (1:1000; Cell Signaling Technology); mouse monoclonal antibodies against C/EBP homologous protein (1:200; Santa Cruz Biotechnology); β-tubulin (1:1000; Sigma); and pan-IP₃R (1:500; Millipore, Bedford, MA). For subcellular fractionation, cells were washed twice with ice-cold phosphate-buffered saline (PBS), separated into cytosolic, ER, and mitochondrial membranes and nuclear fractions using the subcellular protein fractionation kit (Thermo Fisher Scientific Inc., Waltham, MA) following the manufacturer's protocol, and analyzed by Western blot analysis. Immunohistochemistry—Fluorescence immunohistochemical studies were performed as described (24). Cells were fixed in 4% paraformaldehyde in phosphate buffer for 30 min at room temperature and washed in PBS. Cells were blocked with 3% bovine serum albumin in PBS for 1 h. First antibodies included mouse monoclonal antibodies against GM130 (1:1000; BD Biosciences) and rabbit polyclonal antibody against LC-3 (PM036, 1:1000; MBL). After thorough washes in PBS, sections were incubated with secondary antibodies in blocking solution at 20 °C for 24 h. Antibodies included Alexa 594-labeled antimouse IgG and Alexa 448-labeled anti-rabbit IgG (1:500; Invitrogen) in blocking solution at 20 °C for 3 h. After several washes in PBS, sections were mounted on slides with Vectashield (Vector Laboratories Inc., Burlingame, CA). For nuclear staining, sections were incubated with DAPI (Vector Laboratories, Burlingame, CA). Immunofluorescent images were analyzed using a confocal laser scanning microscope (LSM700; Zeiss, Thornwood, NY). To detect ER and mitochondrial distribution, Neuro-2a cells were transfected with erRFP or mitochondrial GFP (mtGFP) (Bacman 2.0, Invitrogen) and analyzed using confocal microscopy of fixed cells. Morphometric and Contact Analysis-Morphometric and contact analysis was performed as described previously (25) with modifications. For morphometric analysis of mitochondria, the major axis length of each identified object was calculated. Cells were scored as showing elongated mitochondria when >50% of the objects in the image displayed a major axis longer than 3 μ m. For morphometric analysis of ER, major axis length and elongation index of each identified object were calculated. Cells were scored as showing reticular ER when the major axis was longer than 5 µm, and the elongation index exceeded 4 in more than 50% of the identified objects. For mitochondrial network and ER co-localization, one focal plane was analyzed. Images were deconvoluted, and background was subtracted using ImageJ software. Co-localization of organelles was quantified using the co-localization coefficient of Manders et *al.* (26). Quantification of Neurite Sprouting—Neurite sprouting by Neuro-2a cells was assessed by staining with β III-tubulin (1:1000, Promega, Madison, WI) and use of the VECTASTAIN ABC kit (Vector Laboratories, Burlingame, CA), according to the manufacturer's protocol. Images were acquired using the $40\times$ objective of a microscope (BX51WI, Olympus, Tokyo, Japan) equipped with a digital camera (Micropublisher 5.0, QIMAGING, Burnaby, British Columbia, Canada). Sprouting was quantified as the percentage of cells with neurites longer than twice the body diameter. Neurite length was determined using ImageJ software. Six fields (100 cells per field) in each condition were chosen randomly and photographed. Fluorometric $[Ca^{2+}]_c$ and $[Ca^{2+}]_{mt}$ Measurements—Neuro-2a cells were grown on 0.01% poly-L-lysine (Sigma)-coated glass-bottom dishes. For [Ca²⁺]_c measurement, cells were rinsed in Krebs buffer (135 mm NaCl, 6 mm KCl, 1.2 mm MgCl₂, 12 mm glucose, 1.5 mm CaCl₂, 12 mm HEPES, pH 7.3), loaded with 2.5 μM Fura-2/AM (Sigma) for 15 min at 37 °C in darkness, and washed with Krebs buffer for 15 min. Measurements were performed in Ca²⁺-free Krebs buffer including 2 mm EGTA. Ratio measurements were performed every 3 s by excitation at 340 and 380 nm and recording of the emission at 530 nm. Ratio values were derived by averaging fluorescence intensity from the entire cytosolic area. To measure $[Ca^{2+}]_{mt}$, cells were transfected with the ratiometric pericam (a kind gift of Dr. Atsushi Miyawaki, RIKEN Brain Science Institute, Wako-City, Japan) targeted to the mitochondrial matrix. Two days later, cells were exposed to externally applied 10 μM ATP in Ca²⁺-free Krebs buffer and imaged. Cells were permeabilized by exposure to intracellular like medium (ICM) (125 mm KCl, 19 mm NaCl, 10 mм HEPES-KOH, pH 7.3, 1 mм EGTA) and appropriate concentrations of CaCl₂ (330 μ M CaCl₂ for 50 nM free Ca²⁺) (27) containing 250 µg/ml (w/v) saponin (MP Biomedicals, Ohio) for 3 min. Permeabilized cells were washed with ICM and then exposed to ICM containing 1 µM inositol 1,4,5-trisphosphate (IP₃) (Biomol, Plymouth Meeting, PA). Dual excitation imaging with ratiometric pericam-mt required two filters (excitation 482/35, dichroic mirror 506, emission 536/40 and excitation 414/46, dichroic mirror 510, emission 527/20). [Ca²⁺], and [Ca²⁺]_{mt}, which were monitored during the assay on an inverted microscope (Leica DM IRB, Japan), were equipped with CCD cameras (ORCA-ER; Hamamatsu, Japan). Captured images were analyzed using the Metafluor imaging system (Molecular Devices, Sunnyvale, CA). *Drug Treatments*—ER stress was induced by treatment of cells with 2 μ g/ml tunicamycin (Sigma) for 4 or 24 h. For cell viability experiments, tunicamycin treatment continued for 48 h. Mitochondrial Ca²⁺ uptake was inhibited by 10 μ M Ru360 (Calbiochem). ATP Measurement—Cells were plated in 6-cm plates, and ATP content was determined using luciferin and a luciferase assay kit (Toyo B-net, Tokyo, Japan) following the manufacturer's protocol. TUNEL Staining—DNA fragmentation and apoptotic bodies were detected by the TUNEL method using an *in situ* apoptosis detection kit (Takara Bio Inc., Shiga, Japan), as described (28). One hundred cells from 13 randomly selected fields were counted in each experiment. Quantification of mRNA by Real Time PCR—Real time PCR analysis was performed as described (24) in 48-well plates (Mini Opticon Real Time PCR System, Bio-Rad) using iQ SYBR Green Supermix 2× (Bio-Rad). Primer sequences are shown in supplemental Table 1. Relative quantities of target mRNAs were determined by the comparative threshold cycle (ΔCT) method and normalized to GAPDH quantity. Product purity and specificity were confirmed by omitting the template and performing a standard melting curve analysis. Statistical Evaluation—All values were expressed as means \pm S.E. Comparison between two experimental groups was made using the unpaired Student's t test. Statistical significance for differences among groups was tested by one-way analysis of variance, followed by multiple comparisons between control and other groups using Dunnett's multiple comparison test. p < 0.05 was considered significant. #### **RESULTS** Identification of a Novel $\sigma_1 R$ Splicing Variant— $\sigma_1 R$, a nonopioid receptor (29, 30), was previously cloned from guinea pigs (10), humans (31), and mice (32). All forms showed greater than 80% amino acid homology