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Densely packed and twisted assemblies of filaments are crucial
structural motifs in macroscopic materials (cables, ropes, and tex-
tiles) as well as synthetic and biological nanomaterials (fibrous
proteins). We study the unique and nontrivial packing geometry of
this universal material design from two perspectives. First, we
show that the problem of twisted bundle packing can be mapped
exactly onto the problem of disc packing on a curved surface, the
geometry of which has a positive, spherical curvature close to the
center of rotation and approaches the intrinsically flat geometry of
a cylinder far from the bundle center. From this mapping, we find
the packing of any twisted bundle is geometrically frustrated, as it
makes the sixfold geometry of filament close packing impossible
at the core of the fiber. This geometrical equivalence leads to a
spectrum of close-packed fiber geometries, whose low symmetry
(five-, four-, three-, and twofold) reflect non-Euclidean packing con-
straints at the bundle core. Second, we explore the ground-state
structure of twisted filament assemblies formed under the influ-
ence of adhesive interactions by a computational model. Here, we
find that the underlying non-Euclidean geometry of twisted fiber
packing disrupts the regular lattice packing of filaments above a
critical radius, proportional to the helical pitch. Above this critical
radius, the ground-state packing includes the presence of between
one and six excess fivefold disclinations in the cross-sectional order.

self-assembly ∣ topological defects ∣ geometric frustration

Packing problems arise naturally in a multitude of contexts,
from models of crystalline and amorphous solids to structure

formation in tissues of living organisms. Though often easy to
state, packing problems are notoriously difficult to solve. The
cannonball stacking of spheres, for example, conjectured by
Kepler to be the densest packing in three-dimensional space (1),
was only proven so in 1999, and even then with the aid of a com-
puter algorithm (2). In some cases, like the densest packing of
spheres, the face-centered cubic lattice—or its two-dimensional
analogue, the densest packing of discs, the hexagonal lattice—the
optimal structure is a regular, periodic partition of space. In many
problems, however, perfect lattice packings are prohibited, and
optimal structures necessarily lack the translational and rota-
tional symmetry of periodic order. A well-known example is the
problem of finding the densest packing ofN discs on a sphere of a
given radius, known alternately as the Tammes or the general-
ized-Thomson problem (3). In this problem, spherical topology
requires a variation in the local packing symmetry: All states
possess at minimum 12 discs whose nearest-neighbor geometry
is fivefold coordinated (4). Beyond its relevance to structural stu-
dies of such diverse materials as spherical viral capsids (5) and
colloid-stabilized emulsions (6, 7), the problems involving point
or disc packing on spheres serve as an important example of
systems where topological defects—fivefold disclinations in an
otherwise sixfold packing—are necessary components of optimal,
or ground-state, structure (8, 9).

In this article, we demonstrate that the geometry of an impor-
tant class of materials, twisted filament bundles and ropes,
belongs to this unusual class of geometrically frustrated packing.
Indeed, the packing of twisted bundles shares an intimate and
unexplored connection with the Thomson problem. Helically

twisted assemblies of multiple filaments or strands are not only
key structural elements in macroscopic materials—cables, ropes,
yarns, and textile fibers—but they also constitute an important
class of macromolecular assemblies in biological materials at the
nanoscopic scale. Fibers of extracellular proteins like collagen
(10) and fibrin (11) are well-known to organize into twisted
assemblies, and the helical twist of multifiber cables has been im-
plicated in the assembly thermodynamics of sickle-hemoglobin
macrofibers (12). Whereas the helical twist of human-made ropes
is built in to optimize mechanical properties—such as bending
compliance (13) and tensile strength (14)—the twist of self-
assembled ropes of biomacromolecules derives from torques
generated by interactions between helical (i.e., chiral) molecules
(15, 16).

The complexity of cross-sectional packing in this archetypal
material geometry has long been a subject of study, particularly
from the viewpoint of the mechanical properties of manufactured
textiles (14, 17) and wire ropes (13). The problem is best visua-
lized from the perspective of the planar cross-section of a twisted
bundle, as shown in Fig. 1A, which shows the cross-section of
filaments away from the helical center of rotation to be distorted
and stretched azimuthally. This distortion arises from the tilting
of filaments into the horizontal plane, and is responsible for the
nontrivial constraints on number, position, and arrangement of
filaments placed a given radius from the bundle center (18, 19).

