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Abstract A mathematical model is presented for the increase and decrease of non-
inherited antibiotic resistance levels in bacteria. The model is applied to experimental
data on E. coli exposed to amoxicillin or tetracyclin in different concentrations. The
parameters of the model are estimated using a Monte Carlo Markov Chain method.
The model accurately describes build-up and decline of antibiotic resistance caused
by physiological adaptations as long as no genetic changes have occurred. The main
conclusion of the analysis is that short time periods are sufficient to re-obtain low
MIC-values after long-lasting exposure to these antibiotics.
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1 Introduction

In recent years, the increasing abundance of antimicrobial resistance has caused
mounting costs in the health care sector. Treatment of patients infected by resistant
pathogens such as methicillin resistant Staphylococcus aureus (MRSA) or carriers
of the extended spectrum beta-lactamases (ESBL) gene, costs between $6,000 and
$50,000 more than therapy of those suffering from susceptible variants (Maragakis et
al. 2008; Slama 2008). The stage has been reached that the medicines of choice are
no longer effective and that infections with these multi-resistant micro-organisms can
only be treated with more expensive or more toxic drugs. In some cases, even none
of the available antibiotics has sufficient effect.

The problem is not limited to human health care, the veterinary sector is con-
fronted with the same problem (Mevius et al. 2010). The nature and evolution of
tolerance and resistance of microbes against antibiotics has been documented in
some 200,000 scientific articles (Davies and Davies 2010). Three types of mecha-
nisms can cause a rise of resistance: (1) adaptation of the regular cellular machinery,
(2) mutations that make the target insensitive, and (3) transfer of so-called resistance
genes (Harbottle et al. 2006). Once any of these has occurred, further exposure to
the antibiotic will select for the specific trait. Despite the detailed knowledge about
mechanisms and epidemiology of resistance, the rate of appearance upon exposure
to antibiotics and the rate of decline when the selective pressure is removed, are not
known quantitatively. Build-up and decline of antibiotic resistance depend on a large
number of factors and the rates are likely to differ between various combinations of
microbial species and antibiotics. Important components are: the initial acquisition of
resistance by a single cell, or at most a few cells, and the subsequent positive selec-
tion of these resistant cells. Acquisition can be by any of the three events mentioned
above. While the second two are by nature chance events, the first is usually gradual,
is most likely to occur in more than one cell simultaneously, and is therefore more
predictable.

The experimental data in this article were obtained in the laboratory using E. coli
as a model organism and tetracyclin, amoxicillin, and enrofloxacin as antibiotics (see
Sect. 2 for details). An E. coli-strain was grown in known, but time-varying, con-
centrations of an antibiotic in a well-shaken medium. At several time points, sam-
ples of the E. coli population were exposed to different dilutions of antibiotics in
a 96 well-plate. The minimal inhibitory concentration (MIC) was the lowest con-
centration of antibiotics in the 96-well plate at which no growth was observed after
24 hours.

As explained below, for tetracyclin, physiological adaptation seems a plausible
explanation of the lab experiments while this is clearly not the case for enrofloxacin.
For amoxicillin, physiological adaptation seems to be present but inherited resistance
may have developed as well.

In the study reported here, we have developed a model for the acquisition of antibi-
otic resistance by means of physiological adaptation. Several mathematical models
have been developed to describe the likelihood of development of heritable resistance,
e.g. a mutation, and its subsequent spread in a population; see e.g. Abel zur Wiesch
et al. (2011), Day and Bonduriansky (2011). To our knowledge, no mathematical
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models have been developed that describe the mechanisms underlying physiological
adaptation.

For tetracyclin, the model that was developed allows reasonably accurate predic-
tions of the actual development of resistance once the relevant parameters have been
determined. These models can be used by public health services involved in regulat-
ing the use of antibiotics in the agricultural sector to predict the effects of measures
under consideration. Indeed, if animals receive antibiotics, there may be residues of
these antibiotics present in the animals at the moment of slaughtering and this has
led to the ban of certain classes of antibiotics in a time-window before slaughter.
However, the antibiotics prescribed earlier, may cause an increase in the resistance
level in bacteria and this increased resistance level may still be present at the moment
of slaughter. Because the meat is for human consumption, this may lead to cases of
gastroenteritis in humans that are hard to treat.