but no structural homology with any other receptor family. We screened a mouse hippocampal cDNA library by PCR using primer sets derived from the coding region of mouse *Sigmar1* (Fig. 1A, p1 and p2) and identified the Sigmar1-coding sequence fragment (Fig. 1B, lane 1) and a novel smaller fragment (Fig. 1B, lane 2). When we amplified what would be an \sim 200-bp fragment spanning σ_1 R exon 2 to exon 3 (Fig. 1A, p3 and p4) from the Sigmar1-coding sequence fragment, we detected the expected 200-bp fragment (Fig. 1B, lane 3) and also an \sim 150-bp fragment (Fig. 1B, lane 4). Sequencing analysis revealed that the short fragment lacks 47 bp from exon 2 of the full-length gene. We subsequently identified a novel 231-bp splicing variant of σ_1 R and called it σ_1 SR (Fig. 1*B*, *lane* 5). A human sequence corresponding to mouse σ_1 SR had been deposited in GenBankTM under accession number BC007839.2. (Fig. 1*C*, *left*), but protein expression and function had not been evaluated. Our analysis indicated that the novel splice conformed to the G(T/A)G rule (Fig 1D) and that splicing of the 47-bp fragment caused a frameshift starting at amino acid 103 and translation termination due to a newly generated stop codon. The predicted primary structure of σ_1 SR contains 106 rather than the 223 amino acids seen in $\sigma_1 R$. The first 102 amino acids of both proteins are identical, but the C-terminal four residues of σ_1 SR differ from the longer form, because they are derived from translation of the frame-shifted $\sigma_1 R$ exon 3 (Fig. 1, *C* and *D*). Tissue Distribution and Localization of Both σ_1R Isoforms— To investigate tissue distribution and relative expression levels of σ_1R and σ_1SR , we performed immunoblot analysis in adult mouse brain using antibodies against the σ_1R N-terminal cytosolic domain (amino acids 52–69) or the C-terminal lumenal domain (amino acids 143–165). To confirm endogenous FIGURE 1. σ_1 R alternative splicing. A, position of PCR primers relative to receptor sequences (transmembrane domain). B, PCR of an adult mouse brain hippocampus cDNA library was performed using the indicated oligonucleotide primers. C, sequence of coding region of human SIGMAR1 (left) and mouse Sigmar1 (right) cDNA. The deduced amino acid sequence is presented using the one-letter code. Differences between homologues are shown in bold. Two putative transmembrane domains (TM1 and TM2) are shown in *gray underlines*, and the 47-bp of sequences deleted from full-length σ_1 R are shown in *black* underlines. Their deletion results in a frameshift, giving rise to four novel amino acids in σ_1 SR (boxed). D, proposed splicing mechanism of σ_1 Rs. Exons are outlined, and coding sequence is denoted by capital letters. Intronic sequence is denoted by lowercase letters. expression of $\sigma_1 R$ and $\sigma_1 SR$, we observed immunoreactive bands in cell extracts from neuroblastoma Neuro-2a cells transfected with both cDNAs (Fig. 2A, lanes 3–8). Using an N-terminal cytosolic domain-specific antibody, we observed marked variation in the ratio of endogenous $\sigma_1 SR$ (seen as a 12-kDa band) to $\sigma_1 R$ (seen as a 26-kDa band) protein in the mouse brain regions tested (Fig. 2A, upper panel, lanes 9-13). An unidentified protein of the 19-kDa protein was observed in the hippocampus and brainstem lysates. As expected, a C-terminal lumenal domain antibody detected an immunoreactive $\sigma_1 R$ band but not $\sigma_1 SR$ (Fig. 2A, lower panel, lanes 9-13). $\sigma_1 SR$ protein levels were high in cortex, hippocampus, and striatum $(\sigma_1 SR/\sigma_1 R)$ ratio of 0.4) but barely detectable in olfactory bulb and brainstem (Fig. 2B). To further investigate differences in subcellular localization, we fractionated lysates of Neuro-2a cells transfected with 3' eGFP-tagged $\sigma_1 R$ ($\sigma_1 R$ -eGFP) or $\sigma_1 SR$ $(\sigma_1 SR-eGFP)$ cDNA into cytosolic, ER, and mitochondrial membrane (including MAM) and nuclear fractions. High levels of σ_1 R-eGFP were found in ER and mitochondrial membrane fractions, and relatively low levels were seen in other fractions, whereas σ_1 SR-eGFP was detected in membrane and nuclear fractions (Fig. 2C). To determine subcellular localization of these proteins, we undertook confocal microscopy of fluorescence-tagged $\sigma_1 R$ and $\sigma_1 SR$ in Neuro-2a cells. $\sigma_1 R$ -eGFP and σ_1 SR-eGFP were primarily observed in perinuclear regions, although low levels of fluorescence were seen in the nuclei of σ_1 SR-eGFP-expressing cells (Fig. 2D). A punctate perinuclear staining pattern of erRFP, which targets and serves as a marker of endoplasmic reticulum, largely co-localized with σ_1 R-eGFP (Fig. 2E) and σ_1 SR-eGFP (Fig. 2F). Interestingly, the Golgi marker GM130 showed considerable co-localization with σ_1 SR-eGFP (Fig. 2H) but not with σ_1 R-eGFP (Fig. 2G). Both mCherry-tagged σ_1 R isoforms were detected in some overlays with the mitochondrial marker mtGFP, suggesting that σ_1 SR protein also localizes on MAMs, as reported for σ_1 R (Fig. 2, I and J) (11). These results suggest that the subcellular distribution of both σ_1 R isoforms is similar, although σ_1 SR is also seen in the Golgi apparatus and nucleus. Overexpression of Either $\sigma_{l}R$ Isoform Promotes Mitochondrial Elongation and Increases ER/Mitochondrial Contact Space—Based on their subcellular location, we analyzed the role of both σ_1 R isoforms in ER and mitochondrial morphology and in ER/mitochondria interaction. σ_1 R or σ_1 SR overexpression did not alter the reticular ER structure of erRFP-infected Neuro-2a cells (Fig. 3*B*; 89.1 \pm 2.8% in control, 88.7 \pm 2.9% in σ_1 R-, and 83.6 \pm 3.6% in σ_1 SR-transfected cells). However, expression of either isoform alone promoted mitochondrial elongation, as shown by three-dimensional reconstruction of mitochondrion-targeted green fluorescent protein (Fig. 3C; $41.6 \pm 7.5\%$ in control, $77.4 \pm 7.0\%$ in $\sigma_1 R$ -, and $67.3 \pm 8.9\%$ in σ_1 SR-transfected cells). In addition, confocal semiquantitative analysis of ER/mitochondria juxtaposition showed that tethering of ER and mitochondria increased either isoform expressed in Neuro-2a cells (Fig. 3D; $2.6 \pm 0.3\%$ in controls, $4.6 \pm 0.9\%$ in σ_1 R-, and 3.8 \pm 0.7% in σ_1 SR-transfected cells). $\sigma_1 SR$ Forms a Complex with $\sigma_1 R$ but Not with $IP_2 Rs$ —Because both $\sigma_1 R$ isoforms are similarly distributed, we asked whether either directly interacted with IP₃Rs. To do so, we performed immunoprecipitation of extracts from σ_1 SR-mCherry- expressing cells co-expressing σ_1 R-eGFP using an eGFP antibody followed by immunoblotting with an anti- σ_1 R N-terminal cytosolic domain-specific antibody. We observed an immunoreactive σ_1 SR-mCherry band (41 kDa) (Fig. 4A, upper panel, lane 9) not seen in immunoprecipitates from extracts from eGFP-, σ_1 R-eGFP-, or σ_1 SR-mCherry-overexpressing cells (Fig. 4A, upper panel, lanes 6-8). Immunoreactive bands with molecular masses corresponding to two fluorescence-tagged σ_1 R isoforms of 55 and 41 kDa were detected in each cell extract (Fig. 4A, lanes 2–4). To confirm the