Below we show that the distortion of the cross-sectional shape
of filaments in a planar section of a twisted bundle is identical to
the shape distortion arising from the projection of a packed array
of discs on a non-Euclidean surface onto the plane. That is, the
problem of packing twisted bundles can be mapped one-to-one
onto the problem of packing discs on a 2D surface with the to-
pology of a hemispherically capped cylinder, a surface we refer to
as the bundle-equivalent dome (see Fig. 1C). From this unique
and surprising perspective, we demonstrate a number of previ-
ously hidden properties of packing in twisted bundles, leading to
a rich spectrum of optimal structures even in the simplest models
of filamentous materials. First, the effectively spherical geometry
corresponding to the bundle center obstructs regular, periodic
packing: Like the disc packings of a dome, the core packing of
large twisted bundles possess a deficit of precisely six neighbors,
relative to a sixfold dense packing of tubes (i.e., the equivalent
of six excess fivefold coordinated sites in an otherwise sixfold
Delaunay triangulation). Second, we find that geometry of fila-
ment packing becomes Euclidean far from the bundle center
and topologically equivalent to disc packings on a cylinder whose
circumference is equal to the helical pitch of rotation, P. Third,
we classify all asymptotically close-packed twisted bundles and
show that these correspond to the countably infinite number
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of ways to wrap a hexagonal lattice around a cylinder. Among
these asymptotically close-packed structures, we construct lower
bounds for the densest packing of bundle cores and show that the
densest among these have a lower than sixfold symmetry, a require-
ment for compatibility of the local bond geometry with the “hid-
den” spherical geometry of the core. Finally, we show by numerical
computation that the purely geometrical considerations of twisted
bundle packing have universal consequences for energy-minimiz-
ing configurations of adhesive filaments: Ground-state structures
possess an excess number of fivefold disclinations that is sensitive
only to the ratio of helical pitch to bundle diameter.

Metric Geometry of Twisted Bundle Packing
The hidden non-Euclidean geometry of packing in twisted bun-
dles follows from elementary considerations of interfilament dis-
tance. We consider filament bundles, twisted around the ẑ axis at
a uniform rate of helical rotation, Ω ¼ 2π∕P. Given the position,
x ¼ ðx; yÞ, of a filament center in the z ¼ 0 plane, the centerline
of the filament is described by the helical curve,

rðx; zÞ ¼ x cosðΩzÞ þ ðẑ × xÞ sinðΩzÞ þ zẑ; [1]

where x ¼ 0 is the rotation axis. Hence, the center of each fila-
ment or strand follows a helical curve of radius, ρ ¼ jxj, and pitch,
P. The center-to-center separation between two filaments that sit
at x1 and x2, respectively, in the reference plane, is a functionΔðzÞ
of the vertical separation z between points of comparison,

Δ2ðzÞ ¼ jx1j2 þ jx2j2 − 2x1 · x2 cosðΩzÞ þ 2ẑ

· ðx1 × x2Þ sinðΩzÞ þ z2: [2]

In problems of fiber packing, the relevant distance between a pair
of given filaments is the distance of closest approach, or

Δ� ≡ minz½ΔðzÞ�: [3]

As shown in Fig. 2A, the closest separation between two filaments
takes place along a vectorΔ� ¼ r2ðz�Þ − r1ð0Þ, where z� is the ver-
tical offset at this separation. Clearly, Δ� is perpendicular to both
filaments at the end points of centerline contact. Additionally,
notice that any two helical curves are always nearer than their
separation in the reference plane because Δ� ≤ Δð0Þ.

In purely geometric formulations of filament packing, ex-
cluded volume considerations require that Δ� ≥ d, where d is
the filament diameter (18). Enforcing this constraint requires the
solution to the transcendental equation, dΔ2∕dzjz� ¼ 0, for the
value of vertical offset z� at the point of closest approach between
a given filament pair. Here, we take advantage of the fact that the
vector separating closest contact between a pair of helical curves,
Δ�, intersects the helical curves intermediate to the filament pair,
perpendicular to their orientation. Hence, the distance of closest
approach between a pair of helical filaments may be subdivided
into the distances of closest approach between a series of more
closely spaced filaments. Given this integral property, we consider
the separation between filaments that are spaced at an infinitesi-
mal separation in the planar section. Adopting polar coordinates,
x ¼ ρ cosϕ and y ¼ ρ sinϕ, and considering a filament pair whose
reference plane positions are given by ðρ; ϕÞ and ðρþ δρ; ϕþ δϕÞ,
to lowest order in separation we have

