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Abstract
This was a prospective longitudinal study of two cohorts comprised of one full term and three
premature infant groups born 10 years apart. Birth cohort, perinatal morbidity, and birth weight
effects were investigated at age 4. Cohort 1 (1985–1989) had longer gestation, higher birth weight,
and better Apgar scores than Cohort 2 (1996–1999), which had more intraventricular hemorrhage
and bronchopulmonary dysplasia. Cohort and perinatal morbidity group, but not birth weight,
predicted motor scores. Preterm Cohort 2 children had better oral motor, fine motor, and total
motor scores, but lower visual motor integration scores than Cohort 1. Motor problems continue to
affect preterm children at age 4, in particular those who experience perinatal morbidity, despite a
decade of neonatal intensive care advancements.

In 2004, 12.5% of the 4 million infants born in the U.S. were premature, an 18% increase
since 1990 and a 30% since 1981 (Martin et al., 2006). Prenatal steroids, surfactant for
respiratory distress syndrome, indomethacin to prevent intraventricular hemorrhage, better
feeding and nutrition, and improved pulmonary ventilation are credited for increased
survival rates, especially for those with birth weight under 1,000 g born in the decades of the
1980s and 1990s (Hack & Fanaroff, 1999; O’Shea, Klinepeter, Goldstein, Jackson, &
Dillard, 1997; Vohr & Msall, 1997). Although disability and severe impairment rates have
remained stable, attention has shifted to high prevalence/low-severity dysfunctions
occurring in an estimated 50–70% of infants (Aylward, 2003; O’Shea et al.). Given these
high rates and the increased numbers of preterm survivors, it is important to know whether
improvements in neonatal care have improved outcomes at pre-school age. This knowledge
could inform Neonatal Intensive Care Unit (NICU) practices and help gauge the future costs
and burden for families, and for health care and community systems. In this study we
compared two cohorts of preterm infants born a decade apart, using identical group
categorization, to examine whether a decade of advancement has improved motor
performance at age 4 years.

One prevalent finding in prematurely born children without major handicap is impaired
motor function, which becomes evident at pre-school age (Bowen et al., 1993; Lie, 1994).
By age 4, the child has matured developmentally to be able to perform specific motor
activities efficiently and to use them automatically (Touwen, Hempel, & Westra, 1992). Yet,
compared to full term children, many preterm children have poor balance, poor muscle tone,
less skill in gross motor function, and more spontaneous movements indicative of delayed
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neurological maturation (Stjernqvist & Svenningsen, 1995; Wildin, Smith, Anderson,
Swank, & Landry, 1997). Children with medical or neurological perinatal morbidity and
mild motor problems at preschool age are apt to have learning and school performance
difficulties at school age (Powls, Botting, Cooke, & Marlow, 1995; Sullivan & McGrath,
2003).

An understanding of the pathways of perinatal morbidity and developmental outcomes must
incorporate the effects of birth weight, as the lowest birth weight infants are often at greatest
risk for poor outcomes (Aylward, 2002). Severe neurosensory disability rates range from 19
to 57%, while severe impairments range from 9 to 37% for children born <800 g in the
1990s (Hack & Fanaroff, 1999). Although disability increases with decreasing birth weight,
not all extremely low birth weight (<1,000 g) children have impairment, and some low birth
weight (1,501–2,500 g) children have impairment, suggesting that postnatal morbidities also
play a role in outcomes.

Preschool motor function at age 4 may be determined by the interrelationship of perinatal
morbidity and birth weight, within the context of advances in neonatal medical care. Our
conceptual framework is neurobiological, viewing the preterm infant at risk for double
jeopardy (Aylward, 2005; Taylor, Burant, Holding, Klein, & Hack, 2002). First, the early
birth may be associated with incomplete prenatal brain growth and myelination, which are
dependent on gestational age. Volpe (1997) noted an intrinsic vulnerability of the immature
oligodendrocyte in neonatal cerebral white matter due to oxidative stress and injury from
free radical formation. In the process of cerebral myelination, proximal pathways myelinate
before distal and sensory pathways, and myelination of motor pathways occurs last. The risk
of damage to motor pathways may double with the effect of perinatal illness. Subcortical
white matter is especially vulnerable to ischemic injury and metabolic insults before 32
weeks gestation because of vascular and cellular factors hypothesized to be related to
perinatal illnesses (Volpe, 1998). Due to the proximity of periventricular infarctions to the
cortical tracts, the risk of motor problems is ubiquitous in these children.

