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Disruption of the blood–brain barrier (BBB) has an important part in cellular damage in neurological
diseases, including acute and chronic cerebral ischemia, brain trauma, multiple sclerosis, brain
tumors, and brain infections. The neurovascular unit (NVU) forms the interface between the blood
and brain tissues. During an injury, the cascade of molecular events ends in the final common
pathway for BBB disruption by free radicals and proteases, which attack membranes and degrade
the tight junction proteins in endothelial cells. Free radicals of oxygen and nitrogen and the
proteases, matrix metalloproteinases and cyclooxgyenases, are important in the early and delayed
BBB disruption as the neuroinflammatory response progresses. Opening of the BBB occurs in
neurodegenerative diseases and contributes to the cognitive changes. In addition to the importance
of the NVU in acute injury, angiogenesis contributes to the recovery process. The challenges to
treatment of the brain diseases involve not only facilitating drug entry into the brain, but also
understanding the timing of the molecular cascades to block the early NVU injury without interfering
with recovery. This review will describe the molecular and cellular events associated with NVU
disruption and potential strategies directed toward restoring its integrity.
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Introduction

Cerebral blood vessels form the major interface between
the blood and brain tissues, providing the basis for
the immunological sequestration of the brain tissues
and the prevention of perturbation of the neuronal
microenvironment by fluctuations in the systemic
circulation. They are dynamic, highly metabolic
structures that resemble epithelial membranes in
their high electrical resistance and ability to form
fluids through the action of an ATPase pumping
mechanism. Capillaries are critical for delivering the
essential nutrients and maintaining a constant supply
of oxygen. Much of our knowledge of the physiology
of the blood–brain barrier (BBB) was discovered before

the modern era of neuroimaging and molecular biology
and remains the foundation of clinical practice.
However, discoveries in the past 25 years have added
a new dimension to our understanding of the what is
now referred to as the neuro(glio)vascular unit (NVU).

Disruption of the BBB occurs in many neurological
disorders (Table 1). In some situations, extrinsic
systemic factors, such as infection and autoimmune
processes, affect blood vessels, initiating the damage,
while in others, including cerebral ischemia, the
blood vessels are damaged secondary to the injury by
the activation of intrinsic cellular mechanisms that
are referred to collectively as neuroinflammation. While
the cerebral vasculature provides an important pro-
tective role in maintaining homeostasis essential to
neuronal function, the BBB also prevents the entry of
drugs, making treatment of disorders of the central
nervous system more difficult than in the systemic
circulation where circulating blood and entrained
molecules access tissues via fenestrated capillaries.

Early physiological studies in animals showed the
high electrical resistance of the cerebral capillary
tight junctions and revealed the complex transport
mechanisms involved in the movement of glucose
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and essential amino acids into the brain. However,
the recent emphasis in BBB studies is on the
molecular biology of the blood vessels and surround-
ing cells and the applications to human disease.
Isolation and cloning of the proteins that form the
tight junctions between the cerebral endothelial cells
was a major breakthrough in understanding normal
BBB function. With those molecular biology tools, it
was possible to unravel the mechanisms of injury
due to proteases and free radicals. This involved
identification of the important roles played by cyclo-
oxygenases (COXs), matrix metalloproteinases (MMPs),
free radicals of nitrogen and oxygen, hypoxia-inducible
factor-1a (HIF-1a), and the family of aquaporins
(AQPs). Finally, discoveries in immunology on the
role of selectins, integrins, and other adhesion molec-
ules in the trafficking of white blood cells across
endothelial cells have informed thinking about
immunological processes involved in pathological
states. This review will focus on the applications
of these new ideas to the study of the NVU in
neurological disorders. Several excellent reviews
should be consulted for information on the basic
science of the NVU (Iadecola and Nedergaard, 2007;
Neuwelt et al, 2011; Zlokovic, 2010).