specificity of fluorescencetagged σ_1 SR bands, we used an anti- σ_1 R C-terminal lumenal domain-specific antibody. σ_1 SR-eGFP (37 kDa) and σ_1 SRmCherry (41 kDa) bands were not detected (Fig. 4A, lower panel). Because $\sigma_1 R$ forms a complex with IP₃R type-3 in CHO cells (11), we examined potential binding of $\sigma_1 R$ and $\sigma_1 SR$ with IP₃R in Neuro-2a cells. After immunoprecipitation with an IP₃R antibody, we observed only a 26-kDa σ_1 R immunoreactive band in σ_1 R- or σ_1 SR-overexpressing cells (Fig. 4*B*, *lanes* 4 – 6). Next, after $\sigma_1 R$ immunoprecipitation with an anti- $\sigma_1 R$ N-terminal specific antibody, we undertook immunoblotting using an anti-IP₃Rs antibody. As expected, increased levels of an IP₃R immunoreactive band were seen in σ_1 R-overexpressing (Fig. 4C, lane 5) but not σ_1 SR-overexpressing (Fig. 4C, lanes 4 and 6) cells relative to controls. No significant differences in IP₃R protein expression were observed between control cells and cells expressing $\sigma_1 R$ isoforms (Fig. 4C, lanes 1–3). Confocal microscopy of Neuro-2a cells indicated that σ_1 SR-mCherry coincided with σ_1 R-GFP immunofluorescence in the ER (Fig. 4*D*). $\sigma_1 SR$ Expression Reduces Mitochondrial Ca²⁺ Uptake in Response to IP₃R-driven Stimuli—IP₃Rs are important for ERmitochondrial Ca²⁺ transport, which is regulated by $\sigma_1 R$ in the MAM of CHO cells (11). Because σ_1 SR forms a complex with $\sigma_1 R$, we assessed a potential role for $\sigma_1 SR$ in mitochondrial Ca²⁺ uptake. To assay mitochondrial Ca²⁺ uptake in Neuro-2a cell lines stably expressing σ_1 R-mCherry (σ_1 R-mCh cells) or $\sigma_{\rm 1}{\rm SR\text{-}mCherry}$ ($\sigma_{\rm 1}{\rm SR\text{-}mCh}$ cells), we conducted ${\rm Ca}^{2^+}$ imaging using ratiometric pericam-mt Ca²⁺ probes, which localize to mitochondria (Fig. 5A) (33). We confirmed that σ_1 R- and σ_1 SRmCherry mRNA levels in each line were equivalent, and we also found that levels showed an approximate 20-fold increase over parental Neuro-2a cells (supplemental Fig. 1A). We then asked whether mitochondrial Ca²⁺ elevation elicited by ATP, acting on receptors coupled with $G_{\rm q}$ protein to stimulate ${\rm IP_3}$ production. For this experiment, ${\rm Ca^{2+}}$ -free Krebs buffer containing 2 mm EGTA was used to assess intracellular Ca²⁺ mobilization and mitochondrial Ca²⁺ elevation through FIGURE 2. **Tissue distribution and localization of \sigma_1Rs.** A_1 representative immunoblots probed with antibodies against the σ_1 R N-terminal cytosolic domain (upper panel) or the C-terminal lumenal domain (lower panel). As control bands, extracts from Neuro-2a cells transfected with σ_1 R and σ_1 SR constructs (lanes 1–8) are shown. B, quantitative densitometry shows the ratio of σ_1 SR to σ_1 R protein expression among different brain regions. OB, olfactory bulb; CX, cortex; HP, hippocampus; ST, striatum; BS, brainstem. n = 4 in each group. C, cytosolic (Cyto), ER, mitochondrial membrane (Mem), and nuclear (Nuc) fractions from $eGFP\ tagged-\sigma_1R\ is oform-transfected\ Neuro-2a\ cells\ were\ blotted\ with\ antibodies\ against\ GFP,\ calcineur in\ (\textit{CaN},\ cytosolic\ marker),\ voltage-dependent\ anion$ channel (ER and mitochondrial membrane marker), and CREB-2 (nuclear marker). D–I, σ_1 R localization in Neuro-2a cells. Confocal images show co-localization of fluorescence (eGFP or mCherry)-tagged- σ_1 R isoforms and markers of ER (erRFP), Golgi apparatus (GM130), and mitochondria (mtGFP). D, σ_1 R-eGFP (left) and σ_1 SR-eGFP (right) are mainly expressed in perinuclear regions. A small number of GFP aggregates are detected in nuclei of σ_1 SR-eGFP-expressing cells (shown by arrow). Right panels are high magnification images. E and F, immunoreactivity of both σ_1 R-eGFP isoforms (green) and erRFP (red) almost completely merge. G and H, GM130 (green) immunoreactivity co-localizes with σ_1 SR-mCherry (H) (red) but not with σ_1 R-mCherry (G) (red). I and J, both mCherry-tagged σ_1 R isoforms (red) were detected in a few overlays with the mitochondrial marker mtGFP (green). Lower panels in I and J are high magnification images. Scale bars, 10 μm. FIGURE 3. **Both** σ_1 **R isoforms regulate mitochondrial morphology and juxtaposition of the ER to mitochondria.** *A*, representative images of three-dimensional reconstructions of ER (erRFP; *left*), mitochondria (mtGFP; *middle*), and merged images showing ER and mitochondria co-localization (*yellow*; *right*). *B*, morphometric analysis of ER shape in cells transfected with erRFP (n=3, 18 cells per experiment). *C*, quantitative analysis of mitochondrial shape in cells transfected with mtGFP (n=4, 12 cells per experiment). *D*, quantitative analysis of co-localization of ER and mitochondria (as a percentage of total mitochondrial volume) in cells co-transfected with erRFP and mtGFP (n=4, 20 cells per experiment). Each *bar* represents the mean \pm S.E. *, p < 0.05; **, p < 0.01 *versus* control cells. *Scale bar*, 10 μ m. the ER IP $_3$ R. As shown in Fig. 5B, ATP stimulation caused a rapid rise in $[{\rm Ca}^{2+}]_{\rm mt}$, followed by a gradual decline with a sustained plateau phase in control cells (black line). In σ_1 R-mCh cells (Fig. 5B, red line), the $[{\rm Ca}^{2+}]_{\rm mt}$ increase was markedly enhanced compared with that seen in control cells, although it was significantly decreased in σ_1 SR-mCh cells (blue line). Interestingly, decreased $[{\rm Ca}^{2+}]_{\rm mt}$ mobilization seen in σ_1 SR-mCh cells was significantly rescued to levels comparable with those seen in control cells by σ_1 R co-expression (Fig. 5B, green line). Peak amplitudes of $[{\rm Ca}^{2+}]_{\rm mt}$ mobilization are summarized (0.18 \pm 0.02 in control, 0.3 \pm 0.01 in σ_1 R-mCh, 0.09 \pm 0.02 in σ_1 SR-mCh, and 0.14 \pm 0.01 in σ_1 SR-mCh plus σ_1 R expression). To confirm that IP $_3$ Rs function in [Ca $^{2+}$] $_{mt}$ mobilization, saponin-permeabilized cells were treated with IP $_3$, and [Ca $^{2+}$] $_{mt}$ was monitored in the presence of ICM buffer. Consistent with results seen after ATP application, IP $_3$ -mediated [Ca $^{2+}$] $_{mt}$ mobilization was significantly enhanced in σ_1 R-mCh cells and decreased in σ_1 SR-mCh cells relative to control cells. In addition, [Ca $^{2+}$] $_{mt}$ decreases seen in σ_1 SR-mCh cells were rescued by σ_1 R co-expression (Fig. 5*C*; peak amplitude 0.17 \pm 0.04 in control cells, 0.22 \pm 0.04 in σ_1 R-mCh cells, 0.13 \pm 0.03 in σ_1 SR-mCh cells, and 0.19 \pm 0.06 in σ_1 SR-mCh plus σ_1 R expression). We next examined intracellular mobilization $[Ca^{2+}]_c$ following ATP stimulation using the ratiometric indicator Fura- $2/{\rm AM}$ in ${\rm Ca^{2^+}}$ -free Krebs buffer. Interestingly, ATP-induced $[{\rm Ca^{2^+}}]_c$ mobilization in $\sigma_1{\rm R}$ -mCh cells was significantly reduced compared with controls. By contrast, $[{\rm Ca^{2^+}}]_c$ mobilization in $\sigma_1{\rm SR}$ -mCh cells was greater than that seen in control cells and that increase was suppressed by $\sigma_1{\rm R}$ co-expression (Fig. 5D; peak amplitude 0.13 ± 0.02 in control cells, 0.12 ± 0.08 in $\sigma_1{\rm R}$ -mCh cells, 