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It is well established that chromosome segregation in female
meiosis I (MI) is error-prone. The acentrosomal meiotic spindle
poles do not have centrioles and are not anchored to the cortex via
astral microtubules. By Cre recombinase-mediated removal in
oocytes of the microtubule binding site of nuclear mitotic appa-
ratus protein (NuMA), which is implicated in anchoring micro-
tubules at poles, we determine that without functional NuMA,
microtubules lose connection to MI spindle poles, resulting in
highly disorganized early spindle assembly. Subsequently, very
long spindles form with hyperfocused poles. The kinetochores of
homologs make attachments to microtubules in these spindles but
with reduced tension between them and accompanied by align-
ment defects. Despite this, the spindle assembly checkpoint is
normally silenced and the advance to anaphase I and first polar
body extrusion takes place without delay. Females without
functional NuMA in oocytes are sterile, producing aneuploid eggs
with altered chromosome number. These findings establish that in
mammalian MI, the spindle assembly checkpoint is unable to
sustain meiotic arrest in the presence of one or few misaligned
and/or misattached kinetochores with reduced interkinetochore
tension, thereby offering an explanation for why MI in mammals
is so error-prone.

kinetochore tension | mouse

Accurate segregation of chromosomes during cell division
requires the assembly of a bipolar microtubule spindle. In

most animal cells, bipolar mitotic spindle formation relies on
centrosomes acting as major microtubule organizing centers
(MTOCs). At mitosis onset, duplicated centrosomes rapidly
promote spindle bipolarization (1), defining spindle poles as well
as the spindle axis along which chromosome attachment and
segregation will take place (reviewed in 2). Most oocytes, by
contrast, lose their centrioles during oogenesis, and therefore
lack canonical centrosomes (reviewed in 3). Mammalian meiotic
spindle poles are not anchored to the cell cortex via astral
microtubules. However, robust kinetochore fibers and spindle
poles are established late in meiosis I (MI) (4), raising the
question of how acentrosomal spindle poles, microtubules, and
kinetochores cooperate to enable proper chromosome attach-
ment and segregation.
Errors in meiotic chromosome segregation lead to the for-

mation of aneuploid eggs, greatly compromising further embryo
development. MI in human females is error-prone and is a lead-
ing cause of spontaneous abortion and congenital defects (5). It is
now generally accepted that the spindle assembly checkpoint
(SAC), also known as the mitotic/meiotic checkpoint, acts during
MI in mouse oocytes to ensure successful attachment of the
kinetochores of homologous chromosomes (whereas the sister
kinetochores on each duplicated chromosome attach to micro-
tubules from the same spindle pole) (6–9).

The molecular switch that silences the female meiotic check-
point, as well as its robustness to prevent premature anaphase I,
is unresolved. Studies using oocytes from females lacking a key
synaptonemal complex gene (Scp3) have shown that passage
through MI can occur in the presence of a few univalent chro-
mosomes (10). Suppressing meiotic recombination in mouse
oocytes lacking Mhl1, a protein essential for meiotic recom-
bination, leads to premature separation of most homologs and
major abnormalities in meiotic spindle assembly accompanied by
chronic SAC-dependent meiotic arrest (11) or delay (12), de-
pending on the genetic background. Efforts in male meiosis in
insects have established that despite attachment to spindle
microtubules, a single unpaired homolog provokes chronic SAC-
dependent meiotic arrest (13) that is overcome by application of
mechanical tension to the kinetochore of the unpaired homolog.
No study to date has directly addressed the consequences of
perturbing spindle tension on MI progression and SAC silencing
in oocytes.
Work performed in Xenopus egg extracts has shown that the

nuclear mitotic apparatus protein (NuMA) and dynein partici-
pate in focusing microtubules at spindle poles and allow the
tethering of centrosomes to spindle microtubules (14, 15). To
perturb meiotic spindle structure in oocytes and development of
tension between kinetochores of homologs after bioriented at-
tachment, we have now exploited an allele of NuMA in which the
exon encoding the microtubule binding domain is selectively
deletable by the Cre recombinase (16). In somatic cells, when
mitosis takes place in the presence of this mutated form of
NuMA, centrosomes establish initially focused spindle poles;
however, as mitosis progresses, centrosomes are ejected from
poles and focusing is lost (16).
We now use selective inactivation of NuMA to demonstrate

that oocytes mutant for NuMA uniformly become aneuploid;
thus, females are sterile, establishing an essential role for NuMA
in female meiosis. Moreover, without functional NuMA, kinet-
ochores of homologous chromosomes in mammalian female MI
make bioriented attachments to spindles without development of
normal tension between kinetochores. We exploit this discovery
to test whether SAC silencing at the kinetochore requires simple
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microtubule attachment or subsequent development of normal
levels of interkinetochore tension.