Cellular and molecular basis of
vascular permeability

Tight junction proteins, occludin and claudin, were
identified and cloned and shown to be the major
proteins that self-assemble into ‘zip-locked’ struc-
tures, forming the physical barrier in the endothelial
cell clefts (Furuse et al, 1998; Hirase et al, 1997).
Occludins are a family of transmembrane proteins
with four transmembrane domains, two extracellular
loops, and two intracellular domains. They interact
directly with intracellular proteins, zonula occlu-
dens, which are connected to actin. Claudins are
transmembrane proteins that are the main constitu-
ent of the tight junctions; the claudin family has a
number of members. Junctional adhesion molecules

have a single transmembrane domain, an extracel-
lular domain containing two Ig-like motifs, and a
cytoplasmic tail (see for review Hawkins and Davis,
2005).

Surrounding the abluminal surface of the endothe-
lial cell is a basal lamina composed of type IV
collagen, fibronectin, heparan sulfate, and laminin,
which functions as a charge and molecular weight
barrier and interacts in complex ways with integrins
to regulate permeability and cellular transport across
the BBB (Milner et al, 2008). Pericytes are macro-
phage-like cells with smooth muscle properties that
are embedded in the basal lamina around the blood
vessels (Dore-Duffy, 2008). They are an important
component of the NVU, which regulate permeability
by release of vasoactive substances; since they are
next to the vessels they have immediate access to
both the basal lamina and the endothelial cells.
Pericytes are recruited to developing blood vessels
and contribute to the formation of tight junctions
(Daneman et al, 2010). Another interesting study of
pericytes showed that they decrease with age,
paralleling an increase in BBB permeability (Bell
et al, 2010).

Proteases and the neurovascular unit

The final common pathway for BBB disruption
involves neutral proteases and free radicals that are
induced by the inflammatory response to the injury.
Proteases regulate a large number of molecular events
at the cell surface and inside the cell (Rivera et al,
2010). They activate growth factors to promote normal
development and along with tissue inhibitors to metal-
loproteinases-3 (TIMP-3) control the death receptors on
the cell surface that are involved in apoptosis
(Cunningham et al, 2005). Under normal conditions,
proteases remodel the extracellular matrix and par-
ticipate in vasculogenesis, angiogenesis, and neuro-
genesis. While they participate in the damage to the
tissues in the early stages of an injury, they later
become important contributors to the repair process.
Cyclooxygenases are another important family of
inflammatory enzymes. Cyclooxygenase-1 is a con-
stitutive enzyme, while COX-2 is inducible and
contributes to BBB damage as part of a secondary
inflammatory response from 24 to 72 hours after the
initial insult (Nagayama et al, 1999).

Neuroimaging of the neurovascular
unit

Quantification of BBB permeability by magnetic
resonance imaging (MRI) was achieved by adapting
to MRI, the graphical autoradiographic method
developed for use in animals by Patlak et al (1983).
The accuracy of the MRI measurements was shown
in animal studies directly comparing permeability
constants obtained from autoradiograms with MRIs

Table 1 Neurological disorders with disruption of the neurovas-
cular unit

Extrinsic factors
Multiple sclerosis—autoimmune, infectious, traumatic initiation
Meningitis—bacterial and viral
Encephalitis—herpes, HIV, etc.

Intrinsic factors
Acute

Ischemia/hypoxia—activation of astrocytes, microglia/
macrophages

Traumatic brain injury—edema and hemorrhage

Chronic
Small vessel disease—hypertension, diabetes, hyperlipidemia
Amyloid angiopathy—Alzheimer’s disease, hereditary

amyloid disorders
Peripheral pain syndromes

BBB in neurological diseases
GA Rosenberg

1140

Journal of Cerebral Blood Flow & Metabolism (2012) 32, 1139–1151



from the same animal (Ewing et al, 2003). Dynamic
contrast-enhanced MRI (DCEMRI) method can be used
in studies of humans, and it is possible to quantify
abnormal BBB permeability in chronic diseases
(Figure 1) (Taheri et al, 2011).

