
CBFS: High Performance Feature Selection Algorithm
Based on Feature Clearness
Minseok Seo, Sejong Oh*

Department of Nanobiomedical Science and WCU Research Center of Nanobiomedical Science, Dankook University, Cheonan, South Korea

Abstract

Background: The goal of feature selection is to select useful features and simultaneously exclude garbage features from a
given dataset for classification purposes. This is expected to bring reduction of processing time and improvement of
classification accuracy.

Methodology: In this study, we devised a new feature selection algorithm (CBFS) based on clearness of features. Feature
clearness expresses separability among classes in a feature. Highly clear features contribute towards obtaining high
classification accuracy. CScore is a measure to score clearness of each feature and is based on clustered samples to centroid
of classes in a feature. We also suggest combining CBFS and other algorithms to improve classification accuracy.

Conclusions/Significance: From the experiment we confirm that CBFS is more excellent than up-to-date feature selection
algorithms including FeaLect. CBFS can be applied to microarray gene selection, text categorization, and image
classification.

Citation: Seo M, Oh S (2012) CBFS: High Performance Feature Selection Algorithm Based on Feature Clearness. PLoS ONE 7(7): e40419. doi:10.1371/
journal.pone.0040419

Editor: Andrew Rowland Dalby, University of Westminster, United Kingdom

Received April 19, 2012; Accepted June 7, 2012; Published July 6, 2012

Copyright: � 2012 Seo, Oh. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by grant No. R31-2008-000-10069-0 from the World Class University (WCU) project of the Ministry of Education, Science &
Technology (MEST) and the Korea Science and Engineering Foundation (KOSEF). The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: sejongoh@dankook.ac.kr

Introduction

The fundamental goal of feature selection is to select useful

features and eliminate useless ones in a high-dimensional dataset

to improve the performance of learning models by alleviating the

effects of dimensionality, enhancing generalization capability,

speeding up the learning process and improving model interpret-

ability. Typical application areas of feature selection are gene

selection from microarray data and text categorization.

In machine learning literature there are three general

approaches to feature selection: filters, wrappers, and embedded

methods [1,2]. Filter methods select the optimal feature subset based

solely on the dataset by evaluating each future based on specific

statistics, but completely independently from the classification

algorithm. In contrast, wrapper methods make use of the algorithm

that will be used to build the final classifier to select a feature

subset. When compared to filters, they tend to be more com-

putationally expensive, but provide superior performance [3] since

they are injected inside the learning algorithm and well suited to

the interest of the classifier. In the embedded technique, the search for

an optimal subset of features is built into the classifier construction,

and can be seen as a search in the combined space of feature

subsets and hypotheses. Just like wrapper approaches, embedded

approaches are thus specific to a given learning algorithm.

Filter Methods are mostly a popular approach because they are

simple and fast to extract target features. FSDD [4], Relief [5], and

MRMR [6] are up-to-date feature selection algorithms that belong

to the filter methods. FSDD is a distance discriminant method.

This algorithm calculates the grade of each feature using a

distance matrix. The criterion used for selecting good features is db

– ßdw, where db is the distance between different classes, dw is

distance within classes, and ß is a user defined value that is usually

set to 2 and used to control the impact of dw. The higher the value

of ß, the more the focus should be on the distance within classes.

The Relief algorithm recursively and randomly selects an instance

and identifies its nearest neighbors, one from its own class and

others from different classes. The quality estimator in this

algorithm is then updated for all attributes to assess how well

the feature distinguishes the instance from its closest neighbors. In

each iteration, an instance x is selected randomly, and its nearest

instance is found from the same class (NH), as well as different

classes (NM). Finally, the weight value is updated by the equation.

Because of this recursive characteristic, runtime is slow compared

with the other feature selection methods. Also, results are different

every time because the method randomly selects features. MRMR

[6] has been proposed to solve the problem by (using mutual

information) maximizing the mutual Euclidean distance and

minimizing the pair-wise correlations of the features. The

minimum redundancy condition is WI ~
1

DSD2

X
i,j[S

I(i,j), where S

denotes the feature subset, and I(i, j) is the mutual information of

two variables i and j. To maximize the total relevance

VI ~
1

DSD

X
i[S

I(h,i), where I(h, i) represents the mutual informa-

tion between targeted classes h and gene expressions i.