z� ≃ −δϕρ sin θðρÞ; [4]

and

lim
jδxj→0

Δ2� ≡ ds2 ¼ ðδρÞ2 þ Ω−2 sin2 θðρÞðδϕÞ2; [5]

where

θðρÞ ¼ arctanðΩρÞ [6]

corresponds to the local tilt angle of a filament in the bundle at ρ
with respect to ẑ (see Fig. 2A). Hence, Eq. 5 shows that twisted
filament bundles are imbued with a Riemannian metric that maps
separations between infinitesimally spaced filaments in a planar
section to the true distance of closest approach in 3D.

One can better understand the unusual metric properties of
bundle packing by constructing the surface that carries the metric
in Eq. 5 and embedding it in 3D. This dome, or silo-like surface, is

Fig. 1. Three views of a twisted bundle packing. In A, the horizontal cross-
section of a twisted bundle, where circular filament sections become dis-
torted, “stretched” along the azimuthal direction, depending on the tilt
and curvature of the filament backbones. In B, a vertical slice through the
bundle reveals hexagonally close packing far from the core. In C, the dual
representation of the twisted bundle packing as a disc packing covering a
bundle-equivalent dome.

Fig. 2. The distance of closest approach between two helical filaments is
shown schematically in A. (B) The bundle-equivalent dome, where ρ denotes
the arc distance from the pole. Red contours, lines of latitude on this surface,
correspond to the red trajectories in C in bundles, along which a filament
returns to itself.
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shown in Fig. 2B. Integrating ds around azimuthal loops, the peri-
meter, ℓðρÞ, of this axially symmetric surface has the following
dependence on arc distance from the “pole” at ρ ¼ 0,

ℓðρÞ ¼ P
Ωρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðΩρÞ2
p : [7]

These 3D curves corresponding to the lines of perimeter are
shown in Fig. 2C to be curves of constant ρ that pass perpendi-
cular to filament tilt and connect a filament to itself at a different
height. Near the ρ ¼ 0 pole (bundle center), not unlike the sur-
face of a sphere, the perimeter increases more slowly than the
Euclidean plane. Indeed, from the metric in Eq. 5 we can show
the Gaussian curvature of the surface (20) is everywhere positive
and largest at the pole,

KG ¼ 3Ω2

½1þ ðΩρÞ2�2 : [8]

Far from the pole, the perimeter approaches a finite value,
ℓðρ → ∞Þ ¼ P, and the surface becomes asymptotically flat
(KG → 0) and cylindrical. To be clear, the bundle-equivalent
dome cannot be embedded “within” the twisted bundle, with the
surface normal to the helical curves, although it is embeddable
in R3 independently and it shares essential metric properties
with twisted bundles. Although we have deduced the geometry
of this bundle-equivalent dome by considering infinitesimally
spaced filaments, it is important to emphasize that the distance
relationships encoded in this surface geometry are identical to
interfilament distances in 3D bundles at finite separation. In
other words, the geodesic distances measured between two points
ðρ1; ϕ1Þ and ðρ2; ϕ2Þ on the bundle-equivalent dome are equal to
the distance of closest approach between filaments at those posi-
tions in the bundle.

An indirect connection between twisted bundle geometry and
the geometry of positively curved surfaces is implied by results of
nonlinear elasticity theory of twisted columnar arrays: Stresses in
the cross-section of twisted bundles are formally equivalent to the
stresses in a crystalline membrane on a sphere (21–23). The
present analysis extends this connection beyond the limit of
infinitesimal filaments and beyond the limit of small twist, estab-
lishing the equivalence between discrete packings of finite
diameter discs and filaments. A more abstract connection be-
tween these problems is implied by Kléman, who demonstrated
that certain twisted filament packings are commensurate with the
geometry of S3 (24, 25). In light of the present analysis, we find a
direct connection between these filament and disc packings that
exists between two structures that are (independently) embed-
dable in 3D Euclidean space, the twisted bundle and disc-packed
dome.* Any nonoverlapping configuration of discs on this bun-
dle-equivalent dome corresponds one-to-one with a spacing-fill-
ing twisted bundle of filaments with circular cross-section. An
example of a 3D bundle and its dual representation as a disc pack-
ing is shown in Fig. 1. Specifically, this correspondence means
that the horizontal section of the twisted bundle (shown in
Fig. 1A) may also be generated by a projection of the disc packing
in Fig. 1C that preserves distances along the radial direction (i.e.,
azimuthal-equidistant projection).