The purpose of this study was to investigate the effects of birth cohort, perinatal morbidity,
and birth weight on preschool general motor, gross motor, fine motor, and visual motor
integration in two samples of children born prematurely 10 years apart, and a comparison
sample of full term infants. The two cohorts included 152 children born between 1985 and
1989 (Cohort 1) and 155 children born between 1996 and 1999 (Cohort 2). With
technological advances in perinatal and neonatal care, we expected Cohort 2 to have lower
birth weight and younger gestational age than Cohort 1 (Hypothesis 1), and we hypothesized
an associated decline in motor performance between decades, with poorer performance for
Cohort 2 (Hypothesis 2). Regarding perinatal morbidity, we hypothesized poorer motor
scores at age 4 for the preterm infants in both cohorts with neurological and/or medical
morbidity compared to the children born full term (Hypothesis 3).

METHOD
Sample

This was a four group prospective, longitudinal study of two cohorts. The recruitment
criteria were neonatal diagnoses, birth weight, maternal mental health (no history of mental
illness), and English as a primary language due to limited availability of translators and use
of English-only standardized instruments. Preterm was defined as <1,850 g and <37 weeks
gestational age. Infant and maternal medical charts were screened to determine eligibility for
recruitment. Prior to recruitment, socioeconomic status (SES) was estimated from parent
demographics and health insurance coverage so that there were approximately equal
numbers of high (33%), middle (33%), and low (33%) SES in each of the study groups.
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After recruitment, SES was measured by the Hollings-head four factor scale (Hollingshead,
1975). No significant difference in SES within the groups or between cohorts was found at
birth and age 4.

The study group criteria were: (a) full term healthy infants (FT); (b) preterm infants with
medical illness [MPT: bronchopulmonary dysplasia (BPD), respiratory distress syndrome
(RDS), necrotizing enterocolitis (NEC), sepsis] and birth weight <1,000 g (MPT1); (c)
preterm infants with medical illness and birth weight ≥ 1,000 g (MPT2); and (d) preterm
infants with neurological illness [NPT: meningitis, hydrocephalus, grade 3 or 4
intraventricular hemorrhage (IVH)]. The definitions used for BPD, RDS, NEC, sepsis, and
IVH were the same for both cohorts. BPD was defined as oxygen requirement at 28 days of
life. RDS required diagnosis within the first 2 days, based on typical signs (grunting and
retractions) and characteristic chest radiograph findings. NEC was classified using Bell’s
criteria (Bell et al., 1978). Sepsis was defined as high clinical suspicion with administration
of antepartum antibiotics, plus all culture-positive episodes. IVH was classified according to
the highest Papile grade (Papile, Burstein, Burstein, & Koffler, 1978).

Both cohorts were recruited from the same large tertiary medical center. During the two
epochs studied, the number of deliveries of infants aged ≥ 20 weeks gestational age ranged
from approximately 7,700 to 8,500 annually. The race/ethnicity distribution was stable
during the study times and closely reflected that of the region (Women & Infants Hospital,
1999). Maternal self-identification for Cohort 1 was: White, non-Hispanic (87%), Hispanic
(4%), African-American (8%) and Other (.5 %). Maternal self-identification for Cohort 2
was: White, non-Hispanic (73%), Hispanic (8%), African-American (9%), Asian (.6 %) and
Other (8%). The infants in both cohorts received the standard of care at the time, including
referrals for occupational therapy, early intervention services, and visiting nurse services.

The Cohort 1 sample, born between October 1985 and June 1989, was recruited to study
acoustic cry and later neurodevelopmental outcomes of preterm infants. Potential preterm
infants were identified from a medical chart screening during the mother’s post-partum stay
or the infant’s NICU stay. A comparison group of full term infants was recruited in the same
time period. Cohort 1 (N =152) included 39 normal, healthy full term infants delivered by
mothers with uncomplicated labors and deliveries and a heterogeneous group of 113 preterm
infants, classified into the three a priori perinatal morbidity groups, with n’s ranging from 23
to 53 (see Table 1). Fewer than 10% of the parent(s) declined participation when approached
for recruitment. Ninety-eight percent of Cohort 1 participated at age 4. Of the 4 children
who were not seen at age 4, there were 2 refusals (2 NPT) and 2 lost to tracking (1 FT, 1
MPT).