PLoS ONE | www.plosone.org 1 July 2012 | Volume 7 | Issue 7 | e40419

FeaLect [7] is a very high quality wrapper method. FeaLect

proposes an alternative algorithm for feature selection based on

the Lasso [8] for building a robust predictor. Lasso is an L1-

regularization technique for linear regression which has attracted

much attention in machine learning and statistics. Although

efficient algorithms exist for recovering the whole regularization

path for the Lasso, finding a subset of highly relevant features that

lead to a robust predictor is an important aspect to investigate.

The hypothesis of FeaLect is that defining a scoring scheme that

measures the quality of each feature can provide a more robust

selection of features. The FeaLect approach is to generate several

samples from the training data, determine the best relevance-

ordering of the features for each sample, and finally combine these

relevance-orderings to select highly relevant features.

In this paper, we propose a clearness-based feature selection

(CBFS) algorithm which can be classified as a filter method. In our

context, clearness means the separability between classes in a

feature. If (clearness of feature f2) . (clearness of feature f1), then f2
is more advantageous to classification than f1. In Fig. 1, feature f2 is

clearer than f1. O and X are data samples in f1 and f2, and mixed

area of f1 is larger than f2. Therefore, the classification accuracy

using f1 may be lower than f2. In the CBFS method, we measure

clearness of each feature in a dataset, and select top ranked

features. CBFS calculates the distance between the target sample

and centroid of each class, and then compares the class of the

nearest centroid with the class of the target sample. The matching

ratio of all samples in a feature becomes a clearness value for the

feature. We describe the detailed process to obtain clearness values

in materials and methods section.

The proposed method can be used to combine other feature

ranking algorithms. We combine proposed methods with R-value

[9] and validate the improvement of classification accuracy. R-

value is one of the feature ranking algorithms and it also measures

the clearness of each feature by different way of CBFS. It considers

nearest neighbor samples of target sample to decide whether it is

located in congestion area or not. In some cases, R-value based

feature selection produces better accuracy than CBFS, and we can

expect that combining them improves classification accuracy.

Materials and Methods

Clearness-based feature scoring scheme
As mentioned, the proposed method can be classified as a filter

method. Every filter method has a scoring scheme for each feature

in a dataset. CBFS adopts CScore. CScore(fi) is a scoring function

for feature fi which measures clearness of the feature. The intuitive

meaning of CScore for feature fi is the degree of correctly clustered

samples to the centroid of their class in fi. In the context of CBFS,

each sample is clustered to the nearest centroid of the class. If a

sample of class A is clustered to the centroid of class B, it is a mis-

clustered sample. In Fig. 2(b), two samples are mis-clustered

whereas all samples are correctly clustered in Fig. 2(a). It is clear

that well clustered features bring high classification accuracy.

Let’s suppose a dataset DS has n samples, m features, and p

classes. DS can be denoted by a set of sample xi.

DS = {x1, x2, .., xi ,.. , xn}

Each sample is a vector value which has m elements (features).

xi = (xi1, xi2, .., xij , .. , xim)

A set CS contains class labels corresponding to samples in DS.

CS = {c1, c2, .., ci ,.. , cn}

A class label is a sequential numerical value and the range is

[0, p-1]. Now we introduce the procedure to obtain CScore(fi).
Step 1. Calculate centroid of each class. It is the same as the

median point of a class and calculated by the average operation.

Med(fi, j) denotes the median point of class j in the feature fi, which

is calculated by:

Med(fi ,j)~
1

k

Xk

r~1

(xri [classj) where k is a number of samples of class j ð1Þ

Step 2. Calculate the predicted class label for each xij in

sample xi. After calculating the distance between xij and Med(fj,ci)

for all classes, we take the nearest centroid Med(fj, s) and s is a

predicted class label for xij. The distance between xij and Med(fj, t)

is calculated by:

D(xij ,Med(fj ,t)~D xij {Med(fj ,t)D ð2Þ

As a result of step2, we have n6m matrix M1 and element value

M1(i,j) is predicted class label for xij.
Step 3. Calculate n6m matrix M2 which contains a matching

result of predicted class label and correct class label in CS. M2(i,j) is

calculated by:

M2 (i,j)~
1if M1 (i,j)~ ci

0if M1 (i,j)= ci

�
ð3Þ

Step 4. Calculate CScore(fi). Finally we calculate CScore(fi)

by:

CScore(fi)~
1

n

Xn

r~1

M2(r,i) ð4Þ

Fig. 3 presents step 1 to step 4. The range of CScore(fi) is [0, 1].