2 Experimental Procedures

Growing E. coli MG 1655 cells were exposed to constant or step-wise increasing
concentrations of amoxicillin, tetracycline, or enrofloxacin in defined minimal min-
eral medium containing 55 mM glucose at a temperature of 37 ◦ Celsius, with a pH
of 7.0 and a buffer of 15.6 g/l Na2H2PO4 (Van der Horst et al. 2011). The E. coli
MG 1655 come from the freezer and are grown for 24 hours before the first mea-
surement. Cells growing at a normal rate were transferred after 24 hours. Cells in the
step-wise increasing experiments that were growing slowly due to the presence of an-
tibiotics were transferred once a sufficient density had been reached. When they grew
at a normal or almost normal rate, a new incubation at double the concentration was
started. This cycle was repeated as often as feasible. After 15 or 21 days of growth
in the presence of antibiotics, the cells were grown in an antibiotic-free medium. The
value of the minimal inhibitory concentration (MIC) was determined as described
earlier (Schuurmans et al. 2009) by exposing samples of the bacterial population to
serial two-fold dilutions of the antibiotic in a 96-well plate. The optical density (at
600 nm) of cells at the start of the MIC measurement was approximately 0.05. The
MIC-value was defined as the lowest concentration of antibiotics such that the optical
density after 24 hours was below 0.2. In Figs. 1, 2, and 3 the observed MIC-values
are shown for the experiments with tetracyclin, amoxicillin, and enroflaxacin, respec-
tively. These figures also show the concentration of antibiotics to which the E. coli
population was exposed as well as the model fit, which we will discuss later. For
enrofloxacin, there was no gradual build-up of resistance, but big jumps in the MIC-
value occurred (see Fig. 3). Even after enrofloxacin was removed, the MIC-value
remained at a high level. This suggests that one or more mutations have occurred.
Indeed, a single mutation in the gyrA gene of E. coli may cause high-level resistance
against fluoroquinolones (Drlica et al. 2009). We will, therefore, focus on the other
two types of antibiotics for which physiological adaptations are the more likely cause
of changes in resistance. In case of the experiment with a step-wise increment in the
amoxicillin-concentration (see Fig. 2(g)), the MIC-value did not decrease after the
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Fig. 1 Observed MIC values in the tetracyclin lab experiments and the best model fit. Each figure corre-
sponds to a different experiment. In (a), the E. coli were grown in absence of antibiotics. In (b)–(d), the
E. coli grew in the presence of a constant concentration of tetracyclin from day 0 to day 15. In (e)–(g), the
E. coli grew in the presence of a constant concentration of tetracyclin from day 0 to day 21. Afterward,
the E. coli grew in absence of tetracyclin. In (h), the concentration of tetracyclin was stepwise increased.
The black crosses correspond to the data from the experiments. The blue curve corresponds to the fit, the
dashed blue step function correspond to the MIC-value that would have been observed if there would be
no measurement error. The red lines correspond to the concentration of tetracycline to which the E. coli
cells are exposed (Color figure online)

E. coli were grown in absence of amoxicillin. This suggests that also in this experi-
ment an irreversible event happened. Therefore, this experiment was excluded from
the data analysis.

3 A Model for Non-inherited Resistance by Way of Efflux Pumps or Enzymes

Our first aim is to formulate a mathematical model that incorporates the following
quantities:

• The concentration A0 of antibiotics outside the cells.
• The concentration A of antibiotics inside the cells or, for that matter, the density of

antibiotic molecules attached to the cell wall.
• The concentration E of anti-antibiotic molecules, say efflux pumps or inactivating

enzymes (the interpretation is less clear in the case of cells reacting by building
their cell wall from different building blocks).
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Fig. 2 Observed MIC values in the amoxicillin lab experiments and the best model fit. Each figure corre-
sponds to a different experiment. In (a), the E. coli were grown in absence of antibiotics. In (b)–(d), the
E. coli grew in the presence of a constant concentration of amoxicillin from day 0 to day 15. In (e)–(f), the
E. coli grew in the presence of a constant concentration of amoxicillin from day 0 to day 15. Afterward,
the E. coli grew in absence of amoxicillin. In (h), the concentration of amoxicillin was stepwise increased.
The black crosses correspond to the data from the experiments. The blue curve corresponds to the fit, the
dashed blue step function correspond to the MIC-value that would have been observed if there would be
no measurement error. The red lines correspond to the concentration of amoxicillin to which the E. coli
cells are exposed. The data in (g) were not used to determine the best fit, as the resistance seems to be
inherited in this experiment (Color figure online)

The meaning of the parameters is summarized in Table 1.
The model should describe quantitatively how

• changes of A relate to A0.
• A higher A leads to an increased production of E. (This can be interpreted as genes

being switched on by the signal A.)
• E degrades in the course of time.
• A is broken down or eliminated by E.