The inclusion criteria for Cohort 1 were replicated a decade later for Cohort 2, born between
April 1996 and March 1999. All possible infants who met inclusion criteria were identified
from the hospital medical records database followed by random number sampling. These
infant medical records were reviewed by either of two nurse practitioners or the first author
to assure that sample criteria were met. Families were invited to participate, first by mail
followed by a phone call when the child was within 2 months of their fourth birthday.
Cohort 2 sample (N =155) included 43 full term infants and 112 preterm infants using the
same group classification (n’s ranging from 32 to 42, see Table 1). Families were very
willing to participate, with only 9 of 164 potential participants not enrolled due to refusals (n
=2) or unable to track or moved from the region (n =5). Two families of FT infants declined
due to the child’s recent diagnoses (1 with celiac disease; 1 with multiple developmental
delays).
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The mean age for children was 47.4 months (SD =1.9; range 42–58) for Cohort 1, and 49.1
months (SD =1.3; range 46–54 months) for Cohort 2. There was no correction for
prematurity at age 4.

Measures
Infant measures included birth weight, gestational age, Apgar scores, length of
hospitalization, discharge weight, and neonatal illnesses recorded from hospital medical
charts. For Cohort 1, infant risk was measured by the Hobel Neonatal Scale (Hobel,
Hyvarinen, Okada, & Oh, 1973), which weights risk of neonatal illness by body systems
(i.e., respiratory, circulatory, hematological, and metabolic). Each weighted item is summed
for a total risk score. The Hobel was outdated for Cohort 2, therefore the Score for Neonatal
Acute Physiology (SNAPII; Richardson, 1999) was used. The SNAPII is a physiology based
score that uses routinely available vital signs and laboratory results representing
physiological derangements to assess illness severity (Richardson, Corcoran, Escobar, &
Lee, 2001). There are six weighted items of physiological measures and three weighted
supplemental perinatal mortality risks (birth weight, small for gestational age, Apgar score)
that are summed for a total score. Higher scores indicate higher neonatal risk. In both
cohorts, NICU nurses or nurse practitioners extracted the neonatal data and calculated the
risk score as each infant was recruited. Interrater reliability agreement was 97% for the
Hobel and 98% for the SNAPII. When discrepancies or questions arose from the chart
review, they were brought to the consulting neonatologist for discussion and final
determination.

At age 4, identical measures were used in both cohorts to assess general motor, gross motor,
fine motor, and visual motor integration. The measures have demonstrated validity with test
reliability correlation ranges of .77 –.92 and internal consistency ranges of .75 – .91, and
they have been extensively used in pediatric research and preterm samples (Collin, Halsey,
& Anderson, 1991; Piecuch et al., 1997; Saigal et al., 1994; Wildin et al., 1997). The motor
scale of the McCarthy Scales of Children’s Abilities (MSCA; McCarthy, 1972) was used to
assess the child’s coordination in a variety of gross and fine motor tasks. Gross motor items
include Arm Coordination (6 items), Leg Coordination (6 items) and Imitative Action (4
items), and fine motor items include Draw-A-Design (9 items) and Draw-A-Child (10
items). Stability coefficients for the Motor Scale ranged from .75 to.78, and the MSCA is a
significant predictor of first grade achievement scores. The standardized mean is 50 (SD
=10) with higher scores indicative of better motor performance.

The Riley Motor Problem Inventory (RMPI; Riley, 1976) assesses oral, fine, and gross
motor dimensions. It is designed to identify neurological ‘soft signs’ by testing motor
components of early childhood problems in speech, language, movement, and behavior.
Eleven items are summed to form a total score and three subtest scores; oral motor, fine
motor, and gross motor. Scores range from 6 to 20 with higher scores indicative of more
motor problems. Reliability estimates range from .77 to .91. Separate unpublished data show
the RMPI correlated with the Bender-Gestalt (.62) and the Human Drawing Test (.74;
Riley).

The Beery Developmental Test of Visual-Motor Integration (VMI) assesses the degree to
which visual perception and motor behavior are integrated to help identify significant
difficulties in coordination of visual perceptual and motor (finger and hand movement)
capacities (Beery, 1982, 1997). The VMI and its supplemental visual and motor tests were
normed on 2,614 children from 3 to 18 years of age, from 5 major sections of the United
States. The standardized mean is 100 (SD =15), with higher scores indicating better visual
motor integration. The Rasch-Wright results indicate high content reliability for the VMI, as
its total group item separation was 1.0 and its total group person separation was .99. Internal
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consistency at age 4 was .86, average inter-scorer reliability was .92. Concurrent validity is
demonstrated by significant correlation with both the Developmental Test of Vision
Perception and the Drawing subtest of the Wide Range Assessment of Visual Motor
Abilities (Beery, 1997).