Measurements of BBB permeability can also be
performed during computed tomography (CT) angio-
graphy using the Patlak graphical method. Computed
tomography has the advantage over MRI in that the
studies can be performed more rapidly, allowing
measurements to be made in acute stroke before
treatment with tPA (tissue plasminogen activator). In
one study, CT showed disruption of the BBB in the
early stages of stroke, which was proposed as an aid
in deciding when it was safe to give tPA, which has a
risk of inducing hemorrhage (Hom et al, 2011).
Another CT study showed that increased permeabil-
ity indicated a higher risk for hemorrhagic transfor-
mation and suggested that it could be used to select
patients for hemicraniectomy (Figure 2) (Bektas et al,
2010). The disadvantage of the CT method is
the relatively large amount of radiation delivered to
the patient, which is not generally a problem in the
elderly patient, who is getting a CT angiogram as part
of the diagnostic work-up, but would be one in
younger individuals. In addition, the risk of a life-
threatening allergic reaction to the contrast agent is
higher with CT contrast than MRI.

Disruption of the blood–brain barrier in
ischemia/hypoxia and hemorrhage

Cerebral ischemia with reperfusion in animals leads
to a biphasic disruption of the BBB (Kuroiwa et al,
1985). The initial opening is reversible and asso-
ciated with activation of MMP-2 by membrane-type
MMP (MMP-14); the activated MMP-2 attacks the
tight junction proteins (Yang et al, 2007). Hypoxia-
inducible factor-1a has an essential role in cellular
and systemic oxygen homeostasis by regulating
the expression of genes important in glycolysis,
erythropoiesis, angiogenesis, and catecholamine meta-
bolism (Semenza, 2010). Hypoxia-inducible factor-1a-
deficient mice were protected from hypoxia-induced
cell death, suggesting that decreasing the level of
HIF-1a can be neuroprotective (Helton et al, 2005).
Under conditions of low oxygen, HIF-1a accumula-
tion leads to the expression of the fur gene and
transcription of the protein, Furin, which activates
MMP-14, resulting in the activation of the constitu-
tive enzyme, MMP-2 (Figure 3). Because the brain
has large amounts of MMP-2 in the inactive form, the
rate-limiting step for conversion to the active form is
the activation of MMP-14. These reactions occur
within hours after the ischemia, but because the
proMMP-2 is tethered to the membrane by MMP-14,
the reactions are constrained to the area of activation.
During recovery, HIF induces vascular endothelial
growth factor and transforming growth factor-b; both

are important in neurogenesis and angiogenesis.
Hypoxia-inducible factor-1a is elevated in acute ische-
mia and reverts to low levels after the acute insult. In
more chronic situations, such as intermittent hypoxia,
HIF-1a may remain elevated for longer periods (Yuan
et al, 2008). How this affects the activation of MMP-2
and other MMPs remains to be resolved.

The second opening of the BBB occurs 24 to 48
hours after reperfusion depending on the length of
ischemia; the longer the ischemia, the earlier and
more disruptive the BBB opening (Rosenberg et al,
1998). This second phase is mediated by the inducible
MMPs, MMP-3 and MMP-9, which are induced
by cytokines during inflammation. Cyclooxygenase-2
is also an important mediator of the second, more
destructive phase of BBB damage. Because the indu-
cible MMPs and COX-2 are free in the extracellular
space, their action is more destructive and the second
opening of the BBB is more damaging.

Cytokines induce the expression of inflammatory
MMPs and COX-2 through the action of nuclear-
factor-kB and the activator protein-1 gene transcrip-
tion sites. This opening of the BBB is due to intrinsic
cellular activity that is most likely initiated by
activation of pericytes, microglia, and astrocytes by
the hypoxia. Once the BBB is damaged, however,
neutrophils and monocytes enter the brain, bringing
with them another source of MMPs and toxic blood
products that amplify the injury.

Aquaporins are pore-forming molecules located in
astrocytic end feet that facilitate the passage of water
molecules across the BBB. Deletion of AQP4 reduces
edema in models in which cytotoxic edema is the
pathophysiological mechanism. However, in condi-
tions in which vasogenic edema is significant, AQP4
deletion exacerbated the brain edema. This suggests
that the AQP4 functions as a passive pore, allowing
water to follow pressure gradients to remove extra-
cellular fluid and resolve vasogenic edema (Zador
et al, 2007).