From now on our formulation applies to efflux pumps (and hence requires some
rephrasing when antibiotics are inactivated by enzymes). We assume the following.
The concentration A0 of antibiotics outside the cells is constant, so we assume that
the concentration of antibiotics outside the cells is not noticeably influenced by the
amount taken up by the cells. The antibiotic concentration within a cell (A) increases
(decreases) due to a higher (lower) concentration of antibiotics outside the cells (A0)
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Fig. 3 Observed MIC values in the enrofloxacin lab experiments. Each figure corresponds to a different
experiment. In (a), the E. coli were grown in absence of antibiotics. In (b)–(d), the E. coli grew in the
presence of a constant concentration of enrofloxacin from day 0 to day 15. In (e)–(i), the E. coli grew from
day 0–15 in the presence of a stepwise increasing concentration of amoxicillin. After day 15, the cells
grew in absence of enrofloxacin. The black crosses correspond to the data from the experiments. The red
lines correspond to the concentration of enrofloxacin to which the E. coli cells are exposed. No model fit
is presented as the resistance seems inherited (Color figure online)

by way of diffusion. The diffusion coefficient is denoted by ξ . The antibiotic concen-
tration within a cell decreases due to the activity of efflux pumps. The more efflux
pumps, the faster this process happens, and also, the higher the concentration of an-
tibiotics within a cell, the more antibiotics the efflux pumps transport. We neglect the
time it may take an efflux pump to transport an antibiotic molecule out of the cell.
The efficacy of efflux pumps, i.e. the affinity for the antibiotic of the efflux pumps,
is denoted by ν. Note that we do not take degradation of the antibiotic within a cell
into account. If degradation is, for instance, slow as compared to the diffusion, this is
a reasonable assumption.

We assume that the efflux pumps become ineffective at a constant rate λ and that
their production rate depends on the antibiotic concentration within a cell, according
to a Michaelis–Menten type function. This should occur via a regulation system in
the cell, which we do not model explicitly. In absence of antibiotics in a cell, the
production rate is c0 and the maximum production rate is c0 + cM . The antibiotic
concentration at which the production rate of efflux pumps is exactly between c0 and
c0 + cM is denoted by Ah. These assumptions lead to the following system of differ-
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Table 1 Symbols used

Symbol Interpretation

λ Degradation rate of efflux pumps (enzymes)

ξ Antibiotic diffusion coefficient

ν Efficacy of efflux pumps (enzymes)

c0 Production rate of efflux pumps (enzymes) in absence of antibiotics in the cell

cM Maximal increase in production rate of efflux pumps (enzymes)

E0 Initial concentration/density of efflux pumps (enzymes)

M0 Initial MIC-value

Ac Antibiotic concentration within cells at which cells stop growing

A0 Antibiotic concentration outside the cell

Ah Antibiotic concentration within the cell at which the production rate of efflux
pumps (enzymes) is exactly between the minimum and maximum production
rate

σ Standard deviation of measurement/biological error

κ1 Ac(λ + c0
ν
ξ )

κ2
ν
ξ cMAc

κ3
Ac
Ah

ential equations for the density of efflux pumps (E) and the antibiotic concentration
(A) within the cell:

d

dt
E = −λE + c0 + cMA

Ah + A
d

dt
A = ξ(A0 − A) − νAE.

(1)

The description in terms of ordinary differential equations requires that we neglect
chance effects, i.e. we assume that there are many efflux pumps and antimicrobial
molecules present. Moreover, we assume that all cells behave identical, e.g. that once
a cell divides, both daughter cells have the same amount of antibiotics and efflux
pumps and that a change in the ratio of cell volume and cell wall surface does not
affect the dynamics. We assume that, once the concentration of antibiotics within the
cell exceeds a critical level Ac, the growth will stop. The external concentration of
antibiotics (A0) needed to reach the critical antibiotic concentration within the cell
is the MIC-value. In order for the MIC-value to have a clear meaning, the antibiotic
concentration within the cell has to change rapidly after a change of the external
concentration A0, i.e. we assume that the number of efflux pumps can be considered
constant during the time the concentration in the cell changes as a result of a change
in the external antibiotic concentration.