Procedures
The motor testing at age 4 was done as part of a research assessment, either in the hospital
research laboratory or during a home visit. During the visit, informed consent was obtained,
demographic and health data were collected by interviewing the parent(s), and the motor
assessments were completed. Test administration was standardized according to manual
directions. Protocol training was completed by study personnel in both cohorts, with
reliability maintained above 85% agreement across settings and across cohorts. The
Principal Investigator for the Cohort 1 study consulted on the Cohort 2 protocol and the
Principal Investigator of the Cohort 2 study was a research nurse for the Cohort 1 study.
Institutional Review Board approval was obtained from both hospital and university for each
cohort study.

Analyses
Multivariate ANOVA was used to test the first hypothesis concerning differences and
interaction effects between cohorts and perinatal morbidity group on the neonatal variables
of birth weight, gestational age, Apgar scores, length of hospitalization and discharge
weight. Chi Square was used for the categorical morbidities. Multivariate ANOVA models
were used to test the second hypothesis concerning the main effects and their interactions for
general motor, oral motor, fine motor, gross motor, total motor, and visual motor integration
scores at age 4. For these analyses, the design variables were (a) birth weight, (b) perinatal
morbidity group, and (c) birth cohort. We followed significant multivariate models with
univariate analysis to test the third hypothesis. Duncan’s Multiple Range Test was used post
hoc to test pairwise differences.

We computed power for a MANOVA design with two factors and six dependent variables
using the PASS software (Hintze, 2004) with an alpha level of .05 for main effects and
interactions. The design achieves 95% power to detect small effects for the sample shown in
Tables 3 and 4. The univariate ANOVAs had better than 90% power to detect significant
main effects and interactions.

RESULTS
Neonatal Findings

The multivariate ANOVA was significant for cohort [Lambda(5, 271) =11.01, p =.001],
perinatal morbidity group [Lambda(15, 748) =114.289, p =.001], and their interaction
[Lambda(15, 748) =2.2, p =.005] for the dependent variables of birth weight, gestational
age, 5 minute Apgar score, length of hospitalization, and discharge weight. The interaction
of cohort × perinatal morbidity showed that gestational age and birth weights were lower for
the MPT1 and NPT groups in Cohort 2 compared to Cohort 1, supporting Hypothesis 1. The
FT groups did not differ between cohorts.

Differences between cohorts showed that Cohort 1 had higher gestational age [M = 32.2, SD
= 4.7; F(1, 283) = 32.77, p = .001] and higher Apgar scores [M = 7.7, SD = 1.4; F(1, 283) =
11.16, p = .001] than Cohort 2 [gestational age (M =31.0, SD = 6.0); Apgar (M = 7.1, SD =
2.0)]. Cohort 2 infants had greater discharge weight (M = 2612.6, SD = 720.5) than Cohort 1
(M = 2362.7, SD =588.6). Cohort 2 had higher rates of IVH [Chi Square (4,205) = 26.75, p
= .001] and BPD [Chi Square (1, 262) = 16.3, p =.001]. Almost half the morbidity for the
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Cohort 2 premature infants was BPD (n = 53, 47%) compared to 24% (n =27) for Cohort 1
(see Fig. 1). Cohort 2 had more infants with sepsis and IVH grade 3 or 4, and the incidence
of NEC and seizures was slightly lower than Cohort 1. Children in the high acuity NPT
group had multiple morbidities. Figure 2 shows that more NPT children in Cohort 2 had two
or three additional medical morbidities than Cohort 1 (45% vs. 14%). The occurrence of
neurological morbidity only (no additional medical illness) was greater for Cohort 1 (12%
vs. 41%). The occurrence of just one medical co-morbidity was comparable for the NPT
groups in each cohort (44% and 41%). The descriptive statistics for neonatal characteristics
within each cohort are presented in Table 1.