Oxidative stress damages endothelial cells of the
BBB and contributes to vasogenic edema. The sup-
eroxide radical (O2

�.) has been identified as the pri-
mary reactive oxygen species involved in increased
vascular permeability and edema formation in global
and focal cerebral ischemia, cold-induced brain injury,
and brain tumors. Scavenging O2

�. radicals using
recombinant superoxide dismutase (SOD) or poly-
ethylene glycol-SOD reduces ischemia-induced BBB
injury and vasogenic edema. Superoxide dismutase 1-
overexpressing mice also have reduced activation
of MMP-9 by reactive oxygen species, which may be
involved in early BBB disruption and progressive
striatal damage induced by the mitochondrial
excitotoxin, 3-nitropropionic acid (Kim et al, 2003).

An indirect indication of the leakiness of blood
vessels in the acute stage of stroke has been the
qualitative visualization of Gd-DTPA. Several hours
after injection of Gd-DTPA at admission, fluid-attenuated
inversion recovery images showed disruption of the
BBB, which appeared as enhancement in sulci over
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Figure 1 Density distribution of permeability values for white matter (WM) voxels of a control and a vascular cognitive impairment
patient. (A) The color-coded permeability map shows normal permeability, which is below the threshold of 3�10�4 mL/g-min,
which was established in 17 control subjects. (C) The histogram of permeability values for the control subject shown in panel A. (B)
The permeability map of a VCI patient showing the regions of increased permeability in yellow and red. (D) Permeability histogram
shows the shift to the right of permeability values for patient in panel B (modified from Taheri et al, 2011).
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the infarct area. This was termed, hyperintense acute
reperfusion marker, and was found in one-third of
ischemic stroke patients; those with the sign had a
higher risk of hemorrhagic transformation and worse
clinical outcome (Henning et al, 2008).

Damage to the BBB is a factor in the growth of
intracerebral hemorrhage, which can occur in the
first 24 hours after the onset of the bleed (Brott et al,
1997). Agents that increase the potential for clot
formation and probably act by closing the BBB have
been used in treatment. Factor VII, which promotes
clotting, reduced growth of the hematoma in the
initial trial, which could not be confirmed in a second
study (Mayer et al, 2008). The extent of hemorrhagic
transformation and intraparenchymal hemorrhage after
stroke correlated with MMP-9 elevation in the blood
(Montaner et al, 2001).

Blood–brain barrier disruption in
multiple sclerosis

Multiple sclerosis (MS) is a disease of young adults
that begins with inflammation in the venules. This is
an extrinsic BBB disruption pattern where the initial
injury occurs to the blood vessels, allowing T and B
cells to cross the BBB (Miller et al, 2003). Evidence
from the experimental animal model, EAE (experi-
mental allergic encephalomyelitis), which is caused
by the injection of myelin basic protein into the
footpad, suggests that it is an autoimmune disease.
The initial pathology in EAE is disruption of the BBB
with exudation of fibrin, which causes an inflamma-
tory reaction with demyelination (Paterson, 1976).
Although EAE is a monophasic illness as opposed to

Figure 2 A 75-year-old right-handed man who presented with sudden onset of left hemiparesis and dysarthria. (A) Admission
computed tomography (CT). (B) Admission cerebral blood volume (CBV) color maps showing hypoperfusion with right middle
cerebral artery (MCA) acute ischemic stroke (AIS). (C) Admission permeability color maps showed permeability abnormality with
right MCA AIS. (D) Subsequent head CT before hemicraniectomy showing malignant MCA infarction (Bektas et al, 2010)
(permission obtained).
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MS and the offending antigen remains unknown, it is

the model used to study the immunology of MS and

to test treatments.
Current concepts of pathophysiology of MS con-

sider it a heterogeneous disease (Lucchinetti et al,
2000). Recent data suggest that in a subset of MS
patients, the brain lesions show profound simila-
rities to tissue alterations found in vascular diseases,
suggesting that a hypoxia-like metabolic injury is
occurring in the inflammatory brain lesions. Both,
vascular pathology as well as metabolic disturbances
may be responsible for apoptosis of oligodendrocytes
(Henderson et al, 2009; Lassmann, 2003).