The mapping of the geometry of twisted bundles onto the 2D
surface carrying the same metric properties offers a privileged
perspective on both the local and global constraints of bundle
packing. Firstly, the positive Gaussian curvature of the bundle-
equivalent surface implies that it is impossible to evenly space
filaments with a sixfold symmetric hexagonal packing because
the “kissing number” of discs on this surface is less than six (fewer
than six nonoverlapping discs can contact a central disc) (25, 27).
Curvature is concentrated near the pole (ρ ¼ 0) and, in densely
packed states, its effect is to promote filaments with five (or less)
rather than six nearest neighbors near the center of a twisted bun-
dle. For example, consider the central, fivefold coordinated fila-
ment in Fig. 1. As the surface geometry becomes Euclidean
asymptotically far from the pole, limρ→∞KG ¼ 0, a dense bundle
will become hexagonally close packed far from the rotation axis.

Going one step further, we may characterize the distribution of
defects in the lattice packing, disclinations, that characterize de-
viations from sixfold coordination of nearest-neighbor geometry.
The topological disclination charge is computed from the num-
bers of n-fold vertices in the nearest-neighbor bond network, Vn,

Q ≡ ∑
n

ð6 − nÞVn: [9]

For an infinite bundle, corresponding to a bundle-equivalent
dome of infinite height, the Gauss–Bonnet theorem relates the
surface curvature to a total topological charge of the packing,
Q ¼ 6χ, where χ ¼ ð2πÞ−1∫ dAKG ¼ 1 is the Euler characteristic
of the surface. Thus, we find the topological charge of any suffi-
ciently large twisted bundle packing is exactly six. For example,
assuming neighbors have only five-, six-, and sevenfold coordina-
tion, Q ¼ V 5 − V 7. We see that any twisted bundle, provided its
radius is sufficiently large, must possess at minimum six fivefold
disclinations in the packing, consistent with a Delaunay triangula-
tion of the dual surface packing of discs in Fig. 1. Although these
topological constraints apply to any twisted bundle packings, we
show in the next sections that they have significant consequences
for bundles that are geometrically or thermodynamically optimal.

Asymptotically Close-Packed Filament Bundles
The geometric equivalence between twisted fiber packing and
packing on the bundle-equivalent dome shown in Fig. 1 offers
a unique insight into the structure of maximally dense bundles.
In particular, we note that the geometry of filament packing
becomes Euclidean, with the periodic topology equivalent to a
cylinder of radius,Ω−1, far from the bundle center whereΩρ ≫ 1.
Importantly, this geometry implies that the maximum density of
any sufficiently large-radius bundle is achieved by hexagonal close
packing of nearly toroidal filaments in the Ωρ ≫ 1 regions
(see Fig. 1B).

Wemay classify all such asymptotically close-packed bundles in
terms of the wrapping of a commensurate 2D hexagonal lattice
around the bundle-equivalent dome at Ωρ → ∞. Like the well-
known geometry of carbon nanotubes (28), given the lattice vec-
tors in the 2D plane, a1 ¼ dð1; 0Þ and a2 ¼ dð1∕2; ffiffiffi

3
p

∕2Þ, we
define the vector Pðn; mÞ ¼ na1 þma2 to describe the wrapping
direction of the hexagonal lattice around the circumference of the
cylinder. Because limρ→∞ℓðρÞ ¼ P, we find that each integer
pair, ðn; mÞ, corresponds to an asymptotically close-packed bun-
dle of helical pitch,

Pðn; mÞ ¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þm2 þmn

p
: [10]

Given this countably infinite set of known commensurate close-
packing geometries at large radius, it remains to determine fila-
ment packing geometry at the core, where the local geometric
constraints disrupt sixfold hexagonal packing, necessarily lower-

*The above properties of helical filaments bundles in 3D can be understood in terms of the
geometry of a Riemannian fibration of 3D Euclidean space (26). The fibration decom-
poses space into local product space corresponding to directions along the helical curves
and locally planar elements perpendicular to the helical curves (i.e., the distance of closest
approach). When this structure is embedded in space of vanishing curvature, O’Neill’s
formula relates the sectional curvature of the transverse (horizontal) space to 3 times
the square of the rotation rate of filament tangents in this transverse plane, ∂ρθðρÞ,
in perfect agreement with Gaussian curvature computed by explicit construction of
the 2D surface in Eq. 8.
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ing the volume fraction below the close-packing limit of discs in a
plane, Φcp ¼ π∕

ffiffiffiffiffi
12

p
≃ 0.9069.