Preschool Motor Findings
The multivariate ANOVA for preschool motor scores was significant for Cohort [Lambda(5,
285) =19.3, p =.001] and perinatal morbidity group [Lambda(10, 570) =3.20, p =.001]. Birth
weight and the interactions, cohort × perinatal group, cohort × birth weight, birth weight ×
perinatal group, were not significant. Cohort had the largest explained variance (eta squared
= .259), followed by perinatal morbidity (eta squared =.053), and birth weight (eta squared
= .012). The univariate analyses showed that oral motor [F(1, 303) =24.6, p =.001], fine
motor [F(1, 303) =12.09, p =.001], total motor F(1, 303) =17.00, p =.001] and visual motor
integration [F(1, 303) =52.49, p =.001] were different between cohorts. Cohort 2 had better
oral motor, fine motor, and total motor scores than Cohort 1. Cohort 1 had better visual
motor integration scores than Cohort 2 (see Table 2). Thus, Hypothesis 2, that motor scores
would be lower for Cohort 2 than Cohort 1, was only partially supported.

Mean motor scores were within the normal range for all groups except the NPT group in
both cohorts. Contrary to Hypothesis 2, the preterm children (MPT1, MPT2, NPT) in Cohort
2 had better motor scores than the preterm children born 10 years earlier when matching
perinatal morbidity group across cohorts. The Cohort 1 MPT1 group had poorer scores than
Cohort 2 MPT1 in oral motor, fine motor, and total motor. For the MPT2 groups, Cohort 2
scores were higher for oral motor and total motor. However, the visual motor integration
score was lower for the MPT groups of Cohort 2. The only pairwise cohort difference for the
NPT groups was in visual motor integration: Cohort 1 had higher scores (see Table 2).

Given the findings for visual motor integration, we examined the frequency of vision
problems at age 4 for both Cohorts from parental and pediatrician health history data. We
used a bivariate code of normal (no vision problems) and vision problems (strabismus,
nystagmus, myopia, hyperopia, peripheral loss, blindness, suspect conditions such as
continued follow-up of retinopathy of prematurity, and color-blindness). FT children in
Cohort 1 had normal vision. Nineteen percent (n =21) of the preterm children had vision
problems: 9.5% (n =5) from the MPT2 group; 26% (n =6) from the MPT1 group; and 27%
(n =10) from the NPT group. With the exception of the MPT1 group, there were greater
numbers of children from Cohort 2 with vision problems (24%, n =27): 7% (n =3) from the
FT group; 12.5% (n =5) from the MPT2 group; 17.5% (n =7) from the MPT1 group; and
45.2% (n =14) from the NPT group. A 2 × 2 × 4 multivariate analysis confirmed significant
interactions for cohort × vision on general motor [F(1, 302) =7.3, p =.007] and total motor
[F(1, 302) = 6.1, p = .014], showing that the children in Cohort 2 with vision problems had
lower motor scores compared to children in Cohort 1. There was an interaction of perinatal
group × vision on visual motor integration [F(3, 302) =3.4, p =.018] showing that children
with vision problems in the FT, MPT2, and NPT groups had lower visual motor integration
scores. There were no significant interaction effects for fine and gross motor outcomes.
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Group Effects Within Cohorts
For Cohort 1, there were significant group differences for five of the six motor dimensions,
partially supporting Hypothesis 3; only oral motor was not significant (see Table 3). The FT
group had the best scores on all measures (i.e., lower scores on the RMPI). The MPT2 group
had better scores than the NPT group. The MPT2 group scores did not differ from the FT
group on fine motor, gross motor, and total motor. Mean scores for the MPT1 group and
NPT group were the poorest and not significantly different from each other.

For Cohort 2, there were significant group differences for all six motor measures, supporting
Hypothesis 3 (see Table 4). The FT, MPT1 and MPT2 had significantly better scores than
the NPT group on oral motor and total motor outcomes. On fine motor, the FT had the best
score, the MPT1 and MPT2 were significantly poorer, and the NPT had the poorest scores.
For gross motor and visual motor integration, FT and MPT2 had better scores than the
MPT1 group, which had better scores than the NPT group. The MPT1 and MPT2 groups
had visual motor integration scores comparable to the FT group, while in general motor, the
MPT2 and MPT1 groups were not significantly different from each other. All groups were
significantly better than the NPT group. In contrast to Cohort 1 results, the MPT1 group
scores were significantly better than the NPT group.