Early pathologists championed the concept of
vascular lesions being an important component of
the MS attack. Dawson (1916) showed that inflam-
matory cells clustered around veins in the center of
the demyelinated plaque. Putnam and Adler (1937)
carefully reconstructed serial brain sections from MS
patients, and showed that fibrin deposits surrounded
the inflamed vessels. Magnetic resonance imaging
has confirmed these early pathological studies. Corre-
lation of venous pathology with MS lesions is possible
with MR venography, which takes advantage of the
difference between oxygenated and deoxygenated
blood to visualize venous blood. In most MS lesions,
venograms show a vein in the center of the lesions.
This pattern is not specific for MS since a similar
pattern with venule involvement occurs with
hypoxic ischemic white matter lesions. However, in
contrast to MS lesions, ischemic white matter lesions
showed no consistent relationship to the shape and
location of the veins (Tan et al, 2000). A recent study
using a 7-T MRI showed that T2*-weighted images
can reliably distinguish all patients with clinically

definite MS. Small venules in the center of lesions
are visualized using T2*-weighted MRI because of
the paramagnetic effect of deoxyhemoglobin. Those
patients have > 40% of the MS lesions in a peri-
venous location, while in those without clinical MS,
< 40% of the lesions appeared perivenous (Figure 4)
(Tallantyre et al, 2011).

Blood–brain barrier disruption in
amyotrophic lateral sclerosis

Blood–brain barrier disruption occurs in mice with
genetic defects in the SOD gene, which is model of
the familial form of amyotrophic lateral sclerosis. A
subset of patients with familial and sporadic amyo-
trophic lateral sclerosis have mutations in the gene
encoding Cu, Zn SOD (SOD1). Transgenic mice that
have a glycine 93 to alanine 93 (G93A) mutation
develop an amyotrophic lateral sclerosis-like syn-
drome. Disruption of BBB and blood–spinal cord
barrier was seen in areas of motor neuron degenera-
tion in G93A mice at both early and late stages of
disease, and capillary ultrastructure revealed that
endothelial cell membrane and/or basement mem-
brane damage occurred, and was followed by vascular
leakage (Garbuzova-Davis et al, 2007). Superoxide
dismutase 1 mutant mice with disrupted blood–
spinal cord barrier had reduced levels of the tight
junction proteins zonula occludens 1, occludin and
claudin-5 between endothelial cells, which caused
microhemorrhages and release of neurotoxic hemo-
globin-derived products. These changes in the blood
vessels, which reduced microcirculation and caused
hypoperfusion, were present before motor neuron
degeneration and the neurovascular inflammatory
response occurred (Zhong et al, 2008).

Blood–brain barrier dysfunction in
vascular cognitive impairment

Several lines of evidence suggest that the BBB is
abnormal in a subset of patients with small vessel
disease secondary to hypertension and diabetes.
Early studies of cerebrospinal fluid (CSF) documen-
ted increased albumin, which is an indicator of a
disrupted BBB (Skoog et al, 1998; Wallin et al, 1990).
Autopsy studies in patients with vascular cognitive
impairment showed increases in HIF-1a in the
affected white matter supporting a role of hypoxia
in the process that leads to death of the oligoden-
drocytes and white matter gliosis (Fernando et al,
2006). Autopsy studies of patients with Binswanger’s
disease showed the presence of serum proteins in the
brain (Akiguchi et al, 1998). Several etiologies are
proposed to explain the changes in the white matter.
Silent strokes are suspected in many cases, and may
be the initiating event particularly when hyperten-
sion is damaging the blood vessels (Vermeer et al,

Figure 3 Hypoxic hypoperfusion in acute and chronic ischemia
induces hypoxia-inducible factor-1a (HIF-1a), which induces the
fur gene to transcribe the convertase, furin. Activation of proMMP-
14 (membrane-type MMP) is necessary for the activation of
proMMP-2, which attacks the tight junction proteins and basal
lamina opening the blood–brain barrier (BBB). As a consequence
of the activation of the MMPs, myelin is broken down. MMP,
matrix metalloproteinases.
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2007). An alternative mechanism is disruption of the
NVU with vasogenic edema (Feigin and Popoff,
1963). Inflammation as a possible cause of the BBB
damage has been proposed because of the presence
of MMP-2 in reactive astrocytes and MMP-3 in
microglia/macrophages (Rosenberg et al, 2001).