Results and Discussion
NuMA Activity in Oocytes Is Essential for Female Fertility. We first
confirmed that NuMA was present in mouse oocytes (17).
NuMA was diffusely positioned early in MI, but within 4 h of
meiotic entry, it was concentrated at spindle poles concomitantly
with their formation (Fig. 1A). At telophase, a proportion of
NuMA localized to the cleavage furrow between the oocyte and
the forming polar body (Fig. 1A, time point NEBD + 8 h, white
arrowhead). To address the function of NuMA in acentriolar
spindle assembly, we used a conditional “floxed” allele of NuMA
in which exon 22, which encodes its microtubule binding domain,
is deletable by action of Cre recombinase (16) (Fig. 1B). Oocyte-
specific deletion of NuMA in exon 22 was produced in female
mice (Fig. 1C) that carried one floxed NuMA allele, one NuMA

allele constitutively deleted of exon 22, and the ZP3-Cre
transgene (18), the last of which encodes Cre expression only
within oocytes.
Oocytes derived from these mice (referred to hereafter as Δ22

oocytes) were homozygous for the exon 22 deletion. In late MI,
these Δ22 oocytes exhibited significant reduction in NuMA lo-
calization at spindle poles compared with control oocytes (Fig. 1
D, white arrows, and E). Cortical cleavage furrow association of
NuMA was not compromised, strongly arguing for a specific
inhibition in Δ22 oocytes of NuMA microtubule binding without
interfering with other binding partners (Fig. 1D, white arrow-
heads). The fertility of Zp3-Cre+;NuMAwt/wt and Zp3-Cre+;
NuMAflox/Δ22 males was comparable, with each producing a
mean litter size of five to six pups when crossed to Cre-expressing
NuMA heterozygous females (Fig. 1F). Similarly, Zp3-Cre+;
NuMAwt/Δ22 females crossed to wt males also produced litters of
approximately five pups (Fig. 1F). In contrast, Zp3-Cre+;
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Fig. 1. NuMA is lost from spindle poles in the absence of its microtubule-binding domain. (A) NuMA and MTOCs accumulate at the spindle poles in MI. NuMA
localizes to the cleavage furrow (white arrowhead) at PB1 (white star). Forty-nine oocytes were observed. (Scale bars: 10 μm unless otherwise specified.) (B)
Scheme represents the deletion of the microtubule-binding domain of NuMA encoded by exon 22 in the mutant allele of NuMA (Δ22). (C) Genotyping of mice
from crosses between the ZP3-Cre strain and the NumAflox/flox strain shows the efficiency of the Cre-recombinase to excise exon 22. Examples of flox/wt, wt/
Δ22, and flox/Δ22 genotypes are presented. (D) NuMA accumulation at spindle poles is reduced in Δ22 oocytes (white arrows) compared with controls. NuMA
remains associated with the cleavage furrow in Δ22 oocytes (arrowheads). Nineteen oocytes were observed for controls, and 23 oocytes were observed for
mutants. (E) Intensity of endogenous NuMA labeling was quantified and compared between control (gray) and Δ22 (green) MI oocytes (***P = 0.0002). (F)
Zp3-Cre+; NuMAflox/Δ22 females are sterile. The Zp3-Cre+; NuMAflox/Δ22 males are fertile when crossed with Cre+; NuMAwt/Δ22 or Cre+; NuMAwt/flox females.
Combinations of crosses and mean litter size (number of pups per cross) are indicated. At least three females were analyzed per cross for 6 mo after puberty.
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NuMAflox/Δ22 females, which produced oocytes homozygous for
Δ22, were sterile; that is, they never gave rise to live pups (Fig.
1F), thereby demonstrating that NuMA and its microtubule
binding are essential for female meiosis.

