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Abstract
The maximum entropy method (MEM) has been used in many studies to reliably recover effective
lifetimes from kinetics, whether measured experimentally or simulated computationally. Here,
recent claims made by Mulligan et al. regarding MEM analyses of kinetics (Anal. Biochem. 421
(2012) 181–190) are shown to be unfounded. Their assertion that their software allows “analysis
of datasets too noisy to process by existing iterative search algorithms” is refuted with a MEM
analysis of their triexponential test case with increased noise. In addition, it is shown that lifetime
distributions recovered from noisy kinetics data with the MEM can be improved by using a simple
filter when bootstrapping the prior model. When deriving the bootstrapped model from the
lifetime distribution obtained using a uniform model, only the slower processes are represented as
Gaussians in the bootstrapped model. Using this new approach, results are clearly superior to
those of Mulligan et al. despite the presence of increased noise. In a second example, ambiguity in
the interpretation of Poisson kinetics in the presence of scattered excitation light is resolved by
filtering the prior model.
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Rooted in information theory, the maximum entropy method (MEM)1 has been used to
interpret a variety of noisy measurements for many years. Since its early applications to
astronomical images [1,2], the method has proven to be valuable in biophysical studies, as
when interpreting time-dependent signals in terms of a distribution of effective lifetimes [3–
8]. The MEM has also been used to infer a two-dimensional distribution of activation
enthalpy and entropy from ligand rebinding kinetics monitored at low temperatures [9]. The
program MemExp [7,8] can be used to analyze kinetics with phases of opposite sign and a
slowly varying baseline in terms of lifetime distributions and discrete exponentials.
Experiments (e.g., see Ref. [10,11]) and simulations [12,13] have been interpreted using
MemExp.

Here, a simple way of bootstrapping the prior model that defines the entropy of the lifetime
distribution is shown to suppress unwarranted features. The approach is applied first to a test
case proposed recently involving exponentials of opposite sign and then to simulated
Poisson kinetics convolved with a known instrument response function. For simplicity, we

1Abbreviation used: MEM, maximum entropy method.
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assume that neither analysis requires a baseline correction and that the Poisson data involve
kinetics that decay monotonically. The fit ℱi to datum Di at time ti can then be written as

(1)

for the first test case and as

(2)

for the second application. Each distribution is represented on a discrete set of points that are
equally spaced in log τ. D0 is a normalization constant, and scattered excitation light can be
accounted for with positive values of ξ. The response function R is peaked at zero time and
is appreciable only on the interval [t0, tf], with t0 < 0. The zero-time shift [14,15] between
the measured kinetics and instrument response is assumed to be negligible. The data are fit
using a smoothed and renormalized response function.

Because the goal of a MEM calculation is to fit the data well using an “image” with
maximal entropy, the function maximized is Q ≡ S − λC, where S is the entropy of the
image, C is a goodness-of-fit statistic, and λ is a Lagrange multiplier. No additional
Lagrange multiplier is used here to constrain normalization. For data with Gaussian noise
(first test case), C is the familiar chi-square:

(3)

where σi is the standard error of the mean. For data with Poisson noise (second test case), C
is the Poisson deviance:

(4)

The entropy S of image f is given by [16]

(5)

where F is the prior model used to incorporate existing knowledge into the MEM solution.
Unconstrained maximization of S without regard for the fit (λ = 0) yields fj = Fj.

Note that for Poisson data, C(D, ℱ) and S(f, F) share the same functional form to within a
multiplicative constant. The symmetry in Q is apparent in Eqs. (4) and (5); the kinetics data
represent a set of N points with Poisson expectations ℱi, whereas the MEM image is a set of
M values with Poisson expectations Fj. Thus, the MEM calculation drives the fit toward the
data and the image toward the prior model by minimizing the corresponding Poisson
deviances.