Vascular cognitive impairment has multiple etiol-
ogies, which can be separated into large and small
vessel disease. Multiple strokes from large vessel
thromboses or emboli affect primarily the cortex,
while small vessel disease is more commonly found
in lacunar strokes and in subcortical ischemic vascular

Figure 4 The 7-T T2*-weighted magnitude images were viewed in orthogonal planes. For each lesion, the presence or absence of a
central vein was noted. The proportion of perivenous lesions in individual patients with multiple sclerosis (MS) (mean 80%, range
53% to 100%) was consistently much higher than in individual subjects without MS (mean 16%, range 0% to 34%; (A). Perivenous
lesion appearance was equally common in patients with clinically isolated syndrome, relapsing-remitting MS, primary progressive
MS, and secondary progressive MS. (B) (Tallantyre et al, 2011) (permission obtained).
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disease or Binswanger’s disease. Demyelination in
Binswanger’s disease can be extensive and growth of
the white matter damage occurs slowly over time
sparing the subcortical U-fibers. This pattern of dem-
yelination is more consistent with an inflammatory
response secondary to blood vessels damaged by
hypertension, diabetes, and hereditary disorders.
Protease-secreting macrophages in the form of peri-
cytes around blood vessels and recruited microglia/
macrophages release the proteases that attack the
BBB and break down myelin.

Recent studies using the DCEMRI method showed
BBB disruption in white matter hyperintensities in
vascular cognitive impairment patients that are
inside the areas of white matter hyperintensities.
Disruption of the BBB suggests that vasogenic edema
with secondary hypoxia in the white matter may be a
contributing factor in the growth of the subcortical
lesions (Taheri et al, 2011). Serial MRI scans in
patients with Binswanger’s disease shows growth of
the lesion size rather than discreet stroke-like events
(Figure 5) (unpublished data).

Blood–brain barrier dysfunction in
Alzheimer’s disease

Several lines of evidence primarily from studies in
animals implicate an abnormality of the BBB in the
pathogenesis of Alzheimer’s disease, but only a few
qualitative studies of the BBB are available in humans.
Pathological studies show that most patients with

Alzheimer’s disease have some form of vascular
disease (Gold et al, 2007; Schneider et al, 2007;
Snowdon et al, 1997). There is accumulation of amyloid
in the form of plaques, which suggest that the rate of
amyloid clearance across blood vessels may be less
than the rate of production (Bateman et al, 2009). A
number of factors determine the rate of amyloid
clearance. Low-density lipoprotein receptor-related
protein-1 (LRP1), a member of the low-density lipo-
protein receptor family, has a major role in the
cellular transport of amyloid across the BBB as well
as many other roles (Zlokovic, 2010). Recent evi-
dence indicates that LRP1 regulates the brain and
systemic clearance of Alzheimer’s disease amyloid
b-peptides (Ab). The cell surface LRP1 at the BBB
binds Ab from the brain interstitial fluid facilitating
transcytosis across the blood vessels into the blood.
Circulating soluble LRP1 normally binds 70% to
90% of plasma Ab preventing free Ab access to the
brain, and when the LRP1 is unable to bind the
amyloid protein, levels in the blood can increase.

Neurotoxicity is due to accumulation of Ab1�42,
which is linked to the apoE4 allele through the
action of LRP1. Binding of apoE4 to Ab1�42 slows
the clearance of Ab1�42 from the brain compared with
the other alleles, apoE2 and apoE3. Thus, apoE isoforms
differentially regulate Ab1�42 clearance from the
brain, and this might contribute to the effects of apoE
genotype on the disease process in both individuals
with Alzheimer’s disease and animal models of the
disease (Deane et al, 2008). The cell surface LRP1 in
the liver mediates systemic clearance of soluble,
sLRP1–Ab, complexes and free Ab, ultimately