NuMA Is Required for Early Steps of Meiotic Spindle Assembly. To
identify why loss of meiotic spindle-bound NuMA produced fe-
male sterility, the events of meiotic maturation were examined.
The size and competence (oocytes need to reach a certain size
during follicular growth to become competent to resume meio-
sis) of NuMA Δ22 oocytes present in ovaries of sexually mature
females were comparable to controls, demonstrating that follic-
ular growth was not affected by ZP3-Cre–dependent homozy-
gosity for NuMA Δ22. Indeed, when grown in culture, NuMA
mutant oocytes initiated meiosis as efficiently as wt ones: 96% of
Δ22 oocytes initiated nuclear envelope breakdown (NEBD) vs.
93% of controls, and with normal kinetics (50% underwent
NEBD within 30–45 min of transfer to culture medium). In ad-
dition, most NuMA-deficient oocytes extruded a first polar body
(PB1) with normal kinetics (see Fig. 5 A and B).
Meiotic spindle assembly in the absence of functional NuMAwas

analyzed by time-lapse spinning disk microscopy using EB3-GFP,
a (+)-end microtubule tracker, previously shown to track micro-
tubule ends in mouse oocytes (4, 19). Following NEBD in wt
oocytes, microtubules assembled between chromosomes and
MTOCs formed the poles of bipolar spindles within∼3 h (Fig. 2A–
C andMovie S1). In contrast,Δ22 oocytes exhibited impaired early
steps of spindle assembly (Fig. 2B and Movie S2). After NEBD,
chromosomes andmicrotubules were distributed over an area twice
as large as in wt oocytes (Fig. 2 B and D and Movie S2). These
enlarged spindles eventually bipolarized after a 1-h delay compared
with control spindles (bipolarization at 4 ± 1 h in Δ22 compared
with 2 h 50 min ± 40 min in wt; P = 0.003; Fig. 2 B and C).
Four hours following NEBD, the resulting bipolar spindles

were elongated (seen in live and fixed samples), with a twisted
long axis and scattered chromosomes (Fig. 2 B and E and Movie
S2). In addition, rather than the classic barrel shape character-
istic of controls, the spindle poles were splayed (Fig. 2 B and E).
Localization of hepatoma up-regulated protein (HURP), a
marker of the central spindle domain (4, 20), was normal in the
absence of microtubule-binding NuMA (Fig. S1A), whereas
targeting protein for Xklp2 (TPX2), a marker of the peripolar
domain, was abnormal, with its positioning spreading toward
spindle extremities in the presence of NuMA Δ22 (Fig. S1B).
In the absence of microtubule-bound NuMA, spindle poles

underwent a surprising reorganization during MI. Whereas
spindles maintained a stable barrel shape throughout the 8 h of
MI in controls (Fig. 2G and Movie S3), they progressively closed
to yield more focused poles before anaphase in NuMA Δ22
oocytes (Fig. 2G and Movie S4). Astral-like structures were often
observed at the extremities (Fig. 2F, arrowhead). Spindles of
NuMA Δ22 oocytes remained 40% longer than controls
throughout all the latter stages of MI (Fig. 2H). This phenotype
was maintained following PB1 extrusion for MII spindles, which
elongated with hyperfocused poles (Fig. 2 G and H).

Meiotic Spindle Pole Shaping by NuMA Is a Two-Step Process. The
formation of functional meiotic spindle poles in oocytes is di-
vided into two phases. In the first, microtubules self-organize
into a bipolar structure within the first hours of MI. Sub-
sequently, components of the final MTOCs, originally scattered
along the spindle axis, accumulate at spindle ends, where they
organize and generate robust spindle poles (4). Our observations
of aberrant spindle poles in the Δ22 NuMA mutant oocytes,
together with the known function of NuMA at spindle poles in
mitotic cells (reviewed in 21), prompted us to analyze the nature
of these meiotic defects more closely. To do this, we followed
behavior of MTOCs by immunofluorescence analysis of peri-

centrin, a major MTOC component, and time-lapse microscopic
analysis of Venus-tagged Polo kinase 1, which has previously
been shown to associate with MTOCs in meiosis (22). Analysis of
both time-lapse microscopy and fixed samples clearly showed
that the kinetics of MTOCs sorting to the spindle poles were
similar in control and mutant oocytes (Fig. 3 A and C). This
result is consistent with previous findings that MTOC sorting
depends on the presence of a central array of microtubules as-
sembled by HURP and that HURP domain formation is not
impaired in the absence of NuMA (Fig. S1A). Further, the
amount of these MTOC components accumulated at the poles
was comparable between controls and in the absence of micro-
tubule-bound NuMA (Fig. 3D).
In contrast, the organization and final shape of MTOCs were