DISCUSSION
While neonatal advances have improved survival at lower birth weights for preterm infants
born in the late 1990s compared to the late 1980s, the prevalence of major morbidity has
increased with lower birth weights (<1,000 g). Prevalence of lower severity
neurodevelopmental disabilities has remained stable through the early 1990s (Hack &
Fanaroff, 1999; Lee et al., 1995). Our infancy data show some effect of this pattern of
change over a decade of neonatal advances. The preterm groups in Cohort 2 had lower birth
weights and were hospitalized for longer periods than those in Cohort 1. The percentage of
infants with birth weights less than 1,000 g was larger in Cohort 2 (MPT 51%, NPT 57%)
than Cohort 1 (MPT 30%, NPT 38%). There was an increase in specific perinatal
morbidities in Cohort 2, including Grades 3–4 IVH and hydrocephalus in the NPT group,
and BPD, pneumonia, and sepsis in the MPT groups. NPT infants in Cohort 2 had more co-
existing medical morbidities. In a regional cohort comparison study of premature infants
<32 weeks gestation, rates of BPD increased from 6 to 19% between 1983 and 1996–1997
(Stoelhorst et al., 2005). Smith et al. (2005) reported that the rates of BPD have not declined
in the post-surfactant era, but rates of severe BPD have. In this study, BPD was defined as
oxygen requirement at 28 days of life. Using the definition of severe BPD as oxygen
requirement at 36 weeks post conceptual age, the BPD rate for all infants <1,000 g in this
study was approximately 24%, the lower range for the NICHD Neonatal Research Network
centers during the mid-1990s (Vohr et al., 2004).

Mortality and morbidity rates and clinical practices are known to vary considerably among
NICUs. This phenomenon makes for both inherent limitations and advantages to single
center studies. Among several benefits from a longitudinal study of outcomes at a large,
regional perinatal center are its population-based attributes and consistency of obstetric and
neonatal practices. Internally consistent perinatal and NICU practice styles at the study
institution were documented during the SNAP II Study Group of New England NICUs (Al-
Aweel et al., 2001; Bednarek et al., 1998; Kahn et al., 1998; Richardson et al., 1999) and in
site-specific data from the NICHD Neonatal Research Network (Vohr et al., 2004).
However, several significant changes in clinical practice and technology occurred between
the Cohort 1 and Cohort 2 epochs. Use of antenatal steroids for women in preterm labor was
uncommon (<35%) for Cohort 1, but was nearly universal for Cohort 2. In Cohort 2, more
than 90% of infants <1,000 g received surfactant treatment; high frequency ventilation use
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also was more common. Finally, Cohort 2 infants with birth weights <1,250 g routinely
received indomethacin as IVH prophylaxis (Ment et al., 1994). These neonatal advances
occurring within our center may account for some cohort differences. Time-appropriate
neonatal risk indices were used for both cohorts, but due to NICU advances, they are not
entirely comparable between cohorts, making it impossible to compare cumulative neonatal
acuity across the decade. There is recent evidence that while neonatal severity indices are
good predictors of short term neonatal outcomes, they are not predictive of 4-year
psychomotor, neurosensory, hearing and vision impairment, concentration difficulties, and
growth (Eriksson, Bodin, Finnstrom, & Schollin, 2002). Thus, comparable neonatal risk
indices would not be helpful in estimating preschool aged outcomes.

The significant cohort effects show that pre-school outcomes in fine, gross, total, and
general motor abilities improved for the preterm children born in the late 1990s compared to
preterm children born in the 1980s, but visual motor integration has declined. Explanations
for these differences might include history effects of the intervening 10 years. Though this
threat to internal validity cannot be eliminated, the inclusion of a full term comparison group
was a solid strategy. We would expect a decade of events also to be evident in between-
cohort differences in the full term groups because the measures were standardized for
healthy full term children. Yet, the two FT groups born a decade apart did not differ in
motor outcomes at age 4. SES, another source of between cohort differences, was controlled
in our study design using the identical measure for each cohort. No SES differences were
found. Although we used a neurobiological framework, we acknowledge the value of a
developmental science perspective where an interplay of biology and environment affects
child outcomes such as cognition and behavior (McGrath & Sullivan, 2003).

When compared to full term peers, the preterm children at age 4 had poorer motor
performance despite a decade of improved NICU technology. However, mean scores were
within the normal range for all groups except the NPT groups. In both cohorts premature
children with neurological illness (NPT) had the poorest general, gross, fine, and visual
motor function compared to other preterms and full term children. When 22 children in both
cohorts (11 in each) with severe disability were removed from the analyses, the results were
unchanged, showing that preterm children with medical and/or neurological morbidity but
without severe disability continue to have motor problems at age 4. Similar findings by
Caravale, Tozzi, Albino, and Vicari (2005) showed lower scores at age 3–4 years in visual
perception and visual motor integration for healthy preterm children with normal
intelligence and without neurodevelopmental deficits who were born at 30–34 weeks
gestation.