Figure 5 Fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) and dynamic contrast-enhanced MRIs
(DCEMRIs) from a patient with Binswanger’s disease. Initial MRIs (A, C) show the extent of the white matter hyperintensities.
Corresponding permeability measurements (B, D) show increased permeability in the regions with the lighter blue. Follow-up studies
performed one and half years later show an increase in size of the white matter lesions (E, G). Permeability studies show persistent
leakage of Gd-DTPA (F, H). The light blue, yellow, and red areas have increased permeability.
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eliminating Ab from the body. In addition, the kidney
removes sLRP1–Ab complexes and Ab (Zlokovic
et al, 2010). Since amyloid proteins are removed
across the blood vessels, disease of the blood vessels
could reduce clearance, leading to accumulation.
While the importance of vascular disease in accel-
eration of Alzheimer’s disease is established, the
exact role of the blood vessels is unclear.

Amyloid angiopathy occurs commonly in Alzhei-
mer’s disease as shown by Ab in small arteries,
arterioles, and capillaries (Vinters et al, 1988). In a
study in transgenic mice with genes for the familial
form of Alzheimer’s disease, amylodogenesis was
found to mediate BBB disruption and leakiness through
promoting neoangiogenesis and hypervascularity by
causing a redistribution of tight junction proteins
(Figure 6) (Biron et al, 2011).

Blood–brain barrier in bacterial
meningitis, neuropathic pain, and brain
trauma

Bacterial meningitis causes disruption of the BBB
with exudation of white blood cells and proteins into
the subarachnoid space. Infectious agents can enter
the brain from several sources, including infected
sinuses and through hematogenous spread. When
the bacteria enter the brain tissue either through the
Virchow–Robin spaces or directly across the capil-
laries, they cause a cerebritis, which can evolve into
an abscess. Proteases are important in the disruption
of the subarachnoid blood vessels with high levels
of MMPs detected in the CSF, particularly in fungal
meningitis (Leppert et al, 2001). Antibiotics attack

Figure 6 Representative confocal micrographs of cerebral blood vessels from aged Tg2576 and wild-type mice immunolabeled for
either occludin or zonula occludens (ZO)-1 (red) and counterstained for DNA (blue) with TOTO-3. Blood vessels, imaged in the
neocortex and hippocampus, which exhibited strong, continuous, and linear occludin (A, C) or ZO-1 (E, G) expression were
considered normal, as demonstrated in the wild type. Abnormal occludin (B, F) and ZO-1 (D, H) staining displayed punctate (white
arrowheads), discontinuous or interrupted (hollow white arrows), as seen in the Tg2576 cerebrovasculature. Results are representative
from three mice per group from three separate experiments. Scale bar represents 20mm (Biron et al, 2011) (permission obtained).
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the bacteria releasing proteins from the bacterial walls
that can cause an inflammatory response. In children,
this can lead to hearing loss. Cytokines are important
in this inflammatory response. Steroids are given to
reduce the inflammation and reduce the damage to
the eighth nerve. Matrix metalloproteinase inhibitors
are also effective in reducing the opening of the BBB
and controlling the inflammatory response (Meli et al,
2006).

Pain induces a reaction in the central nervous
system that disrupts the BBB. Injection of l-carra-
geenan into the rat hind paw produced after 3 hours
a marked change in the relative amounts of occludin
isoforms and resulted in an increase in BBB perme-
ability from the peripheral inflammatory pain (McCaffrey
et al, 2008).

Traumatic brain injury causes the disruption of
the BBB that is mediated by MMP-9 and AQP4
(Higashida et al, 2011). In the early stages of the
injury, the mechanical disruption of the vessels
causes intracerebral bleeding, which sets up an
inflammatory response to the blood that continues
to damage the BBB. Recruitment of macrophages
and activation of the microglia results in the
release of free radicals and proteases. Ventricular
CSF has increased levels of MMP-3 and MMP-9,
which may be important in BBB opening and hemor-
rhage secondary to the brain injury in patients
(Grossetete et al, 2009).