strikingly different in the absence ofNuMAbinding tomicrotubules
(Fig. 3A). Analysis of the circularity of individual MTOCs indicated
that in controls, MTOCs formed large elongated structures (with
a low index of circularity) circumscribing the poles. NuMA Δ22
mutant oocytes exhibitedmostly sphericalMTOCs characterized by
a circularity index close to 1 (Fig. 3 A and E), mimicking the shape
of mitotic ones. Interestingly, these round MTOCs were poorly
attached to spindle extremities and had a strong tendency to detach
from spindle poles at the end of MI (Figs. 2F and 3B, arrowheads).
NuMA is therefore required for proper organization of the polar
domain of female mouse meiotic spindles.

NuMA-Dependent Meiotic Spindle Pole Organization Is Required for
Efficient Chromosome Congression. To examine the role of NuMA-
dependent organization of spindle poles in meiotic chromosome
movement, chromosome congression toward the MI spindle center
was assessed. In controls, chromosomes progressively aligned at
metaphase, with anaphase I ensuing immediately following spindle
migration to the cell cortex and with concomitant polar body ex-
trusion (Fig. 2G and Movie S3). Analysis of live imaging of NuMA
Δ22 oocytes revealed that chromosomes were dispersed during
early steps of MI, normal congression was impaired, and a tight
metaphase alignment was never achieved (Fig. 2G and Movie S4).
Quantitative analysis of chromosome congression using fixed sam-
ples confirmed these observations: although many chromosomes
did congress towards the spindle center in NuMA Δ22 mutants,
close alignment of chromosomes was never achieved (Fig. 3C). In
addition, at late MI, without microtubule-bound NuMA, one or
more pairs of homologs frequently persisted at poles (Fig. 3C).

NuMA Is Required for Accurate Chromosome Segregation and Oocyte
Euploidy. In wt oocytes, anaphase I takes place about 8–8.5 h after
NEBD and after the last chromosome has aligned (Fig. 4A and
Movie S5). In mutant oocytes, anaphase I also typically took place
around 8–8.5 h after NEBD despite the presence of misaligned
chromosomes (Fig. 4A and Movie S6). In addition, lagging chro-
mosomes were often observed during anaphase (Fig. 4A, white
arrows). Within the same NuMA Δ22 spindle, chromosomes ini-
tially at or near spindle poles either became bioriented and con-
gressed to metaphase (Fig. 4B, white arrow) or remained
motionless at the poles for long periods (Fig. 4B, white asterisk).
Quantification of the chromosome number of MII oocytes

showed that, as expected, most Δ22 oocytes were aneuploid in
contrast to control oocytes (80% compared with less than 20% in
controls; Fig. 4 C and D). Chromosome abnormalities involved
mostly the loss or gain of one or two chromosomes (Fig. 4D).
These data show that proper assembly of spindle poles by NuMA
is essential to support accurate chromosome congression and
segregation in female meiosis, providing an explanation for fe-
male sterility in the absence of functional NuMA.

Anaphase Is Not Delayed Despite Chromosome Congression Defects
in the Absence of Spindle-Bound NuMA. The previous observations
unambiguously establish that without spindle-bound NuMA,
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anaphase onset is triggered despite the continued presence of
misaligned chromosomes resulting from defective spindle pole

assembly. Indeed, counting of normal and NuMA Δ22 oocytes
revealed that 60% of mutant oocytes completed MI, extruding
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a PB1, compared with 79% of control oocytes. Very surprisingly,
despite the presence of misaligned chromosomes whose kinet-
ochores would have been predicted to continue to generate the
“wait anaphase” SAC signal, polar body extrusion occurred
without significant delay in oocytes without spindle-bound
NuMA, yielding overall kinetics of polar body extrusion essen-
tially indistinguishable from normal oocytes (Fig. 5B). Further-
more, kinetics of cyclin B1-GFP degradation were identical in
normal and mutant oocytes (Fig. S2A), reinforcing the notion
that progression to anaphase I was comparable with or without
spindle-bound NuMA.