In the first application (Eq. (1)), f includes the two distributions of lifetimes, g and h, that
describe kinetics of opposite sign. In the second application (Eq. (2)), f includes the
distribution of lifetimes and the scattered-light parameter ξ. For simplicity, f is referred to as
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the lifetime distribution. The ability to adapt F to the measured signal, to bootstrap the prior
model, lends flexibility to the MEM that is lacking in other regularization methods such as
those that minimize the sum of squared amplitudes [17]. This flexibility inherent in the
MEM (Eq. (5)) is rather advantageous in practice because the bias introduced by
regularization can be tuned by changing F. Consequently, various bootstrapping approaches
have been developed [8]. By contrast, MEM analyses that define the entropy simply as S =
−∑flnf assume a uniform prior model and may suffer from artifacts as a result. Similarly,
regularization methods that optimize a function other than the entropy of Eq. (5) introduce a
bias that cannot be reduced conveniently.

The prior model F can be derived from the data in different ways, and it is wise to assess the
sensitivity of the recovered distribution f to reasonable changes in F. Beginning with a
uniform F, the distribution recovered by the MEM can be blurred by convolution with a
Gaussian to produce the bootstrapped prior model for the remainder of the calculation. This
approach has been shown to improve results in image restoration [18] and in the analysis of
kinetics [7]. When sharp and broad features coexist in the underlying distribution, so-called
differential blurring can improve the results, as monitored by the goodness of fit and the
autocorrelation of the residuals [7,8]. In this case, relatively sharp peaks in f are made even
sharper before incorporating them into the prior model, whereas the remainder of f is
blurred. Differential blurring can suppress artifactual ripples that persist when the entire
lifetime distribution is blurred uniformly. Another way to modify F so as to reduce the bias
of regularization in a reasonable and intuitive way is introduced in the next section.

Methods
A new means of bootstrapping the prior model was implemented in MemExp, version 4.0
(available at http://www.cmm.cit.nih.gov/memexp), as follows. A simple filter is used to
suppress any potentially artifactual peak that arises at short lifetimes, for example, when
scattered excitation light can be mistaken for a fast process in the kinetics. The MEM
calculation is initiated using a uniform prior. Once C drops below a specified value (~1.0),
the mean, area, and full width at half maximum are estimated numerically for each peak in f
that is to be represented in the bootstrapped prior, that is, any feature peaked at a lifetime
longer than a user-specified cutoff. Here, the cutoff was set at log τ = −1.5 for the first
application and at log τ = −1.2 for the second, values chosen to exclude the earliest peak
observed when using a uniform prior. The area of each peak to be included is estimated by
integrating over the distribution between the local minima immediately preceding and
following the peak. Of course, the g and h distributions are treated independently. For peaks
that are not resolved well enough to directly calculate the half width at half maximum on
either side, the half width is simply approximated as the difference between the locations of
the peak and the adjacent minimum. If the peak is well separated on only one side, that half
width is doubled to approximate the full width. The uniform prior is then replaced by a sum
of Gaussians with the same means and areas as the peaks resolved in f (at lifetimes longer
than the cutoff), with all peak widths multiplied by a user-specified constant (1.5 used here).
The MEM calculation is then resumed with the entropy redefined in terms of this new prior
distribution F. This ability to change F (and S) in reasonable ways helps the user to assess
which features in f(log τ) are truly established by the kinetics being analyzed and which are
dependent on the choice of model F.
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Results
Test case I: triexponential kinetics with amplitudes that sum to zero

The kinetics recently purported to expose inadequacies [17] in the program MemExp, and in
iterative methods in general, is revisited here. Gaussian noise with a time-independent
standard error of σ = 0.2, a value greater than that used by Mulligan et al. [17], was added to
the kinetics simulated at 512 points given by D(t) = e−t − 2e−3.333t + e−10t (Fig. 1A).
Lifetime distributions obtained with the program MemExp, version 3.0, using a uniform
prior and MemExp, version 4.0, using a filtered prior are shown in Fig. 1B. D0 was set to 1,
and the “allin1” mode of MemExp was used to estimate the standard errors. Although the
results of both MemExp runs compare favorably with results obtained using ALIA [17],
those obtained with the adapted prior are clearly superior. Not only is the small peak at log τ
~ −2 obtained with a uniform prior suppressed when using the filtered prior, but the means
of the two outer peaks improve considerably. The areas of the three peaks resolved using the
filtered prior are 1.039, −2.020, and 0.951, respectively.