0.16 ± 0.06 in $\sigma_1{\rm SR}$ -mCh cells, and 0.1 ± 0.03 in $\sigma_1{\rm SR}$ -mCh plus $\sigma_1{\rm R}$ cells). This evidence strongly suggests that increased ${\rm IP_3}$ -mediated ${\rm [Ca^{2^+}]_{mt}}$ mobilization stimulated by $\sigma_1{\rm R}$ overexpression decreases ${\rm [Ca^{2^+}]_{c}}$ mobilization, although ${\rm IP_3}$ -mediated ${\rm [Ca^{2^+}]_{mt}}$ mobilization due to $\sigma_1{\rm SR}$ overexpression enhances it. We also confirmed that ATP-induced [Ca²+]_{mt} mobilization was mediated by $\sigma_1 Rs$ using siRNA knockdown of both $\sigma_1 R$ isoforms. Expression levels of both proteins were down-regulated $\sim\!70\%$ by siRNA treatment (supplemental Fig. 1B). $\sigma_1 R$ isoform knockdown significantly decreased ATP-induced [Ca²+]_{mt} mobilization (Fig. 5E; peak amplitude 0.18 \pm 0.03 in control cells and 0.1 \pm 0.02 in $\sigma_1 R$ isoform siRNA cells); conversely, knockdown of both $\sigma_1 R$ and $\sigma_1 SR$ protein elevated ATP-induced [Ca²+]_c mobilization (Fig. 5F; peak amplitude 0.15 \pm 0.05 in control cells and 0.19 \pm 0.08 in $\sigma_1 R$ isoform siRNA cells). Overexpression of σ_1 R-mCh and σ_1 SR-mCh may alter the capacity of ER Ca²⁺ stores. To assess this possibility, we stim- FIGURE 4. σ_1 SR forms a complex with and co-localizes with σ_1 R. A_i co-immunoprecipitation of fluorescence-tagged σ_1 SR and σ_1 R in Neuro-2a cells. Extracts were immunoprecipitated (IP) with anti-eGFP antibody, and immunoprecipitates were immunoblotted (WB) with anti- σ_1 R N-terminal cytosolic domain (upper panel) or with the C-terminal lumenal domain (lower panel) antibody. Cell extracts (lnput) from Neuro-2a cells transfected with eGFP (lane 1), σ_1 R-eGFP (lane 2), σ_1 R-mCherry (lane 3), σ_1 SR-eGFP (lane 4), or σ_2 SR-mCherry (lane 5) constructs are shown as positive controls for σ_1 R isoform immunoreactive bands. B and C, co-immunoprecipitation of σ_1 Rs and IP₃Rs in Neuro-2a cells. Extracts were immunoprecipitated with anti-IP₃Rs (B) or anti- σ_1 R N-terminal cytosolic domain (C) antibody, and immunoprecipitates were immunoblotted (WB) with anti-IP₃Rs (B) or anti- σ_1 R N-terminal (C) antibody. As a positive control for σ_1 Rs and IP₃Rs immunoreactive bands, cell extracts (Input) are shown from intact (Iane 1) or $\sigma_1 R$ - (Iane 2) or $\sigma_1 SR$ (Iane 3)-transfected cells. D, confocal images showing co-localization of σ_1 R-eGFP (*green*) and σ_1 SR-mCherry (*red*) in Neuro-2a cells. *Scale bar*, 10 μ m. ulated cells with thapsigargin, an inhibitor of the sarcoplasmic reticulum calcium ATPase. Thapsigargin treatment promoted a transient increase in $[Ca^{2+}]_c$ by depleting Ca^{2+} stores in the absence of extracellular Ca^{2+} , and subsequent addition of extracellular Ca²⁺ increased [Ca²⁺]_c through capacitative Ca²⁺ entry. Both the capacity of ER Ca²⁺ stores and capacitative Ca^{2+} entry were comparable in cells with or without σ_1R and σ_1 SR overexpression (supplemental Fig. 2). These results suggest that both $\sigma_1 R$ isoforms affect the efficiency of mitochondrial Ca²⁺ uptake in response to IP₃R-driven stimuli without changing the capacity of ER Ca²⁺ stores. $\sigma_1 SR$ Acts Antagonistically to $\sigma_1 R$ following ER Stress—Because $\sigma_1 SR$ expression suppresses IP_3 -mediated $[Ca^{2+}]_{mt}$ mobilization and enhances receptor-mediated [Ca²⁺]_c mobilization through the ER, we hypothesized that σ_1 SR overexpression increases the vulnerability of a cell to ER stress. To test this, we evaluated the effect of the ER stressor tunicamycin on overexpression of $\sigma_1 R$ isoforms. Tunicamycin treatment promoted expression of both endogenous $\sigma_1 R$ and $\sigma_1 SR$ protein in $\sigma_1 R$ mCh but not control cells. Conversely, tunicamycin treatment reduced expression of both endogenous $\sigma_1 R$ and $\sigma_1 SR$ in $\sigma_1 SR$ mCh cells (Fig. 6B). FIGURE 5. σ_1 SR expression reduces mitochondrial Ca²⁺ uptake in response to IP₃R-driven stimuli. A, pseudo-colored images of Neuro-2a cells expressing the mitochondrial Ca²⁺ indicator, ratiometric pericam-mt, at 30 s (*left*) and 60 s (*right*), corresponding to a control cell in B. Regions of interest for [Ca²⁺]_{mt} measurement is indicated by the *circles* in A. B, C, and E, relative fluorescence intensity changes following treatment with 10 μ m ATP in Neuro-2a cells (B and E) or 1 μ m IP₃ in permeabilized Neuro-2a cells (C) after transfection of a mitochondrial pericam probe. D and E, relative Fura-2/AM fluorescence intensity changes following 10 μ m ATP stimulation. *Top line* indicates incubation pericam probe. D and E, relative Fura-2/Indicates incubation pericam-mt and Fura-2 fluorescence peak value of the release phase relative to the preceding base line is shown on the *right*. Each *bar* represents the mean E S.E. E, E, E, E, E0.05; E8, E9.01 versus control cells. E9.01 versus control cells. E9.02; ##, E9.01 versus E9.03 per experiment, performed in triplicate from four preparations. *Scale bar*, 10 μ m. Tunicamycin treatment also promoted significant degradation of IP₃R proteins in control but not σ_1 R-mCh cells, suggesting a chaperone activity for $\sigma_1 R$. More importantly, $\sigma_1 SR$ -mCh overexpression enhanced degradation of IP₃R proteins relative to that seen in control cells (Fig. 6B; 50.8 \pm 14.1% in control cells, 77 \pm 24.1% in σ_1 R-mCh cells, and 16.3 \pm 8.8% in σ_1 SRmCh cells at 24 h after tunicamycin treatment). Because σ_1 SRmCh overexpression promoted protein degradation, we examined the effects of σ_1 SR-mCh overexpression on ER stress using stress markers, such as phosphorylation of PERK and its downstream target C/EBP homologous protein. As unexpected, neither PERK phosphorylation nor C/EBP homologous protein levels were enhanced by σ_1 SR-mCh overexpression (Fig. 6B). However, when we evaluated autophagic responses based on production of the autophagy marker LC3-II, the ratio of LC3-II to total (LC3-I plus LC3-II) LC3 was markedly increased by 24 h after tunicamycin treatment (Fig. 6B). $\sigma_{\rm I}SR$ Enhances Autophagosome Formation following ER Stress—Given that LC3-II production was enhanced in $\sigma_{\rm I}SR$ -mCh cells (Fig. 6B), we determined the diameters of vacuoles containing LC3-II (34). Twenty four hours after tunicamycin treatment, diameters of \sim 80% of LC3-positive vacuoles were smaller than the 1.0 μ m seen in control cells (Fig. 7, A and D). σ_1 R-mCh overexpression decreased the number of LC3-positive vacuoles compared with control without changing the size distribution (Fig. 7, B, D and E). By contrast, σ_1 SR-mCh overexpression induced formation of larger autophagosomes than those seen in control cells, significantly shifting the size distribution profile. Over 50% of vacuoles were between 1.0 and 1.5 μm at 24 h after tunicamycin treatment (Fig. 7, C and D). The total number of LC3-positive particles also markedly increased in σ_1 SR-mCh cells following tunicamycin treatment (Fig. 7*E*; 98.3 \pm 11.4 in controls, 66.3 \pm 7.2 in σ_1 R-mCh cells, and 195 \pm 16.7 in σ_1 SR-mCh cells). The size of LC3-positive vacuoles did not change in control, σ_1 