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Tumor-associated mutations in 
the isocitrate dehydrogenase 1 and 
2 (IDH1 and IDH2) genes result in 
the loss of normal catalytic activity, 
the production of α-ketoglutarate (α-
KG), and gain of a new activity, the 
production of an oncometabolite, R-
2-hydroxylglutarate (R-2-HG). New 
evidence supports previous findings 
that R-2-HG acts as an antagonist 
of α-KG to competitively inhibit the 
activity of multiple α-KG-dependent 
dioxygenases, including both histones 
and DNA demethylases involved in 
epigenetic control of gene expression 
and cell differentiation, and also 
reveals an intriguing new facet of R-
2-HG in tumorigenesis. 

The NADP+-dependent isocitrate 
dehydrogenase IDH1 and IDH2 cata-
lyze the oxidative decarboxylation of 
isocitrate to α-ketoglutarate (α-KG). 
IDH1 and IDH2 are localized in the cy-
toplasm and mitochondria, respectively, 
and represent by far the most frequently 
mutated metabolic enzymes in human 
cancer [1]. The tumor-derived mutants 
of both IDH1 and IDH2 lose their activ-
ity in producing α-KG [2, 3], and gain 

a surprising new catalytic activity, the 
production of R-2-hydroxyglutarate 
(R-2-HG) by reduction of α-KG [4]. 
Previous studies have shown that R-
2-HG acts as an antagonist of α-KG 
to competitively inhibit a number of 
α-KG-dependent dioxygenases, in-
cluding the JmjC domain-containing 
histone demethylases (KDMs) and the 
TET (ten-eleven translocation) family 
of DNA hydroxylases that catalyze the 
sequential oxidation of 5-methlycyto-
sine (5mC) to 5-hydroxymethylcytosine 
(5hmC), 5-formylcytosine (5fC), and 
5-carboxylcytosine (5caC), leading to 
eventual DNA demethylation (Figure 1) 
[5, 6]. Three papers recently published 
in Nature provide additional evidence 
that α-KG-dependent dioxygenases 
are the pathophysiological targets of 
mutant IDH1/2, and further underscore 
the presumptive role of R-2-HG as the 
first oncometabolite in contributing to 
tumorigenesis after IDH1/2 mutations. 

A subset of glioblastoma, known as 
the proneural subgroup, has previously 
found to display hypermethylation at 
a large number of loci and is enriched 
with IDH1 mutations [7]. In one of the 
three Nature papers, Turcan et al. [8] de-
termined whether IDH1 mutation alone 
is sufficient to cause the hypermethyla-
tion phenotype by ectopic expression 
of IDH1R132H mutant in immortalized 
primary human astrocytes, a cell type 
from which glioblastoma is believed to 

develop. The authors found that intro-
duction of mutant IDH1 induced exten-
sive DNA hypermethylation, altered the 
methylation of specific histones, and 
reshaped the methylome in a fashion 
that mirrors the changes observed in 
IDH1-mutated low-grade gliomas. The 
observed hypermethylation of DNA 
and histones can be explained by the 
direct inhibition of TET methylcytosine 
hydroxylases and JmjC family histone 
demethylases by R-2-HG, respectively. 
In keeping with the notion that TET 
hydroxylases directly regulate genomic 
DNA methylation levels and can be 
inhibited by the R-2-HG accumulated 
in IDH1/2-mutated cells, Turcan et al. 
also showed that ectopic expression of 
TET2 in cultured astrocytes decreased 
5mC and increased 5hmC, and that both 
changes were inhibited by the co-expres-
sion of TET2 with mutant IDH1. These 
results are consistent with the findings 
made in acute myeloid leukemia (AML) 
in which IDH1/2 and TET2 genes are 
mutated in a mutually exclusive manner 
[9]. Moreover, Turcan et al. found that 
expression of wild-type IDH1 decreased 
the average DNA methylation level in 
the genome, supporting the notion that 
the concentration of α-KG may be a 
rate-limiting factor of TET-catalyzed 
DNA demethylation [5]. 