Robust SAC Signaling in Oocytes Depleted of Spindle-Bound NuMA.
Prior work with preying mantid (13) and grasshopper (23, 24)
spermatocytes had implicated the SAC in delaying meiotic
anaphase until all chromosomes had stably attached to spindle
microtubules and tension had developed between kinetochores
of paired homologous chromosomes. Although many proteins
involved in generation of the SAC signal are known (reviewed in
25) and no work in any system has implicated NuMA or a NuMA
homolog as a component of the signaling pathway, the absence
of MI delay in the NuMA Δ22 oocytes called into question the
robustness of SAC signaling in these oocytes. To examine SAC
signaling more directly, low doses of nocodazole (100 nM), which

have been shown to maintain an activated SAC and delay ana-
phase I onset (26), were added to normal and Δ22 oocytes
starting 6 h after NEBD. The ensuing disruption of spindle mi-
crotubule assembly continued activation of the SAC, which
delayed polar body extrusion by 6 h in control oocytes (Fig. 5C).
Similar treatment produced an even longer delay in polar body
extrusion in oocytes without spindle-bound NuMA (Fig. 5C),
consistent with nocodazole amplifying the spindle defects in-
herent to the Δ22 mutant and demonstrating that the loss of
spindle-bound NuMA (and presence of the Δ22 protein) does
not diminish SAC signaling or its sustained activation.
Further, we determined SAC signaling in Δ22 oocytes fol-

lowing inhibition of Aurora B, a mitotic kinase whose activity is
dispensable for nocodazole-mediated mitotic arrest by the SAC
but necessary for sustaining taxol-dependent SAC activation (27,
28). Addition (to 100 nM) of the Aurora B inhibitor hesperadin
to Δ22 or normal oocytes at NEBD + 4 h (a time when Δ22
oocytes are not yet bipolar) inhibited SAC signaling, advancing
polar body extrusion in both oocyte genotypes (Fig. S2B).
However, similar to what was seen in the case of nocodazole
addition, SAC signaling was, if anything, enhanced in Δ22
oocytes (i.e., it was sustained an additional hour compared with
control oocytes). Lastly, we analyzed the effect of reversine, an
inhibitor of the Mps1 kinase (29), whose activity is essential for
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the SAC (29, 30). Treatment with reversine accelerated the
metaphase I-to-anaphase I transition by 2–3 h similarly in both
control oocytes, as previously reported (26), and Δ22 oocytes
(Fig. 5C), consistent with comparable SAC signaling in the two
oocyte genotypes.
Taken together, these observations indicate that NuMA is not

a component of SAC activity and that the SAC is fully active in
NuMA Δ22 oocytes. Consequently, the PB1 extrusion in the pres-
ence of misaligned chromosomes in Δ22 oocytes is not attributable
to an inherent inability to initiate or sustain SAC activation.

SAC Cannot Delay Anaphase I Despite Reduced Tension at
Kinetochores. A widely accepted model is that in MI, the SAC
wait anaphase signal is silenced by tension applied between the
kinetochores of paired homologous chromosomes after attach-
ment (13, 24; reviewed in 25, 31). Moreover, the lack of micro-
tubule anchoring to the abnormal spindle poles in the absence of
bound NuMA has been shown to reduce the tension applied to
kinetochores in mammalian mitosis (16). We therefore de-
termined interkinetochore tension in MI by measuring the dis-
tance between kinetochores in each bivalent after attachment
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(Fig. 5D). Average interkinetochore distance was significantly
reduced (from 5.0 ± 0.4 μm to 4.4 ± 0.4 μm) in NuMA Δ22 vs.
control oocytes (Fig. 5E). In the NuMA Δ22 oocytes, the inter-
kinetochore spacing on unaligned chromosomes near the poles
was very significantly reduced (only 2.2 ± 0.9 μm), with spacing
on some of these between 1 and 1.4 μm.
We could not accurately determine the distribution of inter-

kinetochore distances for homologs under no tension, because
microtubule assembly disruptors like nocodazole induce chro-
mosome clumping that precludes a complete assessment. How-
ever, in the subset of chromosomes that were sufficiently
separated from the others, interkinetochore distances of these
presumptively unattached kinetochores were 1.3 ± 0.2 μm. Thus,
not only were aligned chromosomes with bipolar attachments in
the NuMA Δ22 oocytes under reduced interkinetochore tension,
but those at poles were under little, if any, tension.
HURP association onto kinetochores and microtubules at the

end of MI enables visualization of K-fibers present in the oocyte
(4). As expected, in control oocytes, chromosomes that had
congressed to the equator of the spindle had HURP-decorated
microtubules emanating from their kinetochores (Fig. S3).
Similar figures were observed in NuMA Δ22 oocytes, even for
unaligned chromosomes located in the vicinity of the spindle
poles (Fig. S3). Thus, the misorganization of spindle poles in
mutant oocytes does not interfere with proper establishment
of K-fibers.