R-mCh, and σ_1 SR-mCh cells not treated with tunicamycin. Taken together, $\sigma_1 R$ overexpression inhibited formation of tunicamycin-induced autophagosomes, although σ_1 SR overexpression promoted autophagosome formation under ER stress conditions. $\sigma_{\rm I}SR$ Suppresses Mitochondrial ATP Production and Enhances Apoptosis following ER Stress—Finally, we asked how $\sigma_{\rm I}SR$ overexpression enhances the autophagic response. Because IP₃R-mediated Ca²⁺ transport into mitochondrial Ca²⁺ promotes oxidative phosphorylation, respiration, and ATP production by activating the tricarboxylic acid cycle (2, 35), we speculated that ATP production would be suppressed FIGURE 6. σ_1 SR enhances IP₃R destabilization following ER stress. A, representative immunoblots probed with various antibodies are shown in control, σ_1 R-mCh, and σ_1 SR-mCh cells at 0, 4, and 24 h after 2 μ g/ml tunicamycin treatment. B, quantitative densitometry analyses are shown. n = 6 per experiment. Each bar represents the mean \pm S.E. *, p < 0.05; **, p < 0.01 versus control cells. by σ_1 SR overexpression. Therefore, we measured changes in cellular ATP production with or without tunicamycin-induced ER stress. Unexpectedly, overexpression of σ_1 R or σ_1 SR markedly enhanced ATP production without tunicamycin treatment. In control cells, tunicamycin treatment significantly increased ATP production at 24 h but markedly suppressed it after 48 h of treatment. $\sigma_1 R$ overexpression significantly promoted ATP production both at 24 and 48 h after tunicamycin treatment (Fig. 8A). ATP production in σ_1 SR-mCh cells was significantly suppressed at both the 24- and 48-h time points compared with control cells (Fig. 8A; $41.9 \pm 1.1\%$ in controls, 86.4 \pm 5.3% in σ_1 R-mCh cells, and 14.5 \pm 0.24% in σ_1 SR-mCh cells at 48 h compared with control cells at a resting state). To confirm that changes in ATP production are related to mitochondrial Ca²⁺ mobilization, we examined cellular ATP levels with or without tunicamycin treatment in the presence or absence of Ru360, a mitochondrial Ca²⁺ uptake blocker. ATP FIGURE 7. σ_1 SR enhances autophagosome formation following ER stress. A–C, LC3 immunostaining in control (A), σ_1 R-mCh (B), and σ_1 SR-mCh (C) cells 24 h after 2 μ g/ml tunicamycin treatment. Enlarged images indicate the boxed areas. Scale bars, 30 μ m in low magnification and 10 μ m in high magnification images. D and E, quantitative analysis of particle size (D) and total number (E) of LC3-immunoreactive autophagosomes 24 h after tunicamycin treatment. Ten fields (30 cells per field) in each condition were chosen randomly and photographed. Each bar represents the mean \pm S.E. *, p < 0.05; **, p < 0.01versus control cells. production enhanced by $\sigma_1 R$ or $\sigma_1 SR$ overexpression or by tunicamycin treatment was completely inhibited by Ru360 treatment (supplemental Fig. 3). Because ATP production was suppressed 48 h after tunicamycin treatment and treatment could promote apoptosis, we evaluated apoptosis using TUNEL staining. σ_1 SR-mCh overexpression significantly enhanced the number of TUNEL-positive cells 24 h after tunicamycin treatment, although σ_1 R-mCh overexpression significantly suppressed tunicamycin-induced apoptosis. By contrast, σ_1 SR-mCh overexpression markedly enhanced tunicamycin-induced apoptosis at 48 h (Fig. 8B; percentages of TUNEL-positive cells were $43.5 \pm 8.4\%$ in control, 19.1 \pm 4.4% in σ_1 R-mCh, and 70.4 \pm 5.4% in σ_1 SR-mCh). To confirm that σ_1 R-mCh and σ_1 SR-mCh overexpression does not alter mitochondrial protein levels, we examined the expression of cytochrome c and the α subunit of ATP synthase (ATP5A1), subunits of the respiratory chain complex. σ_1 RmCh and σ_1 SR-mCh cells showed no change in mRNA levels of FIGURE 8. σ_1 SR suppresses mitochondrial ATP production and enhances apoptosis following ER stress. A, intracellular ATP levels were measured in untreated cells or cells treated with 2 μ g/ml tunicamycin at 24 and 48 h. B, TUNEL-positive cells were counted in treated cells at 24 and 48 h. One hundred cells from 13 randomly selected fields were counted in each experiment. C, real time PCR analysis showed that cytochrome c and ATP5A1 mRNA expression showed no significant differences between each group. n=6 per experiment. Each bar represents the mean \pm S.E. ***, p < 0.01 versus control at no stimulation. #, p < 0.05; ##, p < 0.01 versus control at each time point. these factors (Fig. 8C), indicating that σ_1 R-mCh and σ_1 SR-mCh overexpression does not interfere with mitochondrial structure or directly regulate IP₃R-mediated ATP production. #### **DISCUSSION** Here, we identified σ_1 SR, a novel truncated isoform of the σ_1 R. Using Neuro-2a cells, we showed that under physiological conditions the σ_1 SR overexpression slightly stimulates ATPinduced cytosolic Ca²⁺ mobilization, in contrast with a small reduction promoted by $\sigma_1 R$ overexpression (Fig. 5D). These changes are likely due to increased and decreased Ca2+ mobilization into mitochondria induced by σ_1 SR and σ_1 R overexpression, respectively. Unexpectedly, $\sigma_1 SR$ overexpression increased ATP production in the absence of stress stimuli, such as ER stress (Fig. 8A), an activity not associated with reduction in ATP-induced mitochondrial Ca²⁺ mobilization. Thus, although ATP-induced mitochondrial Ca²⁺ mobilization is significantly reduced by σ_1 SR overexpression, mitochondrial Ca²⁺ levels may be moderately increased with mitochondrial elongation. In support of this idea, increased ATP production seen following σ_1 SR overexpression was eliminated by treating cells with the mitochondrial Ca2+ transport blocker Ru360 (supplemental Fig. 3). Because basal ATP levels increase following overexpression of either isoform (Fig. 8A) and σ_1 R overexpression in PC12 cells reportedly stimulates neurite sprouting in response to nerve growth factor (36), we hypothesized that σ_1 SR overexpression might stimulate Neuro-2a cell differentiation. To evaluate this possibility, we measured morphological changes in both σ_1 R- and σ_1 SR-overexpressing Neuro-2a cells. Consistent with the findings of Ref. 36, σ_1 R overexpression significantly stimulated neurite extension as compared with control cells. Similarly, like σ_1 R overexpression, σ_1 SR overexpression significantly stimulated neurite extension (supplemental Fig. 4; 3.2 \pm 1.3% in control, 45.5 \pm 4.3% in σ_1 R, and 46 \pm 7.4% in σ_1 SR-transfected cells). Mitochondrial elongation and extension of gap junctions between ER and mitochondria promoted by σ_1 SR and σ_1 R overexpression likely account for enhanced mitochondrial ATP production. Elongated mitochondria express higher levels of the dimeric form of ATPase, which is associated with more efficient ATP production (37). Increased contact space between the ER and mitochondria also likely enhances mitochondrial Ca²⁺ transport (38, 39). An ER-associated sorting protein, phosphofurin acidic cluster sorting protein 2 (PACS-2), is required for association of mitochondria with the ER. PACS-2 depletion induces mitochondrial fragmentation