In the second paper, Lu et al. [10] 
reported that ectopic expression of 
tumor-derived mutant IDH1/2 or feed-
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ing cells with cell-permeable R-2-HG 
increases histone demethylation and 
results in blockade of the differentiation 
of 3T3-L1 adipoblasts to adipocytes. 
These results indicate that mutation of 
IDH1/2 and accumulation of R-2-HG 
can broadly impair cell differentiation 
beyond the cell types in which IDH1/2 
mutations are found to associate with 
tumorigenesis. The authors further con-
firmed that IDH1-mutated gliomas have 
elevated levels of histone methylation 
compared with gliomas retaining the 
wild-type IDH1 [5, 6]. As previously 
reported [5, 6], multiple KDMs that are 
inhibited by 2-HG, including KDM4C/
JMJD2C, which causes repressive his-
tone H3K9 di- and trimethylation and, 
when suppressed by RNA interference, 
blocks the 3T3-L1 adipogenesis. It 
remains to be determined whether col-
lective inhibition of multiple KDMs or 
a few individual ones, such as KDM4C, 
is responsible for altering cell differen-
tiation in IDH1/2-mutated cells. The 
authors also noted that expression of 
mutant IDH1 increased histone methy-
lation prior to the increase of DNA 

methylation, raising an intriguing pos-
sibility that histone methylation status 
may affect DNA methylation. 

In the third paper, Koivunen et al. 
[11] proposed an enantiomer-specific 
mechanism of 2-HG in tumorigenesis. 
The authors reported two surprising 
findings. They showed first that im-
mortalized human astrocytes stably 
expressing tumor-derived IDH1R132H 
mutant proliferate faster during late 
passages than those expressing either 
wild-type IDH1 or IDH1R132H/3DN mutant 
that lacks 2-HG-producing activity. 
Ectopic expression of R132H mutant 
IDH1 has previously been reported to 
decrease the growth of D54 glioblas-
toma cells [12], raising an intriguing 
possibility that the mutation of IDH1/2 
may exhibit different effects on cell 
growth in a cell context-dependent man-
ner. More surprisingly, they found that 
R-2-HG, but not its enantiomer S-2-HG, 
substitutes for α-KG as a co-substrate, 
as opposed to an inhibitor, of EGLN, an 
α-KG-dependent prolylhydroxylase re-
sponsible for promoting the degradation 
of hypoxia inducible factor 1α (HIF-1α) 

(Figure 1). As the result of stimulating 
EGLN, accumulation of R-2-HG was 
found to associate with diminished, 
instead of increased, HIF-1α levels in 
cells expressing mutant IDH1/2. At first 
glance, these observations appear to 
be at odds with the generally accepted 
role of both enantiomers of 2-HG as 
inhibitors of α-KG-dependent dioxy-
genases, and HIF-1α as an oncogene in 
tumorigenesis, but may at least in part 
explain the apparent selection for IDH 
mutations to produce R-, but not S-2-HG 
in cancer. This data, also for the first 
time, reveals a qualitatively different 
property of two 2-HG enantiomers with 
respect to α-KG-dependent dioxyge-
nases. It will be interesting to determine 
the strutural basis of this enantimoer-
specific effect of 2-HG toward differ-
ent α-KG-dependent dixoygenases. 
The observation that ectopic increase 
of R-2-HG reduces HIF-1α suggests 
that endogenous α-KG is limiting for 
HIF-1α hydroxylation by EGLN. The 
study by Koivunen et al. also suggests 
the complexity of EGLN regulation by 
R-2-HG and subsequent downregulation 

Figure 1 Summarization of reported mechanisms linking IDH mutation  to tumorigensis. Regulation of α-KG-dependent 
dioxygenases by R-2-HG is likely to play a major role in the pathophysiology of tumors with IDH mutation.
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of HIF-1α. It remains to be determined 
genetically whether a reduction or fluc-
tuation of HIF-1α levels contributes to 
gliomagenesis in IDH1/2-mutated cells, 
because elevated HIF-1α generally 
contributes to cancer development. The 
only piece of genetic evidece—IDH1/2 
mutation occurs in a mutually exclusive 
manner with TET2 mutation in AML—
supports the notion that epigenetic 
alteration plays a direct and perhaps a 
key role in IDH1/2 mutation-associated 
tumorigenesis.

IDH1/2 mutation has rapidly emerged 
as a favorable diagnostic and prognostic 
marker for certain tumors, such as low-
grade gliomas and benign cartilaginous 
tumors. While the full mechanism link-
ing IDH mutation  to tumorigenesis is 
incompletely understood, regulation 
of α-KG-dependent dioxygenases by 
2-HG is likely to play a major role in 
the pathophysiology of tumors with 
IDH mutation. These recent reports also 
highlight the impact of altered metabo-
lism and metabolites on the epigenetic 
modification of cell differentiation and 
tumorigenesis.
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