This is indeed the case, as a new steady concentration establishes within seconds
after the external concentration of the antibiotic changes, whereas adaptation pro-
cesses take a minimum of 20 minutes to start (Bolla et al. 2011). This implies that we
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can use a quasi-steady state approximation. The equilibrium antibiotic concentration
within the cells for a constant number of efflux pumps is given by

A = A0

1 + ν
ξ
E

(2)

and the critical external concentration, the MIC-value, is given by

MIC-value =
(

1 + ν

ξ
E

)
Ac. (3)

If we substitute this equilibrium in the differential equation for the number of
efflux pumps, we obtain

d

dt
E = −λE + c0 + cM

ξ
ν
A0

AhE + ξ
ν
(A0 + Ah)

E(t0) = E0

(4)

where t0 denotes the moment the external antibiotic concentration A0 is changed, e.g.
the starting time of the experiment. Because the freezing of the E. coli may have dam-
aged efflux pumps, the initial concentration of efflux pumps may be different from
the equilibrium concentration efflux pumps in absence of antibiotics. In the experi-
ments the MIC-value is determined, but the absolute number of efflux pumps and the
antibiotic concentration within a cell are not measured and, therefore, unknown. For
statistical purposes, it is therefore more useful to determine the time dynamics of the
MIC-value, denoted by M(t).

If we define new parameters, κ1 = Ac(λ+c0
ν
ξ
), κ2 = ν

ξ
cMAc , κ3 = Ac

Ah
, and M0 =

(1 + ν
ξ
E0)Ac , we can write the system as

d

dt
M = −λM + κ1 + κ2

κ3A0

M + κ3A0
M(t0) = M0.

(5)

Based on observations of the MIC-value only, we can at most infer the values of the
new parameters, λ, κ1, κ2, κ3, and M0 and not of all parameters of the original model.
The positive equilibrium MIC-value, denoted by M+, is given by

M+ = κ1 − A0κ3λ + √
((κ1 + A0κ3λ)2 + 4A0κ2κ3λ)

2λ
. (6)

Note that M+ depends on A0. When helpful we write M+(A0) to reflect this de-
pendence. For notational convenience, we also define the negative equilibrium MIC-
value, which has no biological interpretation as

M− = κ1 − A0κ3λ − √
((κ1 + A0κ3λ)2 + 4A0κ2κ3λ)

2λ
. (7)

By using the method of separation of variables, we can express t explicitly in
terms of M . We define:

f (M) = 1

λ

(
κ3A0 + M−

M+ − M− log |M − M−| − κ3A0 + M+

M+ − M− log |M − M+|
)

. (8)
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Using this definition, the solution of (5) can be written as

t − t0 = f (M) − f (M0). (9)

Because there is no explicit inverse of the function f , we cannot obtain an explicit
solution M(t) of (5), but numerically the inverse can be obtained very easily.

We want to use the model to extrapolate beyond situations for which we have ex-
perimental observations. In particular, we establish the relationship between certain
input parameters (the cause) and output parameters (the effect). Apart from the re-
sulting MIC-value, we also consider as an interesting output parameter the time TQ

it takes, after stopping the exposure to the antibiotic, before the MIC-value has de-
creased again to an acceptable level MICsafe. (Note that we have to choose this level;
the idea is that when poultry is exposed to antibiotics, one wants to avoid that, by the
time poultry comes into contact with consumers, the bacteria are still so antibiotic-
tolerant that treatment may fail). To do this, we assume that the bacteria are exposed
to a constant concentration A0 for a long period of time (so that the MIC-value is
in its equilibrium value M+(A0)). We then assume that the bacteria are no longer
exposed to antibiotics. We define the time TQ by the equation M(TQ) = MICsafe. If
we use the differential equation of (5) with A0 = 0, we find that

TQ = 1

λ
log

{
κ1 − λM+(A0)

κ1 − λMICsafe

}
(10)

provided that MICsafe < M+(A0) and MICsafe > κ1
λ

, i.e. the MIC-value after long
exposure to the antibiotic in concentration A0 exceeds MICsafe and MICsafe is higher
than the MIC-value of cells never exposed to the antibiotic.

4 Statistical Model

To determine the MIC-value at a certain time point during the experiments, a sample
was taken and next grown in the presence of different concentrations (two-fold di-
lutions) of antibiotics. In the absence of measurement errors/biological fluctuations,
an observed MIC-value of y implies that the true MIC-value is in the range (

y
2 , y).