Test case II: Poisson kinetics, deconvolution of instrument response, and scattered light
Five different data sets were simulated as a sum of three exponentials with equal amplitudes
(1000) and lifetimes equal to 0.1, 0.3, and 1.0. The kinetics was convolved with a Gaussian
instrument response with a full width at half maximum of 0.1, and scattered light was added
with ξ = 150. Poisson noise was added to the kinetics and to the instrument response. The
interval between successive time points was Δt = 0.005. Because the inversion of Eq. (2) is
performed in MemExp after renormalizing the known instrument response, the
normalization can be initialized to a value approximating the maximum value of the data.
Here, D0 was set to 3000. The integral of the recovered f distribution, multiplied by D0,
ultimately determines the normalization of the fit.

Each of the five data sets was numerically inverted using a uniform prior of Fj = 0.001 and
using a bootstrapped prior that was filtered to omit peaks resolved at log τ < −1.2 when
using the uniform prior. For three of the five kinetic traces, the use of a uniform prior
resulted in lifetime distributions with three phases, in accord with the simulated data (not
shown). For the other two data sets, an artifactual peak appeared at short lifetimes in the
inversion using a uniform prior. Results are shown in Fig. 2 for one of these two data sets.
Distributions recovered at a Poisson deviance of 1.041 are shown for the uniform and
bootstrapped priors. The integral of the f distribution is 1.692 for the inversion using a
uniform prior and 1.091 for the inversion using the filtered prior. The areas of the four peaks
resolved using a uniform prior are 0.701, 0.322, 0.313, and 0.356. The areas of the three
peaks resolved using the filtered prior are 0.387, 0.355, and 0.348. Analysis of the kinetics
using the two priors leads one to correctly conclude that the additional fast process
recovered with a uniform prior is not needed and that three phases of approximately equal
weight describe the data. Moreover, the scattered light is estimated more accurately with the
adapted prior (ξ = 141.2) than with the uniform prior (ξ = 125.1); the correct value is 150.
By incorporating only the slower peaks in F, the fit at short times is influenced by the data at
long times where ambiguities due to scattered light and finite pulse width are much smaller.
By emphasizing the slower processes, as opposed to an assumed or estimated normalization,
this approach can filter artifacts from the distribution of lifetimes.

Discussion
In their recent article, Mulligan et al. [17] advocated minimization of the sum of squared
amplitudes using their program ALIA, rather than the maximization of entropy, to infer rate
distributions from noisy kinetics. They stated,
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“Analysis can also be hindered if the normalization of the signal must be estimated
from the data given that inversion by the maximum entropy method used by
MemExp is dependent on this information. Because ALIA requires no information
about signal normalization, MemExp was also not provided with the normalization
for this test. We found that in the case of this test dataset, MemExp was unable to
produce an accurate rate spectrum.”

These claims are clearly unsubstantiated. It is more accurate to say that because MemExp
was written with the goal of generality and broad applicability, the MemExp user has
options, and not all options are appropriate in all cases. In particular, the user may prompt
the program to estimate the normalization of the signal, D0 in Eqs. (1) and (2). The
documentation warns that this estimation is not recommended for all applications.
Alternatively, the user can set D0 to specify normalization that is known independently. Of
course, the user can also choose to set D0 = 1 to perform the inversion analogous to that
performed using ALIA. With D0 = 1, it is easily shown that the MemExp user can produce
an accurate rate spectrum for the triexponential test case. Moreover, one can use MemExp to
successfully obtain the rates, even when the Gaussian noise added is increased substantially
(Fig. 1). Therefore, the assertion by the authors that ALIA can be used to analyze “datasets
too noisy to process by existing iterative search algorithms” has not been established. The
strange results they obtained using MemExp have nothing to do with the regularization
choice: Eq. (5) versus ∑f2. Rather, they wrote their program precluding a user-specified
normalization, which can be useful in some applications, and they used MemExp in an
unreasonable way. Although it is true that iterative methods are relatively slow
computationally, speed is typically not a concern in the analysis of kinetics.