If CScore(fi) is close to 1, this shows that classes in feature fi are

clustered well and elements in fi can be clearly classified.

Therefore, we can use CScore(fi) as a criteria to select features

for classification work. CBFS chooses highly scored features using

the CScore() function. Implementable algorithm to get CScore() is

available in the Supplementary Material link (http://biosw.

dankook.ac.kr/cbfs). CBFS can be combined to other feature

scoring schemes. To distinguish combined algorithms as shown in

the next section, we denote a pure CBFS algorithm as CBFSorg.

Figure 1. Clearness of feature f1and f2. Mixed area of f1 is
larger than f2, and it means feature f2 is clearer than f1.
doi:10.1371/journal.pone.0040419.g001

Figure 2. CScores of two features. Fig. 2(b) has two mis-clustered
samples whereas Fig. 2(a) has clearly clustered samples.
doi:10.1371/journal.pone.0040419.g002

CBFS: High Performance Feature Selection Algorithm

PLoS ONE | www.plosone.org 2 July 2012 | Volume 7 | Issue 7 | e40419

Improvement of CBFS with R-value
Though CBFS itself shows high performance for feature

selection, we can improve its quality by combining other scoring

schemes. In this section, we describe a combining example

between CBFS and R-value. We can apply this approach to

combine other scoring schemes. Scoring function of CBFS is based

on distance between each data point and centroid of classes. In

some cases, this produces the wrong scores, as shown in Fig. 4. In

Fig. 4(a), class A and class B are clearly separated but two points of

class B in the dotted circle are classified as class A and this

decreases the value of the CScore(). If two classes are widely

overlapped as shown in Fig. 4(b), many points in the overlapping

area will be mis-classified. In the cases shown in Fig. 4, the R-value

is a better scoring function because the R-value does not consider

the distance to the centroid of classes but instead, to the number of

nearest neighbors.

Traditional approaches to combine different feature selection

methods usually just use intersection. Next box presents the simple

steps required to combine CBFS and R-value. We denote this

approach as CBFSintersection.

N Step 1. Choose n features using which have higher scores by

CScore().

N Step 2. Choose n features using which have lower scores by R-

value.

N Step 3. Extract m features from intersection of step 1 and step

2.

Figure 3. Procedure to get CScore().
doi:10.1371/journal.pone.0040419.g003

Figure 4. Two cases that CScore() produces wrong scores. If data
range of a class is so smaller than neighbor class’, CScore may produce
wrong score (Case 1). If two classes’ have wide overlapping area, CScore
may produce wrong score (Case 2).
doi:10.1371/journal.pone.0040419.g004

CBFS: High Performance Feature Selection Algorithm

PLoS ONE | www.plosone.org 3 July 2012 | Volume 7 | Issue 7 | e40419

A difficulty in CBFSintersection is how to determine n if we fix m.

For example, even if we want to get 20 features using

CBFSintersection, we do not know the correct number of n because

we cannot estimate the number of intersections between step 1

and step 2. Therefore, we modify CBFSintersection to extract the

exact number of m features. We denote it as CBFSexact. Basic steps

for CBFSexact are as follows:

N Step 1. Initialize n as m and ExtractList as empty.

N Step 2. Choose n features using which have higher scores by

CScore().

N Step 3. Choose n features using which have lower scores by R-

value.

N Step 4. Extract features from intersection of step 2 and step 3,

and if they are not in ExtractList, store them to ExtractList.

N Step 5. If number of element in ExtractList , m, then

n r n+1

go to step 2

A confusing point in feature selection is to select better features

from multiple features that have same ranking scores. Intersection

with other feature selections offers a solution for the problem.