Treatment in blood–brain barrier
disruption and future directions

Treatments that restore BBB integrity are important
in diseases that involve BBB disruption. Many agents
have been shown to reduce BBB opening in MS.
Matrix metalloproteinases 9 is elevated in the CSF of
MS patients during an acute exacerbation. High-dose
methylprednisolone reduces the MMP-9 levels in the
CSF by blocking the activator protein-1 site in the
MMP-9 gene, which results in closure of the BBB
(Rosenberg et al, 1996). However, the effects are
transient and repeated treatments with high-dose
steroids have too many complications to be used
routinely. A more sustained reduction of BBB damage
occurs with immunomodulatory drugs, such as inter-
feron-b and glatiramer acetate (Filippi et al, 2011; Kala
et al, 2011).

The antiinflammatory tetracycline derivative, mino-
cycline, is an inhibitor of MMPs with multiple
actions, including antiinflammatory effects, and is
well tolerated in low doses over long periods of time
(Matsukawa et al, 2009). Minocycline reduced the
BBB disruption in a pilot study of patients with
relapsing-remitting MS over 24 months of open-label
treatment. Despite a moderately high pretreatment
relapse rate in patients in the study before treatment,
no relapses occurred between months 6 and 24.
The activity of MMP-9 was decreased by treatment

(Yong et al, 2007). Patients taking 200 mg of minocy-
cline for 5 days within 24 hours of an ischemic stroke
showed an improvement in functional state and
stroke severity over a period of 3 months compared
with patients receiving placebo (Lampl et al, 2007). It
has been used in the treatment of acute stroke to
reduce early disruption of the BBB and extend the
therapeutic window for treatment with tPA (Fagan
et al, 2010). Larger, placebo-controlled trials will be
needed to confirm efficacy of Minocycline in MS and
stroke. Several MMP inhibitors have been tested and
shown to reduce the opening of the BBB in stroke in
animals, including BB-94, BB-1101, and GM6001
along with selective COX-2 inhibitors. However, none
of these agents is suitable for clinical studies, and
new classes of MMP and COX inhibitors are needed
(Hu et al, 2007).

Clearance of drugs by efflux from the brain into the
blood is facilitated by a series of enzymes, the most
important of which is the multidrug resistance tran-
sporter (Mdr)-1. These ATP-binding cassette carriers
carry toxic substances back into the blood, but also
remove drugs important in therapy of a number of
neurological disorders. During cerebral ischemia, the
Mdr-1 transporter, P-glycoprotein, is upregulated.
This enhances the removal of lipophilic drugs used
to treat stroke. Blockade of the P-glycoprotein after
stroke raised the levels of drugs that are transported
out of the brain by the transporter (Spudich et al,
2006).

An important aspect of the design of treatment
protocols to reduce BBB disruption in MS and acute
and chronic stroke is the dual nature of the molec-
ules targeted for treatment. Many of those molecules
that participate in the death of cells in the early
stages of the injury also have a critical role in the
recovery period. An example is the benefit derived
from treatment with MMP inhibitors in the early
stages of injury may be lost if the same enzymes are
blocked in the later stages when they are used in
angiogensis and neurogenesis (Zhao et al, 2006).
Understanding the timing of the expression of each
of the agents to be blocked and their actions at each
point of the injury cycle is necessary in planning the
use of inhibitors. In the future, as the multiple
cascades are better understood, treatments will be
tailored to start when the damaging effects of that
agent are maximal and to be stopped as the beneficial
effects are beginning.

In conclusion, we have described some of the
major advances in understanding the function of the
NVU that go beyond the early physiological studies
and add a molecular dimension. Unraveling the
proteins that comprise the tight junctions provided
tools to observe the effects of proteases on the tight
junctions following acute stroke. Agents that block
the BBB disruption can protect the brain from the
adverse effects of tPA, extending the therapeutic
window. The combined effect of agents that act early,
including MMP inhibitors and those that protect the
delayed opening of the BBB, such as the COX-2
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inhibitors, need to be tested. The recent studies of
chronic effects of hypoperfusion in humans and
animals demonstrate a role for MMPs in both the
disruption of the BBB and the breakdown of myelin,
which may contribute to the death of oligodendro-
cytes. Defining the molecular mechanisms under-
lying damage to the vasculature provides important
information on which to base further trials of novel
therapies to protect the BBB.
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