and uncoupling with the ER, resulting in aggravated ER stress (40). Mitofusin-2 (Mfn2) in the ER is also required for adhesion between mitochondrial and ER membranes. Depletion of Mfn2 impairs ER-mitochondrial Ca2+ transport (25) and induces cell death in cerebellar granule neurons (41). Taken together, $\sigma_1 R$ overexpression causes elongation of mitochondria and enhances IP₃R-induced Ca²⁺ transport, thereby promoting mitochondrial ATP production. Thus, elevated mitochondrial energy production likely promotes cell survival in the presence of ER stress. $\sigma_{1}SR$ Expression Promotes Mitochondrial ATP Depletion and Autophagy Only under ER Stress Conditions—The σ_1 R reportedly stabilizes IP₃Rs to maintain Ca²⁺ transport from the ER into mitochondria in CHO cells (11). We confirmed that $\sigma_1 R$ overexpression enhances IP₃-induced mitochondrial Ca²⁺ transport and ATP production, whereas σ_1 SR did not bind to IP₃Rs, and its overexpression did not enhance IP₃-induced mitochondrial Ca2+ transport. Under ER stress conditions, σ_1 SR expression had detrimental effects on mitochondrial Ca²⁺ transport through the ER (Fig. 5*B*), promoting mitochondrial ATP depletion (Fig. 8). σ_1 SR overexpression also destabilized IP₃Rs (Fig. 6B), which may account for decreased mitochondrial Ca^{2+} transport. Finally, σ_1SR overexpression promoted an autophagic response to ER stress following tunicamycin treatment without altering PERK activity (Figs. 6B and 7). Autophagy functions to recycle energy and nutrients in nutrient starvation and ER stress conditions (42), but the balance between autophagy and cell death is highly dependent on intracellular Ca2+ levels (43). IP3R protein levels and activity are critical to inhibit autophagy (44). Indeed, autophagy is inhibited and promoted by IP₃R agonists (such as IP₃) and antagonists (such as xestospongins), respectively (45-47). In addition, IP₃R is required to inhibit autophagy under physiological conditions (6). The lack of mitochondrial Ca²⁺ transport by IP₃R depletion inhibits pyruvate dehydrogenase and increases the AMP/ATP ratio, thereby aggravating autophagy via AMP-activated protein kinase (6). IP₃Rs also inhibit autophagy through binding with Bcl-2 and Beclin-1 (known as autophagy-related gene 6) in HeLa cells (48). Inhibition of IP₃Rs by xestospongin B promotes disruption of complexes formed by IP₃R, Bcl-2, and Beclin-1, activating autophagy. Taken together, IP₃R dysfunction through σ_1 R down-regulation accounts for autophagic mechanisms in σ_1 SR-expressed cells. *Physiological Relevance of Interaction between* $\sigma_{1}R$ *and* $\sigma_{2}SR$ and Their Ligands—As shown in Fig. 1, the $\sigma_1 R$ is composed two transmembrane domains (TM1, amino acids 11–29; TM2, amino acids 91-109), an extracellular loop, and intracellular N and C termini with the C-terminal region including a large soluble domain (49, 50). Pharmacological studies indicate that numerous compounds, including benzomorphans (SKF-10047, pentazocine), antipsychotics (haloperidol), antidepressants (fluvoxamine), steroids (dehydroepiandrosterone, progesterone), and drugs of abuse (methamphetamine, cocaine) can bind to the $\sigma_1 R$, primarily through the TM2 and C-terminal regions (50). The $\sigma_1 R$ agonist (+)-pentazocine positively modulates $\sigma_1 R/IP_3 R$ association and stabilizes the complex at ER-mitochondria contact sites under ER stress. As a result, IP₃ binding to the IP₃R increases, and Ca²⁺ efflux is enhanced (11). In addition, ligand-induced regulation of this function apparently resides largely in the N terminus, contributing to functional coupling of C- and N-terminal σ_1 R fragments. Wu and Bowen (51) reported that agonist binding to the $\sigma_1 R$ may change its conformation such that the N-terminal segment dissociates from the C terminus, which in turn can interact more avidly with IP₂R. Here, we showed that σ_1 R binds to the IP₃R via its C terminus (Fig. 4). σ_1 SR displays the opposite function, suppressing mitochondrial ATP production and promoting cell death following tunicamycin-induced ER stress. We suggest that $\sigma_1 SR$, whose sequence is almost identical to the $\sigma_1 R$ N terminus (Fig. 1), interacts with the σ_1 R C terminus, inhibiting σ_1 R-mediated IP₂R-derived ER-mitochondrial Ca²⁺ transport. Lymphocytes also express another $\sigma_1 R$ splice variant, which is replaced at Ala-13, Leu-28, and Ala-86 to Thr-13, Pro-28, and Val-86, respectively, and lacks 31 amino acids corresponding to residues 119–149 in the $\sigma_1 R$ protein (52). The $\sigma_1 R$ isoform lacks ligand binding sites. In NG108-15 cells, the full-length σ_1 R forms a trimeric complex with the cytoskeletal adaptor protein ankyrin B and IP₃R in the ER membrane, and σ_1 R agonists cause dissociation of ankyrin B from the IP₃R, promoting IP_3R activation (53). Indeed, the C-terminal σ_1R peptides (amino acids 102-223) transfected into MCF-7 breast tumor cells promote decreased levels of ankyrin B associated with the IP₂R compared with untransfected cells, enhancing IP₃R activation (51). In addition, the N-terminal σ_1 R peptides (amino acids 1-100) expressed in MCF-7 cells weakly associate with ankyrin B and IP3R complexes, but have little capacity to enhance IP₃R activity (51). In addition, a glutathione S-transferase (GST) fusion form of $\sigma_1 R$ (amino acids 116–223) has chaperone activity, blocking aggregation of denatured citrate synthase *in vitro*. However, GST- σ_1 R (amino acids 29–92) lacks chaperone activity (11). Taken together with these studies, σ_1 SR as defined here likely lacks chaperone activity and ligand binding ability and acts instead as a dominant negative form of $\sigma_1 R$ by blocking C-terminal chaperone activity under ER stress conditions or disrupting IP₃R/ σ_1 R interaction. However, under normal conditions, overexpression of either isoform promotes similar phenotypes relevant to ATP production, FIGURE 9. Schematic representation of altered mitochondrial ATP production and cell death in the presence of two σ_1 R isoforms following ER **stress.