To study the geometric limits of packing in the cores of asymp-
totically close-packed bundles, we employ a deterministic packing
algorithm that sequentially adds filaments to an existing outer
“collar” of filaments until the interior of the bundle is fully
packed (see SI Text for details). Other than the distinction that
the present algorithm grows a packing cluster in the opposite di-
rection—that is, from the outside to the inner core–it is identical
to an algorithm used to generate disc packings on spherically and
hyperbolically 2D curved surfaces (29). We initiate the algorithm
by placing a row of n discs along a1 and a row ofm discs along a2,
wrapped at the appropriate orientation around the dome at a
large finite arc distance from the pole (ρ ≃ 5P). Assuming that
the packing maintains this regular geometry at larger radii, we
sequentially add filaments to the inner region via an algorithm
that searches for the pocket of two-filament contact furthest from
the pole and occupies it with an additional filament, which pro-
ceeds until no further filaments can be added. The algorithm
makes small adjustments to the arc distance of initial collar until
the volume fraction at the core is maximum. We measure core
volume fraction by mapping the disc packing onto the planar
cross-section of a twisted bundle (by an azimuthal-equidistant
projection) and computing the fraction of area, Φ, occupied by
the distorted filament sections within a circle of radius ρc ≡ 3P.†

Fig. 3 shows core packing fractions of asymptotically dense
bundles for m ≤ n ≤ 15. Because of the impossibility of continu-
ing perfect hexagonal geometry into the core of twisted bundles,
volume fractions are in the range 0.82 < Φ < 0.9, at least 1% less
dense than the close-packing limit of straight cylinders. One trend
is immediately apparent, for a given family of packings at fixed n,

the maximal density core structures universally are given by the
ðn; nÞ symmetry, so-called “armchair” packings in the nanotube
nomenclature. Conversely, the ðn; 0Þ, or “zig-zag,” give the lowest
density for a given n, and the packing fraction of ðn; mÞ bundles
for a given n is a monotonically increasing function of m. The
distinction between ðn; 0Þ and ðn; nÞ packing can easily be
understood to derive from the fact that the decreasing perimeter
available as the core is approached effectively compresses the
hexagonally close-packed geometry along the vector P. For
ðn; 0Þ bundles, this direction is along a nearest-neighbor bond
(say along a1). Because nearest-neighbor directions are incom-
pressible, ðn; 0Þ bundles cannot maintain the close-packed lattice
topology for finite ρ. For ðn; nÞ bundles, the azimuthal contrac-
tion takes place along the next-nearest-neighbor direction, a com-
pressible axis of the packing that allows the regular topology of
the ρ → ∞ packing to be maintained to the core.

The inset of Fig. 3 shows the packing fractions obtained for
the ðn; nÞ structures for n ≤ 35. The densest packings found tend
be concentrated at low P, for n < 6. The large-n results suggest a
convergence to a limiting packing fraction of Φ ≃ 0.8960, not
unlike the large-n convergence of area fraction observed in nu-
merical studies of disc packing on spheres (30). The maximal core
density is found for a ð5; 5Þ packing, for which Φð5;5Þ ¼ 0.89615.
The relatively high packing fractions of the n < 6 armchair pack-
ings are consistent with the local constraints of packing at the
core which prohibit a filament kissing number ≥6, an unavoidable
conflict with the hexagonal symmetry of asymptotically close-
packed regions. As shown in Fig. 3, core packings possess a non-
zero number of five- and fourfold coordinated sites in the near-
est-neighbor geometry, denoted as V 5 and V 4, respectively. In
the absence of other defects, topology requires V 5 þ 2V 4 ¼ 6.
For n < 6, theCn symmetry of ðn; nÞ packings are commensurate
with the less than sixfold symmetry of dense packing at the core.
Note, in particular, the ð5; 5Þ packing whose fivefold symmetry is
consistent with the coordination geometry of the central filament.
This structure is uniquely compatible with the packing constraints

Fig. 3. The cross-sections of core packings for asymptotically close-packed bundles with ðn; nÞ symmetry with n < 6 are shown at the top. Filaments shown are
within P from the rotation center. Red and orange filaments, respectively, label filaments with five- and fourfold coordination in the nearest-neighbor packing.
The plot shows the core volume fraction of asymptotically dense bundles, ðn; mÞ for m ≤ n ≤ 15 (joined points share the same n value). The dashed line shows
the packing fraction of hexagonally close-packed cylinders. Inset shows the volume fractions of ðn; nÞ packings for n ≤ 35, points n ≤ 5 labeled.