The long term effects of neonatal morbidity have been reported by others. Creasey, Jarvis,
Myers, Markowitz, and Kerkering (1993) found that preterm children with respiratory
illness scored lower in motor ability than healthy preterms. The hypoxic effect of BPD has
been associated with poor school age motor coordination, poor postural control, and fine and
gross motor delay (Majnemer et al., 2000; Shevall & Majnemer, 1996). Two research groups
(Blitz, Wachtel, Blackmon, & Berenson-Howard, 1997; Singer, Yamashita, Lilien, Collin, &
Baley, 1997) with large samples of preterm infants with BPD born between 1989 and 1991
found delay in motor skills at 8, 12, 24, and 36 months of age, and that BPD predicted poor
motor outcome at ages 2–3 years, after controlling for other risks of gestational age, sex,
race and SES. At age 5 years, Goyen, Lui, and Woods (1998) found poor fine motor and
visual motor integration skills in children who had hyaline membrane disease and were
ventilated more than 8 days, but not in children with IVH, NEC, or low Apgar scores, in
their 1986–1989 sample, similar years to Cohort 1.
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Within a neurobiological framework, the effects of neonatal morbidities may be seen as
related to the high level of brain immaturity at preterm birth (Vohr & Allen, 2005). Those
infants of lower gestational ages may be particularly vulnerable to hypotensive and hypoxic
injury, with the pattern of small lesion injury involving fibers to the limbs and motor
pathways (Bracewell & Marlow, 2002; Peterson et al., 2000). Also, perinatal infection and
inflammatory cytokines associated with infection may exacerbate brain injury and result in
high rates of neurodevelopmental impairment (Msall et al., 1991, 1994). Some evidence
suggests that variations in motor impairment associated with preterm outcomes are a result
of specific neuropathological processes affecting neuromotor pathways differently. For
example, periventricular leukomalacia (PVL) and IVH are associated with gross motor
delay, whereas fine motor and visual-motor integration deficits correlate with lesser degrees
of neuromotor insult (Olsén, Pääkkö, Vainionpää, Pyhtinen, & Järvelin, 1997). Some
propose brain plasticity may account for differential effects in children who suffered
neonatal injury. Extrapolating from animal models, Luciana (2003) suggested four possible
developmental courses for preterm infants that offer insight for our results. In one course,
injury is so severe that the child does not recover. In a second course, development proceeds
despite evidence of injury. In the third, development may be compromised early, but the
child improves with age. In the fourth, the developmental dysfunction becomes more
evident as the child ages. In an expanded conceptual model, Aylward (2005) suggested that
negative outcomes are not due to effects on one brain area per se, but to both disruptions of
brain development resulting from injury and the interrelatedness of neural networks.

It is also possible that prematurity may produce deficits in development of the visual system
(Aylward, 2005). The follow-up analyses showed an interplay between vision and motor
performance. The preterm children of Cohort 2 had lower scores for visual motor integration
than the preterm children of Cohort 1. Visual motor function involves many components,
including visuomotor control, visual perception, fine motor skill, and speed and eye–hand
coordination. Hard, Niklasson, Svensson, and Hellstrom (2000) assessed both visual acuity
and visual perception in children <29 weeks gestation and found decreased visual acuity
even when eye disease was absent, suggesting that visual perception problems may be
associated with brain lesions. Although Torrioli et al. (2000) found more deficits in visual
motor integration and general motor ability in a sample of preterms with normal cerebral
ultrasound (US) scans compared to full term controls, the use of MRI with preterm samples
verifies PVL lesions more accurately than either US or computer tomography (CT; Skranes,
Nilsen, Smevik, Vik, & Brubakk, 1998), Thus, it is possible that had these technologies been
available for some children in Cohort 1, more brain lesions, including PVL might have been
diagnosed, which would account for their low visual motor scores.