** Upper, in ER stress conditions, $\sigma_1 R$ stabilizes IP₃Rs and sustains mitochondrial Ca²⁺ uptake-derived ATP production, enhancing survival. Lower, by contrast, $\sigma_1 SR$ expression destabilizes IP₃Rs and promotes dysfunction of IP_3R -derived ER-mitochondrial Ca²⁺ transfer through functional loss of σ_1R , resulting in ATP depletion and autophagic apoptosis. In resting conditions, both $\sigma_1 R$ isoforms positively regulate mitochondrial biogenesis. mitochondrial elongation, and neurite extension, suggesting that endogenous σ_1 SR has an alternate unique function in mitochondrial elongation and adhesion with the ER. We showed that ATP-induced $[Ca^{2+}]_c$ mobilization in σ_1 SRmCh cells was greater than that seen in control cells in Ca²⁺free Krebs buffer (Fig. 5D). σ_1 SR expression possibly destabilizes IP₃Rs by inhibiting chaperone activity of endogenous $\sigma_1 R_1$ thereby reducing IP₃R-derived ER-mitochondrial Ca²⁺ transport (Fig. 9). This activity may elicit enhanced [Ca²⁺], mobilization following ATP stimulation of σ_1 SR-mCh cells. However, extensive studies are required to define how IP₃R/ σ_1 R interaction is disrupted by σ_1 SR overexpression. Among the three IP₂R isoforms, type-3 IP₃R plays a critical role in induction of apoptosis by preferentially transmitting Ca²⁺ signals into mitochondria (54). siRNA-based knockdown of type-3 IP₃R significantly decreases IP₃-induced mitochondrial Ca2+ concentrations in CHO cells, whereas knockdown of type-1 IP₃R reduces cytosolic Ca²⁺ concentration (54). In addition, type-3 IP₃Rs are particularly enriched at the MAM, whereas type-1 IP₃R is homogeneously expressed in ER membranes in neurons (9). σ_1 Rs form a trimeric complex with ankyrin-B and the type-3 IP₃Rs but not with type-1 IP₃Rs in NG108-15 cells (53). Taken together, $\sigma_1 R$ acts as a specific chaperone for type-3 IP₃R at the MAM, regulating [Ca²⁺]_{mt} mobilization in neurons. Notably, $\sigma_1 R$ agonists, including (+)-pentazocine, increase [Ca²⁺]_c from the ER following bradykinin stimulation of NG108-15 cells (55). In addition, $\sigma_1 R$ (amino acids 102–223)-transfected MCF-7 cells also show increased [Ca²⁺]_c induced by bradykinin stimulation (51), suggesting that other $\sigma_1 R$ -binding proteins regulate intracellular Ca²⁺ mobilization. In the future, we will investigate whether these binding proteins regulate [Ca²⁺]_c mobilization after stimulation with $\sigma_1 R$ ligands in neurons and define $\sigma_1 SR$ function in [Ca²⁺] mobilization. *Pathophysiological Relevance of* σ_1 SR—Autophagy is activated in several neurodegenerative disorders, although its significance in neuronal death and survival remains to be defined (56). Al-Saif *et al.* (19) reported a *SIGMAR1* missense mutation in exon 2 associated with juvenile amyotrophic lateral sclerosis (c.304G→C) that substitutes glutamine for glutamic acid at residue 102 (E102Q), which occurs at the σ_1 SR splice site (Fig. 1). Expression of the E102Q mutant enhances apoptosis in the mouse motor neuron-like cell line NSC34 (19). Further studies are needed to reveal functions of σ_1 SR in neurodegenerative disorders. Acknowledgments—We thank Dr. Teruo Hayashi of the National Institute on Drug Abuse, Department of Health and Human Services, for kindly providing antibodies against the N and C termini of $\sigma_I R$; Dr. Akihiko Tanimura and Dr. Yosuke Tojyo in the Department of Pharmacology, School of Dentistry, Health Sciences University of Hokkaido, for helpful advice on Ca^{2+} imaging analysis; and Dr. Atsushi Miyawaki at the Brain Science Institute, RIKEN, for kindly providing ratiometric pericam-mt/pcDNA3. #### **REFERENCES** - Robb-Gaspers, L. D., Burnett, P., Rutter, G. A., Denton, R. M., Rizzuto, R., and Thomas, A. P. (1998) Integrating cytosolic calcium signals into mitochondrial metabolic responses. *EMBO J.* 17, 4987–5000 - Csordás, G., Renken, C., Várnai, P., Walter, L., Weaver, D., Buttle, K. F., Balla, T., Mannella, C. A., and Hajnóczky, G. (2006) Structural and functional features and significance of the physical linkage between ER and mitochondria. J. Cell Biol. 174, 915–921 - 3. Rizzuto, R., Brini, M., Murgia, M., and Pozzan, T. (1993) Microdomains with high ${\rm Ca^{2^+}}$ close to ${\rm IP_{3^-}}$ sensitive channels that are sensed by neighboring mitochondria. *Science* **262**, 744–747 - Rizzuto, R., Pinton, P., Carrington, W., Fay, F. S., Fogarty, K. E., Lifshitz, L. M., Tuft, R. A., and Pozzan, T. (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca²⁺ responses. *Science* 280, 1763–1766 - Hanson, C. J., Bootman, M. D., and Roderick, H. L. (2004) Cell signaling. IP₃ receptors channel calcium into cell death. *Curr. Biol.* 14, R933-R935 - 6. Cárdenas, C., Miller, R. A., Smith, I., Bui, T., Molgó, J., Müller, M., Vais, H., - Cheung, K. H., Yang, J., Parker, I., Thompson, C. B., Birnbaum, M. J., Hallows, K. R., and Foskett, J. K. (2010) Essential regulation of cell bioenergetics by constitutive $InsP_3$ receptor Ca^{2+} transfer to mitochondria. *Cell* **142.** 270 283 - Vance, J. E. (1990) Phospholipid synthesis in a membrane fraction associated with mitochondria. *I. Biol. Chem.* 265, 7248 –7256 - 8. Giorgi, C., De Stefani, D., Bononi, A., Rizzuto, R., and Pinton, P. (2009) Structural and functional link between the mitochondrial network and the endoplasmic reticulum. *Int. J. Biochem. Cell Biol.* **41**, 1817–1827 - 9. Hayashi, T., Rizzuto, R., Hajnoczky, G., and Su, T. P. (2009) MAM. More than just a housekeeper. *Trends Cell Biol.* **19,** 81–88 - Hanner, M., Moebius, F. F., Flandorfer, A., Knaus, H. G., Striessnig, J., Kempner, E., and Glossmann, H. (1996) Purification, molecular cloning, and expression of the mammalian σ1-binding site. *Proc. Natl. Acad. Sci.* U.S.A. 93, 8072–8077 - 11. Hayashi, T., and Su, T. P. (2007) σ 1 receptor chaperones at the ER-mitochondrion interface regulate Ca²⁺ signaling and cell survival. *Cell* **131**, 596–610 - Hayashi, T., and Su, T. P. (2003) σ1 receptors (σ₁-binding sites) form raft-like microdomains and target lipid droplets on the endoplasmic reticulum. Roles in endoplasmic reticulum lipid compartmentalization and export. J. Pharmacol. Exp. Ther. 306, 718–725 - 13. Martina, M., Turcotte, M. E., Halman, S., and Bergeron, R. (2007) The σ 1 receptor modulates NMDA receptor synaptic transmission and plasticity via SK channels in rat hippocampus. *J. Physiol.* **578**, 143–157 - Celsi, F., Pizzo, P., Brini, M., Leo, S., Fotino, C., Pinton, P., and Rizzuto, R. (2009) Mitochondria, calcium, and cell death. A deadly triad in neurodegeneration. *Biochim. Biophys. Acta* 1787, 335–344 - 15. Maurice, T., and Lockhart, B. P. (1997) Neuroprotective and anti-amnesic potentials of σ receptor ligands. *Prog. Neuropsychopharmacol. Biol. Psychiatry* **21**, 69 102 - 16. Urani, A., Romieu, P., Roman, F. J., Yamada, K., Noda, Y., Kamei, H., Manh Tran, H., Nagai, T., Nabeshima, T., and Maurice, T. (2004) Enhanced antidepressant efficacy of σ 1 receptor agonists in rats after chronic intracerebroventricular infusion of β -amyloid-(1–40) protein. *Eur. J. Pharmacol.* 486, 151–161 - Schetz, J. A., Perez, E., Liu, R., Chen, S., Lee, I., and Simpkins, J. W. (2007) A prototypical σ1 receptor antagonist protects against brain ischemia. Brain Res. 1181, 1–9 - Luty, A. A., Kwok, J. B., Dobson-Stone, C., Loy, C. T., Coupland, K. G., Karlström, H., Sobow, T., Tchorzewska, J., Maruszak, A., Barcikowska, M., Panegyres, P. K., Zekanowski, C., Brooks, W. S., Williams, K. L., Blair, I. P., Mather, K. A., Sachdev, P. S., Halliday, G. M., and Schofield, P. R. (2010) σ nonopioid intracellular receptor 1 mutations cause frontotemporal lobar degeneration-motor neuron disease. *Ann. Neurol.* 68, 639 – 649 - 19. Al-Saif, A., Al-Mohanna, F., and Bohlega, S. (2011) A mutation in σ 1 receptor causes juvenile amyotrophic lateral sclerosis. *Ann. Neurol.* **70**, 913–919 - Shioda, N., Yamamoto, Y., Watanabe, M., Binas, B., Owada, Y., and Fukunaga, K. (2010) Heart-type fatty acid-binding protein regulates dopamine D₂ receptor function in mouse brain. *J. Neurosci.