Mad2 Disassociates from Kinetochores with Normal Kinetics Even
with Reduced Tension. The spindle checkpoint component Mad2
localizes to unattached kinetochores (6) but is lost as stable ki-
netochore-microtubule interactions are established (6, 32) or in
male meiosis after tension is applied (13, 23, 24). In both normal
and NuMA Δ22 oocytes, Mad2 was localized at kinetochores at
NEBD + 3 h (Fig. 5 F and G). Subsequently, Mad2 staining
disappeared, even from chromosomes that failed to achieve
metaphase alignment in the NuMA Δ22 oocytes (Fig. 5 F and G;
NEBD + 7 h). Short treatment (30 min) of wt or NuMA mutant
oocytes with 10 μM nocodazole induced the reappearance of
Mad2 staining on kinetochores, demonstrating competency for
checkpoint reactivation at unattached kinetochores (Fig. 5 F
and G).
Thus, the SAC is normally activated and then satisfied at in-

dividual kinetochores in NuMA mutant oocytes, even in the
presence of imperfectly aligned chromosomes near the spindle
center and unaligned chromosomes whose kinetochores are
under sharply reduced tension at poles. Some of these mis-
aligned polar chromosomes are likely bioriented with reduced
tension but with silenced SAC signaling. For others, with inter-
kinetochore spacing similar to that in the absence of micro-
tubules and more random orientations relative to the spindle axis
than would be expected for correctly attached bivalents, these
bivalents are unlikely to be attached in a bipolar manner. Rather,
at least some of these are likely to be attached unstably or at-
tached in an aberrant manner (e.g., with both kinetochores of
a bivalent attached to microtubules from the most proximal pole
so as to produce syntelic attachment). Nevertheless, SAC sig-
naling is silenced, demonstrating that SAC satisfaction in this
example of female meiosis in mammals is not mediated by de-
velopment of normal interkinetochore tension.

NuMA-Dependent Spindle Pole Assembly in Meiosis. NuMA, to-
gether with dynein, anchors minus-ends of microtubules to the
centrosomes of mitotic spindles. This function is not essential for
early stages of mitotic spindle bipolarization, which is ensured by
the two centrosomes, but becomes essential when robust bundles
of kinetochore fibers form and transmit strong pulling forces
between spindle poles and kinetochores. In the absence of
functional NuMA, centrosomes are ejected from poles, poles

splay open, and the equilibrium of forces essential for proper
chromosome segregation is compromised. We show here that
without centrosomes, NuMA is essential in the early stages of
spindle assembly in mammalian meiosis. Our data establish that
NuMA is required for shaping meiotic spindle poles, through
activities that can be divided into two temporal phases. During
the course of initial microtubule sorting into a bipolar array, at
the time when MTOCs are dispersed along the spindle axis,
NuMA ensures the cohesion of microtubule minus-ends and
each of the two spindle poles. In the second phase of meiotic
spindle formation, MTOCs are sorted toward these poles. Dur-
ing this phase, NuMA, probably with its partner dynein, acts as
a microtubule spacer to maintain appropriate pole shape and
allow deposition and further reorganization of MTOCs into the
characteristic barrel shape of the meiotic spindle.
Strikingly, we have established that MTOC sorting to the poles

takes place normally in the absence of functional NuMA. This
can be explained by the fact that HURP, which is required to sort
MTOCs to the poles, is appropriately localized to the central
spindle region in NuMA-depleted oocyte spindles. Also note-
worthy is that overexpression of lateral geniculate nucleus de-
velopment (LGN), known to inhibit NuMA in mitosis (33, 34),
induces spindle elongation and mitotic-like pole phenotypes that
are strikingly similar to the ones we have observed using genetic
NuMA disruption (35). This suggests that a correct balance of
LGN and NuMA is required for proper organization of meiotic
spindle poles.