There are several advantages to maximizing the entropy, instead of minimizing the sum of
squared amplitudes, that have been well documented for some time. As was discussed in
1990, in the absence of prior knowledge, maximizing the entropy, S = −∑flnf, imposes no
correlation in simple examples such as the “kangaroo problem,” whereas minimizing ∑f2

does impose correlation [19]. In the presence of prior knowledge, the entropy can be
generalized to good effect by defining the entropy in terms of a prior model (Eq. (5)). The
adaptation of this model to the data being analyzed can be useful in reducing artifacts and/or
resolving ambiguities (Figs. 1B and 2C). In addition, evaluation of the entropy requires the
natural logarithm of each amplitude, ensuring that amplitudes remain positive. Analyses that
minimize the sum of squared amplitudes will be plagued by artifactual lobes in the rate
spectrum of the wrong sign.

The two examples analyzed here highlight the advantage of the MEM’s flexibility to
alleviate bias by adapting the prior model to the data being analyzed. Improved results are
obtained in both cases simply by discarding peaks at very short lifetimes and incorporating
the others into the definition of S. In the second example, qualitatively different lifetime
distributions, one with three peaks and one with four peaks, can describe the noisy data
equally well. The corresponding fits differ only slightly at short times (Fig. 2B) because the
presence of scattered excitation light introduces ambiguity. The incorporation of the
incorrect fast process (and greater signal normalization) in the distribution recovered with a
uniform prior is compensated for by its incorrect (reduced) estimate of the scattered light.
The incorrect fast process is clearly undesirable given that it is peaked near log τ = −2 and
the data are sampled at intervals of Δt = 0.005. When faced with such an ill-posed problem,
multiple interpretations of the data are possible, and use of the adaptable prior automated
here can help to conveniently identify the simplest interpretation.

The recovery of a distribution of effective lifetimes from noisy kinetics data is clearly
complicated whenever there is uncertainty in the value of the signal at short times.
Distributions recovered by the MEM using a uniform prior (Fj = constant) can include
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unwarranted features if the normalization is underestimated [20]. The method introduced
here is attractive because the fit at short times is guided by the data at longer times. The
prior is bootstrapped so as to suppress artifacts that arise from ambiguities at short times, for
example, due to scattered light. Whenever use of a filtered prior eliminates a peak at short
lifetimes, as in the current examples, a simpler interpretation of the data has been found. It is
always important to assess the sensitivity of the MEM result to the choice of prior
distribution, and the current approach should be among those methods routinely applied.
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Fig. 1.
MemExp analysis of kinetics simulated as a sum of three exponentials with amplitudes that
sum to zero. (A) Simulated data with (circles) and without (red line) Gaussian noise added.
(B) Lifetime distributions recovered at χ2 = 0.850 using a uniform prior model (blue) and
using a model bootstrapped from the data by omitting features resolved with the uniform
model peaked at log τ < −1.5 (red). Peaks shown as dot-dashed lines correspond to negative
amplitudes. Vertical dotted lines indicate the “true” lifetimes.
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Fig. 2.
MemExp analysis of kinetics simulated as a sum of three exponentials convolved with a
Gaussian instrument response. (A) Simulated data with (circles) and without (red line)
scattered light and Poisson noise added. (B) Difference in the two fits to the noisy data
obtained at a Poisson deviance of 1.041. (C) Corresponding lifetime distributions recovered
using a uniform prior model (blue) and using a model bootstrapped from the data by
omitting features resolved with the uniform model peaked at log τ < −1.2 (red). Also shown
are the bootstrapped model (dotted line) and the “true” exponentials (vertical bars).

Steinbach Page 9

Anal Biochem. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