†To remove the strong influence of the filaments at the boundary of the “core” region on
Φ, we average the volume fraction over a small range of core radii around P, yielding a
measure of core packing density considerably less sensitive to the precise definition of
core radius (see SI Text for details).
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at the core and the asymptotically close-packed regions. For this
helical pitch, Pð5;5Þ ¼ 5

ffiffiffi
3

p
d, the kissing number of the central fi-

lament in the ð5; 5Þ structure is very nearly equal to five.‡ Because
of the near coincidence of perfect packing in the core and far
from the center, we conjecture the ð5; 5Þ packing to be the den-
sest possible packing of any helically twisted filament bundle.

Self-Assembled Ground States of Twisted Bundles
The frustration of twisted bundle packings has a profound influ-
ence on not only the structure of geometrically optimal bundles of
unlimited size, but also on the minimal-energy structures that
form under the influence of mutual attractive forces between
filaments in finite-diameter twisted bundles. We explore the
cross-sectional packing of self-assembled twisted bundles using
a computational approach (see SI Text for full details). Whereas
bundles are fully 3D structures, we assume that all cross-sectional
slices of a bundle are identical up to a rotation around the center
of the bundle, allowing us to fully describe the structure by spe-
cifying filament positions in a given 2D plane. We model filament
interactions via a Lennard–Jones interaction between elements
of arc length on opposing filaments. Integration of these interac-
tions along the arc length of a neighbor filament yields an effec-
tive interaction per unit length that depends only on the distance
of closest approach between a filament pair (22),

UðΔ�Þ∕L ¼ ϵ
6

�
5d11

Δ11�
−
11d5

Δ5�

�
; [11]

where ϵ is energy per unit length of the attractive well, and d is the
preferred interfilament separation. To calculate Δ� between fila-
ments a and b in a computationally efficient manner, a numerical
approximation for vertical separation between filament contact,
z�, is used in Eq. 2,

z� ≃ Ω−1 arctan
�
Ω2ðx1 × x2Þ · ẑ
1þ Ω2ðx1 · x2Þ

�
: [12]

This approximation interpolates between the solution for z� in
both limits of large and small Ω2ρ1ρ2, and is accurate to within
a few percent of total bundle energy for all configurations. Start-
ing with random initial configurations of in-plane filament coor-
dinates, the total energy is minimized by steepest descent. To
account for the plethora of local energy minima for large bundles,
minimizations were randomly initiated 200–2,000 times depend-
ing on the number of filaments. For each value of Ω and filament
number, N, only the lowest energy structures were analyzed.
To determine the nearest-neighbor packing of bundles, filament
coordinates undergo an isothermal coordinate (conformal)
mapping to the 2D plane, after which the standard Delaunay tri-
angulation is performed. The resulting structures are character-
ized according to their radius, R, defined as the mean radius of
boundary filaments. An example structure of N ¼ 142 filaments
at a rate of twist Ω ¼ 0.27d−1, is shown in Fig. 4, with five- and
sevenfold disclinations highlighted in the cross-section. We begin
by analyzing the total topological charge of disclinations, Q, in
minimal-energy bundles in the range N ¼ 16–193 as a function
of increasing twist shown in Fig. 4. For finite radius bundles, we
find that Q is determined by the parameter ΩR alone. For small,
weakly twisted bundles, ΩR ≈ 0, the packing is hexagonal and
defect-free. Above a threshold value of ΩR, excess fivefold dis-
clinations appear in the packing, increasing in a stepwise fashion
to a maximal number of Q ¼ 6 for large ΩR. We note that for
small ðΩRÞ, these transitions are well described by the continuum

theory of refs. 21 and 22, which predicts, for example, a threshold
twist for a single fivefold disclination at ðΩRÞ� ¼

ffiffiffiffiffiffiffiffi
2∕9

p
≃ 0.47,

which compares well to a mean critical threshold observed in
the current simulations of ðΩRÞ� ≃ 0.44. However, the conti-
nuum theory does not accurately describe the ðΩRÞ ≫ 1 regime,
notably failing to capture the maximum topological charge of
twisted bundles, Q ¼ 6.