Understanding the High Error Rate of Female Mammalian Meiosis.
Evidence of missegregation in mouse MI of univalent, achias-
matic chromosomes after blocking almost all homologous re-
combination (by deletion of Mlh1) led Hunt and colleagues (12)
to postulate that the oocyte SAC was unable to ensure stable
bipolar attachment of bivalents before anaphase onset. Our ev-
idence now demonstrates that the presence in mouse oocytes of
poorly aligned chromosomes with sharply reduced interkineto-
chore tension does not delay, much less prevent, onset of mei-
otic anaphase I.
This outcome is strikingly different from the chronic delay

seen in mouse oocytes with defective spindle architecture (4, 6,
12) and in insect spermatocytes (13, 23, 24). Indeed, efforts using
micromanipulation of chromosomes in centriolar male meiosis
in insects had initially concluded that tension generated by
spindle forces between kinetochores of bivalents was required to
silence SAC signaling by those kinetochores, thereby permitting
advance to anaphase (12, 23). Additional efforts identified an
interplay between microtubule attachment and tension, with
increased tension stabilizing microtubule attachment (24, 36),
and tension was again concluded to be essential for checkpoint
silencing. Similarly, in maize meiosis, release of kinetochore-
associated MAD2 is correlated with increased interkinetochore
distance (i.e., tension) rather than initial attachment (37). In
contrast to these examples, our evidence demonstrates that in
mice, female MI is not delayed in response to reduced inter-
kinetochore tension.
Most recently, it was proposed that the well-known high error

rate of mammalian female meiosis is attributable to a high fre-
quency of initial misattachment of kinetochores followed by in-
complete error correction (38). This study neither followed
chromosome movement into anaphase nor assessed SAC sig-
naling. Although initial errors in attachment will produce an
increased error frequency if uncorrected, our evidence demon-
strates that a central determinant of a high error rate is that SAC
signaling in mouse oocytes is silenced prematurely, even in the
absence of spindle-induced tension and in the presence of mul-
tiple misaligned/misattached chromosomes. Moreover, our evi-
dence establishes that even global reduction of tension on
bivalent kinetochores (e.g., in NuMA-depleted spindles) is not
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sufficient to delay anaphase, much less support sustained SAC
signaling, producing anaphase initiation with normal kinetics and
aneuploid oocytes instead. Thus, the SAC in mouse oocytes has
a surprisingly low threshold for satisfaction and/or a poor sig-
naling capacity. Recognizing this, our identification of an in-
herently weakened SAC that is silenced without normal tension,
coupled with the initial errors of attachment (including merotelic
and syntelic attachments) seen in an otherwise unperturbed
meiosis (38), provides an explanation for why female MI in
mammals is so error-prone.

Experimental Procedures
Mouse Strains and Genotyping. Zp3-Cre [C57BL/6-Tg(Zp3-cre)93Knw/J]
breeding pairs were obtained from Jackson Laboratories. NuMA flox/wt
mice were produced on a C57BL/6 background (16). For measurements of
Cre-mediated NuMA exon 22 excision, genotyping was performed using the
following primers: Cre 5′-GCG GTC TGG CAG TAA AAA CTA TC-3′ and 5′-GTG
AAA CAG CAT TGC TGT CAC TT-3′, and NuMA 5′-AAC CGC ATC GCA GAG
TTG CAG -3′ and 5′-GAG GAG TGG TGG CAA CAG TAG-3′.

Mouse Oocyte Collection and Culture. Oocytes were collected from 8- to 12-
wk-old female mice into M2 + BSA medium supplemented with 150 μg/mL
dibutyryl cAMP (dbcAMP; Sigma) to ensure a block in prophase I, as pre-
viously described (39). Resumption of meiosis was triggered by culturing
oocytes in dbcAMP-free medium. All drugs were stored in DMSO at −20 °C
and diluted in M2 + BSA. Nocodazole (Sigma) was used at 100 nM or 10 μM,
reversine (Cayman Chemical Company) was used at 100 nM, and hesperadin
(Calbiochem) was used at 100 nM as described by Kitajima et al. (38).

Plasmid Construction and in Vitro Transcription of cRNA.Weused the following
constructs: pRN3-histone-RFP (40), pRN3-EB3-GFP (19), and pRN3-cyclin
B1-GFP (41). Plk1 (a gift from Erich Nigg, Biozentrum, Basel, Switzlerland)
was subcloned into pSpe3-Venus (a gift from Alex McDougall, UMR 7009,
Villefranche-sur-Mer, France). All cRNAs were synthesized using the T3
mMessage mMachine Kit (Ambion) and resuspended in RNase-free water as
previously described (42).

Microinjection. Injection of in vitro-transcribed cRNAs into the cytoplasm of
prophase I-arrested oocytes was performed using an Eppendorf Femtojet
microinjector as described (43), and the oocytes were further kept for 2 h in
dbcAMP arrest to allow expression of fusion proteins. Oocytes were then
released from the prophase I stage by transferring and washing into
dbcAMP-free M2 medium.