Of course, biological fluctuations and/or measurement errors may be present. We as-
sumed each measurement error to be independent of all other measurements and the
errors to be normally distributed with standard error σ on a logarithmic scale with
base 2. If the model predicts that the MIC-value at the time of a certain measurement
was z, the likelihood that we would observe an MIC-value of y is given by

L =
∫ log2 (y)

log2(
y
2 )

N(z, σ )(x) dx :=
∫ log2(y)

log2 (
y
2 )

1√
2πσ 2

e
− (x−z)2

2σ2 dx

= 1

2

(
Erf

(
log2(y) − z

σ
√

2

)
− Erf

(
log2(y) − 1 − z

σ
√

2

))
.

(11)

The likelihood of the entire data set for one antibiotic is the product of the likeli-
hoods for a single measurement, so if we specify values for the unknown parameters
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λ, κ1, κ2, κ3, M0, and σ , we can calculate the likelihood of the observed data, i.e.
L(data|λ,κ1, κ2, κ3,M0, σ ).

We use a Monte Carlo Markov Chain (MCMC) (Gilks et al. 1996) algorithm to
obtain credibility intervals for the 6 parameters. We use uninformative priors, i.e. uni-
form priors on (0; 1,000) for all parameters, with the additional condition that E0 is
not larger than the equilibrium concentration of efflux pumps in absence of antibi-
otics, i.e. that the MIC-value is non-decreasing during the first 24 hours in absence
of antibiotics. We use a Metropolis–Hastings updating scheme and 100,000,000 ac-
cepted MCMC updates after a burn-in period of 1,000,000 accepted updates. Conver-
gence of the chain was checked by visual inspection.

5 Results

5.1 Tetracyclin Experiments

For the tetracyclin experiment, the maximum likelihood median and 95 % credibil-
ity intervals for the parameters are presented in Table 2. The best fit to the data is
shown in Fig. 1. Histograms of the parameter distributions and the correlation be-
tween parameters are shown in the Appendix (Figs. 5 and 6). For all parameters but
κ3, relatively tight posterior distributions are obtained. This implies that we have only
little information about κ3, i.e. about the precise shape of the function that describes
how the efflux pump production changes with the concentration of antibiotics in the
cell. The MCMC updates can also be used to calculate how long it would take, after
the E. coli’s are exposed to a certain antibiotic concentration for a long time, before
the MIC-value of the strains are below a critical level. If this critical level is very
high, even with antibiotic exposure, the MIC-value will remain below this level, and
the time to reach an MIC-value below this critical level is zero. If the critical level is
very low, even without antibiotic exposure, the MIC-value of the E. coli will exceed
this critical level and we say that it takes infinitely long before the critical MIC-value
is reached. If we take 8 mg/L as the cut-off value for tetracyclin resistance in E. coli
(MICsafe), the median and 95 % confidence interval for the time TQ are depicted as
function of the external antibiotic concentration (A0) in Fig. 4. From this figure, we
observe that after exposure to high doses of tetracyclin, it may take several days be-
fore the cells become susceptible to tetracyclin again, although the 95 % confidence
upper bound becomes as high as 20 days.

5.2 Amoxicillin experiments

For the amoxicillin experiments, the best fit to the data (where the data from Fig. 2(g)
were not used) is shown in Fig. 2. However, no proper a posteriori distributions for
the parameters could be obtained. The reason is that the equilibrium MIC-value in ab-
sence of amoxicillin (κ1/λ) can be estimated, but there are not enough experiments to
determine the parameters individually. More specifically, the data allow for very high
values of λ, as long as the ratio (κ1/λ) stays more or less constant. This implies that
the data do not exclude that the processes within a cell go extremely fast. Therefore,
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Table 2 Maximum likelihood values, median and 95 % credibility interval (2.5 % quantile and 97.5 %
quantile) for the tetracyclin and amoxicillin lab data

Tetracyclin Amoxicillin

MLE Median 2.5 % 97.5 % MLE Median 2.5 % 97.5 %

logL −92 −97 −101 −94 −81 −86 −91 −83

λ 0.07 0.12 0.07 0.19 0.13 0.49 0.13 0.92

M0 1.17 0.94 0.42 1.47 3.3 2.8 0.7 4.3

σ 0.80 0.87 0.75 1.04 0.8 0.9 0.8 1.1

κ1 0.09 0.33 0.12 0.77 4.4 4.9 3.9 6.1

κ2 1.34 1.55 0.90 2.79 3.5 5.6 0.4 66.9

κ3 19 15 4 51 0.04 2.1 0.13 519

Fig. 4 Time after long-lasting exposure to antibiotic in concentration A0 before the resistance level of
E. coli drops below MICsafe. Solid lines correspond to the median value, dashed lines to the 95 % credi-
bility intervals. MICsafe is chosen to be 8 µg/ml for both tetracyclin and amoxicillin