In general, the likelihood of poor motor performance increases as birth weight decreases
(Marlow, Roberts, & Cooke, 1993). Foulder-Hughes and Cooke (2003) reported weak
correlations (range r = −.15 to −.18) between birth weight and motor scores in their sample
of 280 preterm children under 32 weeks gestation born in the early 1990s. However, minor
motor disability and motor impairment of general motor, posture, coordination, and visual
motor integration impairment were found throughout the birth weight range, while Levy-
Shiff, Einat, Mogilner, Lerman, and Krikler (1994) reported that perinatal medical
complications significantly predicted visual motor coordination over and above birth weight
in their sample of 13–14-year-old VLBW children. In the present study as well, birth weight
did not have an independent effect on preschool motor outcomes, although small significant
correlations were found between birth weight and the five motor scores (range r =.19–.31).
Only the correlation with oral motor scores was not significant. In many preterm outcomes
studies, authors have used birth weight categories without full details on perinatal, neonatal,
or post NICU morbidity. Our results suggest that this information should be provided in
estimating preschool motor outcomes (Allen, 2002).
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Morbidity from prematurity may emerge after the perinatal period as developmental
demands on motor abilities increase. Thus, early motor problems may not appear to improve
with age. While attention has been focused on the smallest infants (<1,000 g), larger preterm
infants represent a greater proportion of preterm births and are also at risk for
neurodevelopmental sequelae (Amiel-Tison, Allen, Lebrun, & Rogowski, 2002). Subtle
long-term morbidities, referred to as “new morbidities”, including difficulties in visual
motor integration, learning and academic achievement, language, behavioral problems, and
neurodevelopmental abnormalities, along with motor performance, have been identified in
these children, as well (Ornstein, Ohlsson, Edmonds, & Asztalos, 1991). Marlow and
colleagues (Marlow, Roberts, & Cooke, 1989; Marlow et al., 1993; Powls et al., 1995)
followed a sample of children from the 1980s with birth weights <1,250 g at ages 6, 8, and
12 and found no improvement in motor skills over time. However, Lunsing, Hadders-Algra,
Huisjes, and Touwen (1992) reported improvements in motor performance for some
children between age 9 and 12 years, where 22% of those impaired at age 9 were without
impairment at age 12. Nevertheless, the extent of motor problems in preterm children may
reveal why up to 50–70% have subtle dysfunctions, such as learning disabilities, attention
problems, cognitive deficits, neuropsychological deficits, and behavioral problems, which
become evident at school age or later (Aylward, 2003).

Cohort comparison results add to our understanding of the full range of preterm motor
sequelae within a timeframe of advancing neonatal technology. From a purely
neurobiological framework, intervention might involve prenatal and postnatal technology
and therapies, but this leaves out the whole range of environmental influences on motor
development. In the post-natal environment, experiential and environmental influences may
be able to improve outcomes (McGrath & Sullivan, 1999, 2003). Due to the complex factors
inherent in prematurity, it is essential that we have a better understanding of the factors that
place children at risk for sequelae, that we are better able to identify children at risk for low
severity dysfunctions, and that we understand the ways in which motor development can be
compromised, in order to design appropriate interventions.
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FIGURE 1.
Frequency of Preterm Medical & Neurological Morbidities for Each Cohort.
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FIGURE 2.
Frequency of Co-existing Medical Morbidities in NPT Groups for Each Cohort.
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Table 2

Significant Mean Motor Score Differences Between Cohort and Groups

Motor Measures

M (SE)

Total Sample MPT1 MPT2 NPT

Beery VMI SS 18.1 (1.9)**
(C1 > C2)

14.17 (4.9)*
(C1 > C2)

15.58 (2.87)**
(C1 > C2)

21.9 (4.5)**
(C1 > C2)

RMPI oral 1.01 (.192)**
(C2 > C1)

1.76 (.39)**
(C2 > C1)

1.23 (.35)**
(C2 > C1)

RMPI fine .812 (.182)**
(C2 > C1)

1.4 (.39)**
(C2 > C1)

RMPI total 2.16 (.45)**
(C2 > C1)

3.88 (1.0)**
(C2 > C1)

2.4 (2.87)**
(C2 > C1)

Note. Groups: MPT1, medically ill preterm group, birth weight <1,000 g; MPT2, medically ill preterm group birth weight ≥ 1,000 g; NPT,
neurologically ill preterm group; C1 > C2, Cohort 1 mean score is greater than Cohort 2; C2 > C1, Cohort 2 mean score is greater than Cohort 1;
RMPI, Riley Motor Problem Inventory; VMIss, Developmental Test of Visual Motor Integration.

*
p =.01.

**
p =.001.
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