Live Imaging of Oocytes. Spinning disk movies were acquired using a Plan APO
40×/1.25 N.A. objective on a Leica DMI6000B microscope, enclosed in
a thermostatic chamber set at 37 °C (Life Imaging Services), and equipped
with a CoolSnap HQ2/CCD-camera (Princeton Instruments) coupled to
a Sutter filter wheel (Roper Scientific) and a Yokogawa CSU-X1-M1 confocal
scanner. MetaMorph software (Universal Imaging) was used to collect
the data.

Chromosome Spreads. Chromosome spreads of metaphase II-arrested oocytes
were prepared according to the method of Tarkowski (44) and stained with
propidium iodide (5 mg/mL in PBS; Molecular Probes) for 20 min. Image
acquisition was carried out on a Leica SP5/AOBS confocal microscope
equipped with a Plan APO 100×/1.4 N.A. objective.

Immunofluorescence. Oocytes were prepared for fixation as described by
Kubiak et al. (45). Microtubules were fixed with 0.1% glutaraldehyde as
described by de Pennart et al. (46). For NuMA labeling, oocytes were fixed in
ice-cold 100% methanol. For MTOC, TPX2, HURP, and CREST staining, 4%
paraformaldehyde was used, and for Mad2 staining, 4% (vol/vol) formal-
dehyde (FA) with 0.15% Triton X-100 in Pipes Hepes EDTA Mops (PHEM)
buffer was used as described by Wassmann et al. (6).

Rabbit polyclonal antibody against human NuMA (ab36999; Abcam) was
used at a ratio of 1:100. Rat monoclonal antibody against tyrosinated
α-tubulin (YL 1/2; Serotec) was used at a ratio of 1:200. Human α-CREST (HCT-
100; Immunovision) was used at a ratio of 1:60. Mouse antipericentrin (BD
Transduction Laboratories) was used at a ratio of 1:500. Rabbit–α-mHURP
(sc-98809; Santa Cruz) was used at a ratio of 1:50. Rabbit α-human TPX2 (a
gift from Oliver Grüss, ZMBH, Heidelberg, Germany) was used at a ratio of
1:500. Rabbit α-Mad2 (a gift from Katja Wassmann, UMR 7622, Paris, France)
was used at a ratio of 1:200. As secondary antibodies, anti-rabbit Cy2 or Cy3,
anti-mouse dye-light 488, anti-mouse Cy3, anti-rat Cy2 (all from Jackson
Laboratories), and anti-human Alexa 488 (Molecular Probes) were used at
a ratio of 1:200. Chromatin was stained for 20 min with Hoechst (5 μg/mL;
Invitrogen) or propidium iodide (5 μg/mL; Molecular Probes). Citifluor AF-1
was used as a mounting medium.

Image acquisition of fixed oocytes was carried out on the SP5/AOBS
confocal microscope equipped with a Plan APO 63×/1.4 N.A. objective.

Quantification Analysis. The measurement of NuMA fluorescence intensity at
the poles in control and Δ22 oocytes was performed on maximum projec-
tions of oocytes stained with NuMA using MetaMorph software. After
background subtraction, two identical squares allowed us to measure the
mean integrated intensity at poles.

The measurement of spindle length was performed using Volocity 4.1
software (Improvision) to obtain a 3D reconstruction of spindles after fixation
(for this, we used the Z-stack acquired on the SP5/AOBS confocal microscope).

The measurement of interkinetochore distance was performed using
Imaris software (Bitplans Scientific Software) on Z-stack images of oocytes
stained with CREST.

The measurement of MTOC and chromosome distribution was performed
using Z-projection of oocytes stained with pericentrin. For this purpose, we
used ImageJ software (MacBiophotonics). The signals of chromosomes and
pericentrin were binarized to assess the area of individual chromosomes or
MTOCs (arbitrary units). The coordinates were then plotted along the spindle
axis (0–1.1).

The measurement of cyclin B1-GFP fluorescence intensity was performed
onmaximumprojections. After background subtraction, a circular framewith
a diameter slightly smaller than the oocyte diameter allowed us to measure
the maximum integrated fluorescence intensity within each cell. The cyclin
B1-GFP intensity was measured inside this circular frame for all oocytes at
recorded time points.

Normalization and correction were performed using Microsoft Excel
software. Statistical analysis was performed using online GraphPad software.
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