TQ will be very short. To obtain an upper bound for TQ, we put a uniform prior (0,1)

on the parameter λ. This way, we could obtain median and 95 % credibility intervals
for the parameters (see Table 2). Histograms of the parameter distributions and the
correlation between parameters are shown in the Appendix (Figs. 7 and 8). The time
till the bacteria become susceptible again, after exposure to amoxicillin for a long pe-
riod, is depicted in Fig. 4(b). However, we should stress that the experiment with an
increasing amoxicillin concentration was not taken into account in this analysis. The
time TQ is not very sensitive to the choice for the value of MICsafe (data not shown).

6 Discussion

We have presented a mathematical model that exposes relationships between data
from various experiments and, more importantly, allows us to extrapolate to situations
for which no experimental results are available. This description is partly mechanistic
and partly phenomenological. The estimation of the parameters is based on statistical
methodology. The model predicts that relatively short antibiotic-free time periods are
sufficient to re-obtain low MIC-values. For tetracyclin, the method works fine. For
amoxicillin, we observed one experiment with inherited resistance, which we could
not incorporate in our statistical analysis. As a result, there are too few experiments
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to perform a proper estimation of the rate at which non-inherited resistance to amox-
icillin disappears. We would like to stress also that in order to obtain a model for
which calculations were feasible, several simplifying assumptions had to be made.
For instance, we do not explicitly consider the population size and the life cycle of
individual cells and assume that we can use an average cell size during the life cy-
cle of a bacterium and still obtain accurate results. Also, we assume that biological
fluctuations are short-lived, in the sense that given the concentration of antibiotics to
which the population of E. coli cells is exposed, two subsequent measurements of the
MIC-value of the population are independent of each other.

When animals are slaughtered for meat production, these animals must not have
been recently exposed to antibiotics in order to prevent that substantial amounts of
antibiotics will be present in the human food chain. For instance, in the Netherlands,
the minimal waiting time after exposure to antibiotics is 7 days for milk and eggs
and 28 days for poultry meat unless explicitly stated otherwise (Boereboom et al.
2010). In this sense, the observation that non-inherited resistance disappears most
likely within a period of several days is reassuring. However, this observation cannot
be used to justify widespread use of antibiotics in the veterinarian sector as the con-
clusions from the experimental data are not directly applicable to experiments where
production animals receive antimicrobial treatment. For instance, animals will carry
many bacteria and also many E. coli strains, but not necessarily the strain used in
the experiments. The mechanisms involved in competition between different bacte-
rial species and between different E. coli strains are not well known. In particular, it
is generally unknown how a competitive balance is influenced by the use of antibi-
otics. Moreover, the intestines of animals are not a well-mixed tank, different niches
will be exposed to different concentrations of antibiotics, oxygen, nutrients, and so
on. Finally, within a group of production animals several processes will occur simul-
taneously: Resistance-development, either due to mutation (as was observed in the
enrofloxacin experiments) or due to a physiological/phenotypic change; selection be-
tween strains, e.g. for the strain with the highest initial MIC-value; transmission of
bacteria between animals; transmission of mobile elements, e.g. plasmids, between
bacteria. Hence, one should be careful to apply our conclusions directly to settings
like the poultry industry. Still, we claim, the experiments, the model and our method-
ology can contribute to the discussion of what exactly characterizes a prudent use of
antibiotics in modern agriculture.

Acknowledgements This research was financially supported by a grant from the Dutch Ministry of
Agriculture, Nature and Food Quality and was coordinated by Innotact Consulting B.V., Leusden, the
Netherlands. M.C.J.B. received financial support provided by Nederlandse Organisatie voor Wetenschap-
pelijk Onderzoek Grant VENI 916.86.128.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.



Modeling Non-inherited Antibiotic Resistance 1703

Appendix: Additional figures

Fig. 5 Histograms of the posterior distributions of the parameters for the tetracyclin experiments

Fig. 6 Posterior correlation between the parameters for the tetracyclin experiments
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Fig. 7 Histograms of the posterior distributions of the parameters for the tetracyclin experiments with a
uniform prior on (0,1) for λ

Fig. 8 Posterior correlation between the parameters for the amoxicillin experiments with a uniform prior
on (0,1) for λ
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