The stepwise increase of defect charge in minimal-energy bun-
dles derives from the geometric correspondence between bundle
packing and disc packing on domes. To see this connection, we
consider the integrated Gaussian curvature over the finite do-
main, M, of the packing that covers a portion of the bundle-
equivalent dome, χðMÞ ¼ ð2πÞ−1∫MdAKG. We generalize the
notion of the Euler characteristic to triangulations with an open
boundary, where the boundary of the triangulation derives from
the filaments at the outer periphery of the bundle. Given the set
of internal angles θb at the vertices, b, that sit at the boundary of
the triangulation, we may show

1

2π∑
b

�
θb −

π
3

�
¼ 6χðMÞ −Q; [13]

where we take the geodesic curvature of the boundary edges to
be zero. The sum on the left-hand side above is nonzero, when
internal angles of the bond triangulation at the boundary deviate
from the geometry of equilateral triangles on flat surfaces. As-
suming distortions from equilateral bond geometry are energeti-
cally costly, it is reasonable to expect that the internal packing
topology adjusts to minimize this internal angle deviation, or that
defect charge is determined by minQ j6χðMÞ −Qj. Approximat-
ing the M as an axisymmetric domain of arc-radius ρ ¼ R, we
calculate the Euler characteristic of the bundle-equivalent dome
as a function of size,

χðRÞ ¼ 1 −
1

½1þ ðΩRÞ2�3∕2 ; [14]

which is consistent with the requirement that Q ¼ 6 for infinite-
radius bundles. The optimal values of defect charge predicted by
this purely geometric argument are depicted as solid, black lines
in Fig. 4, showing very reasonable agreement with the results of
energy-minimal bundles. In Fig. 5, Left, we plot a phase diagram
to show the net topological charge of minimal-energy structures
in terms of both reduced twist ΩR, and bundle size relative to
filament diameter,R∕d. This view more clearly demonstrates that
Q is predominantly determined by ΩR and largely independent
of the microscopic filament size d, further emphasizing the fact
that geometrical constraints on twisted bundle packing severely

Fig. 4. On the left, a minimal-energy twisted bundle with 142 filaments and
Ω ¼ 0.27d−1. Five- and sevenfold coordinated filaments are shown as red and
blue, respectively, and sixfold filaments are shown gray. On the right, the net
topological charge of minimal-energy bundle assemblies is plotted as a func-
tion of twist, with results from simulated packings shown in red. The solid
black lines show the integer values of Q closest to 6χðRÞ.

‡When the central filament has kissing number of exactly five, the twist of the bundle is
Ω ¼ 0.718d−1 , a less than 1% adjustment from the twist of the asymptotically close-
packed geometry, Ωð5;5Þ ¼ 0.726d−1 .
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restrict the value of net disclination charge in minimal-energy
states.

For comparison, we also show a phase diagram indicating the
total disclination number (i.e., ∑n≠6Vn) in minimal-energy bun-
dles in Fig. 5, Right. This phase diagram emphasizes clearly that,
although the net charge of defects is determined by ΩR, the gen-
eralized Euler character alone is not sufficient to discriminate
among the many ways of achieving a given value of Q.

Whereas the boundaries between the regions of constant Q in
Fig. 5 are largely vertical, the total disclination number of mini-
mal-energy bundles exhibits many more domains divided by
phase boundaries showing a much more complex dependence
on twist and bundle size. Although we find even more complex
packings (with four- and eightfold defects) among minimal-
energy bundles, in large part, the trend of increasing R∕d at fixed
ΩR is characterized by the vertical sequence of Q ¼ 1 cross-

sections shown in Fig. 5. As bundle size increases, fivefold discli-
nations become progressively extended by neutral chains of
5–7 disclination pairs. These grain boundary scars have been
predicted (31) and observed (6, 7) to appear in crystalline order
on curved surfaces as a means of screening the large stresses
in the neighborhood of geometrically favored disclinations.
Consistent with our present findings for this analogous, geome-
trically frustrated system, the length of these scars (and hence
the total disclination number) is found to be an increasing func-
tion of R∕d.
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