* 30, 3146–3155 - Tagashira, H., Bhuiyan, S., Shioda, N., Hasegawa, H., Kanai, H., and Fukunaga, K. (2010) σ1 receptor stimulation with fluvoxamine ameliorates transverse aortic constriction-induced myocardial hypertrophy and dysfunction in mice. Am. J. Physiol. Heart. Circ. Physiol. 299, H1535–H1545 - Takeuchi, Y., and Fukunaga, K. (2003) Differential subcellular localization of two dopamine D₂ receptor isoforms in transfected NG108-15 cells. J. Neurochem. 85, 1064-1074 - Shioda, N., Moriguchi, S., Shirasaki, Y., and Fukunaga, K. (2006) Generation of constitutively active calcineurin by calpain contributes to delayed neuronal death following mouse brain ischemia. *J. Neurochem.* 98, 310–320 - Shioda, N., Beppu, H., Fukuda, T., Li, E., Kitajima, I., and Fukunaga, K. (2011) Aberrant calcium/calmodulin-dependent protein kinase II (CaM-KII) activity is associated with abnormal dendritic spine morphology in the ATRX mutant mouse brain. *J. Neurosci.* 31, 346–358 - de Brito, O. M., and Scorrano, L. (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. *Nature* 456, 605–610 - 26. Manders, E. M., Verbeek, F. J., and Aten, J. A. (1993) Measurement of co-localization of objects in dual color confocal images. J. Microsc. 169, - 27. Tanimura, A., and Turner, R. J. (1996) Inositol 1,4,5-trisphosphate-dependent oscillations of luminal [Ca2+] in permeabilized HSY cells. J. Biol. Chem. 271, 30904-30908 - 28. Shioda, N., Han, F., Morioka, M., and Fukunaga, K. (2008) Bis(1-oxy-2pyridinethiolato)oxovanadium(IV) enhances neurogenesis via phosphatidylinositol 3-kinase/Akt and extracellular signal-regulated kinase activation in the hippocampal subgranular zone after mouse focal cerebral ischemia. Neuroscience 155, 876 - 887 - 29. Su, T. P., London, E. D., and Jaffe, J. H. (1988) Steroid binding at σ receptors suggests a link between endocrine, nervous, and immune systems. Science 240, 219-221 - 30. Hellewell, S. B., Bruce, A., Feinstein, G., Orringer, J., Williams, W., and Bowen, W. D. (1994) Rat liver and kidney contain high densities of $\sigma 1$ and σ 2 receptors. Characterization by ligand binding and photoaffinity labeling. Eur. J. Pharmacol. 268, 9-18 - 31. Kekuda, R., Prasad, P. D., Fei, Y. J., Leibach, F. H., and Ganapathy, V. (1996) Cloning and functional expression of the human type 1 σ receptor (h σ R1). Biochem. Biophys. Res. Commun. 229, 553-558 - 32. Seth, P., Leibach, F. H., and Ganapathy, V. (1997) Cloning and structural analysis of the cDNA and the gene encoding the murine type 1 σ receptor. Biochem. Biophys. Res. Commun. 241, 535-540 - 33. Nagai, T., Sawano, A., Park, E. S., and Miyawaki, A. (2001) Circularly permuted green fluorescent proteins engineered to sense Ca²⁺. Proc. Natl. Acad. Sci. U.S.A. 98, 3197–3202 - 34. Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y., and Yoshimori, T. (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720-5728 - 35. Hajnóczky, G., Csordás, G., Krishnamurthy, R., and Szalai, G. (2000) Mitochondrial calcium signaling driven by the IP3 receptor. J. Bioenerg. Biomembr. 32, 15-25 - 36. Takebayashi, M., Hayashi, T., and Su, T. P. (2002) Nerve growth factorinduced neurite sprouting in PC12 cells involves σ 1 receptors. Implications for antidepressants. J. Pharmacol. Exp. Ther. 303, 1227-1237 - 37. Strauss, M., Hofhaus, G., Schröder, R. R., and Kühlbrandt, W. (2008) Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. EMBO J. 27, 1154-1160 - 38. Bernardi, P. (1999) Mitochondrial transport of cations. Channels, exchangers, and permeability transition. Physiol. Rev. 79, 1127–1155 - 39. Green, D. R., and Kroemer, G. (2004) The pathophysiology of mitochondrial cell death. Science 305, 626-629 - 40. Simmen, T., Aslan, J. E., Blagoveshchenskaya, A. D., Thomas, L., Wan, L., Xiang, Y., Feliciangeli, S. F., Hung, C. H., Crump, C. M., and Thomas, G. (2005) PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J. 24, 717-729 - Jahani-Asl, A., Cheung, E. C., Neuspiel, M., MacLaurin, J. G., Fortin, A., Park, D. S., McBride, H. M., and Slack, R. S. (2007) Mitofusin 2 protects cerebellar granule neurons against injury-induced cell death. J. Biol. Chem. - 282, 23788 -23798 - Klionsky, D. J. (2007) Autophagy. From phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol. 8, 931-937 - 43. Debnath, J., Baehrecke, E. H., and Kroemer, G. (2005) Does autophagy contribute to cell death? Autophagy 1, 66-74 - 44. Decuypere, J. P., Monaco, G., Bultynck, G., Missiaen, L., De Smedt, H., and Parys, J. B. (2011) The IP₃ receptor-mitochondria connection in apoptosis and autophagy. Biochim. Biophys. Acta 1813, 1003-1013 - 45. Sarkar, S., Floto, R. A., Berger, Z., Imarisio, S., Cordenier, A., Pasco, M., Cook, L. J., and Rubinsztein, D. C. (2005) Lithium induces autophagy by inhibiting inositol monophosphatase. J. Cell Biol. 170, 1101-1111 - 46. Criollo, A., Maiuri, M. C., Tasdemir, E., Vitale, I., Fiebig, A. A., Andrews, D., Molgó, J., Díaz, J., Lavandero, S., Harper, F., Pierron, G., di Stefano, D., Rizzuto, R., Szabadkai, G., and Kroemer, G. (2007) Regulation of autophagy by the inositol trisphosphate receptor. Cell Death. Differ. 14, 1029 - 1039 - 47. Criollo, A., Vicencio, J. M., Tasdemir, E., Maiuri, M. C., Lavandero, S., and Kroemer, G. (2007) The inositol trisphosphate receptor in the control of autophagy. Autophagy 3, 350-353 - Vicencio, J. M., Ortiz, C., Criollo, A., Jones, A. W., Kepp, O., Galluzzi, L., Joza, N., Vitale, I., Morselli, E., Tailler, M., Castedo, M., Maiuri, M. C., Molgó, J., Szabadkai, G., Lavandero, S., and Kroemer, G. (2009) The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin-1. Cell Death. Differ. 16, 1006-1017 - 49. Aydar, E., Palmer, C. P., Klyachko, V. A., and Jackson, M. B. (2002) The σ receptor as a ligand-regulated auxiliary potassium channel subunit. Neuron 34, 399 - 410 - 50. Su, T. P., Hayashi, T., Maurice, T., Buch, S., and Ruoho, A. E. (2010) The σ 1 receptor chaperone as an inter-organelle signaling modulator. Trends Pharmacol. Sci. 31, 557-566 - 51. Wu, Z., and Bowen, W. D. (2008) Role of σ 1 receptor C-terminal segment in inositol 1,4,5-trisphosphate receptor activation. Constitutive enhancement of calcium signaling in MCF-7 tumor cells. J. Biol. Chem. 283, 28198 - 28215 - 52. Ganapathy, M. E., Prasad, P. D., Huang, W., Seth, P., Leibach, F. H., and Ganapathy, V. (1999) Molecular and ligand-binding characterization of the σ receptor in the Jurkat human T lymphocyte cell line. *J. Pharmacol.* Exp. Ther. 289, 251-260 - 53. Hayashi, T., and Su, T. P. (2001) Regulating ankyrin dynamics. Roles of $\sigma 1$ receptors. Proc. Natl. Acad. Sci. U.S.A. 98, 491-496 - 54. Mendes, C. C., Gomes, D. A., Thompson, M., Souto, N. C., Goes, T. S., Goes, A. M., Rodrigues, M. A., Gomez, M. V., Nathanson, M. H., and Leite, M. F. (2005) The type III inositol 1,4,5-trisphosphate receptor preferentially transmits apoptotic Ca²⁺ signals into mitochondria. J. Biol. Chem. **280,** 40892-40900 - 55. Hayashi, T., Maurice, T., and Su, T. P. (2000) Ca^{2+} signaling via σ_1 -receptors. Novel regulatory mechanism affecting intracellular Ca2+ concentration. J. Pharmacol. Exp. Ther. 293, 788-798 - Nixon, R. A. (2006) Autophagy in neurodegenerative disease. Friend, foe, or turncoat? Trends Neurosci. 29, 528-535