Pseudo codes for CBFSintersection, CBFSexact, and R-value are

available in the Supplementary Material link (http://biosw.

dankook.ac.kr/cbfs). In the next section, we present benchmarking

results for CBFSorg, CBFSintersection, and CBFSexact.

Datasets, feature selection algorithms, and classifiers
To compare feature selection algorithms we choose various

kinds of datasets, which contain varying numbers of features and

samples. Duke, Leukemia, DLBCL, and Carcinoma are well

known microarray datasets. Other datasets come from the UCI

repository [10] and several websites. Table 1 summarizes the

benchmark datasets. FeaLect, FSDD, and Relief feature selection

algorithms are compared with proposed CBFSorg, CBFSintersection,

and CBFSexact. FeaLect is widely considered as a state-of–the-art

algorithm and details are described in Section 1. For simplicity we

denote FeaLect as Lect from here on.

The basis of the FSDD algorithm is to identify the features that

result in good class separability among classes and to make the

samples in the same classes as close as possible. A criterion used for

selection of good features is db – b dw and the criteria function can

be expressed as follows:

db {b dw ~
Xm

k~1

1

s
002
k

½s00002k {b
Xc

i~1

ri s
02
k (i)� ð5Þ

where m is the number of selected features, c is the number of

classes, and ri is the prior probability of the ith class.

Relief is regarded as one of the successful features of selection

algorithms. The basic idea of Relief is to iteratively estimate

feature weights according to their ability to discriminate between

neighboring instances. In each iteration, an instance x is selected

randomly, and its nearest instance is found from the same class

(NH), as well as different classes (NM). Finally, the weight value is

updated by the equation:

wi ~ wi zD x(i) { NM (i) (x)D{D x(i) { NH (i) (x)D ð6Þ

If w1 , w2, feature2 is better than feature1. The ReliefF (Relief-F)

algorithm [11], which is an updated version of Relief, is more

robust and can deal with incomplete and noisy data.

To compare classification accuracy between the current feature

selection algorithms and proposed CBFS, we used the k-nearest

neighbor (KNN) and support vector machine (SVM). In the KNN

classification analysis, we used k = 5 for K because this value was

found to produce the best accuracy in most of cases. For the SVM

test, we use LIBSVM tool [12] with linear kernel. Whole user

defined value is set as default such as degree, gamma, and coef0.

We use the Lect algorithm that is imported in the R-package. User

defined values of FSDD are Beta = 3, and K = 3. In case of ReliefF,

we use K = 7. Proposed CBFSintersection chooses a threshold value

n = 100. We use well-known validation methods, k-fold cross

validation [13] where k = 5 to avoid the problem of over-fitting the

classification.

Results

Relevance, sparsity, and optimality are measures to evaluate

feature selection algorithms. Relevance and sparsity are generally

used for microarray area and requires domain knowledge.

Optimality evaluates classification accuracy using the same

number of features from different feature selection algorithms.

Fig. 5 and 6 present the optimality evaluation. We test KNN and

SVM to compare classification accuracy based on 5-fold

validation. Fig. 5 and 6 show that the proposed CBFSorg is far

better than the current filter methods such as FSDD and Relief. In

addition, it also outperforms Lect, which is a superior quality

feature selection method. Lect can be classified as a wrapper

method. In general, wrapper methods produce better classification

accuracy but require long execution time. Though the proposed

method is a filter method, it exceeds or remains the performance

of wrapper method. CBFSorg shows good classification accuracy

both in KNN and SVM. CBFSorg has a generality for well-known

classification algorithms.

Fig. 7 shows PCA analysis for feature selection results for the

Arcene dataset. Red and black points represent samples of two

different classes. Congestion areas of red and black points are

narrow in CBFS graphs compared with the others. In general, the

more narrow congestion area we get, the better classification

accuracy we can expect. This is why the CBFS algorithm produces

higher accuracy than other algorithms.

Table 2 summarizes the best classification accuracies by

prepared feature selection algorithms on benchmark datasets.

We test various parameter values and a number of features for

Table 1. Summary of the benchmark datasets.

No Dataset
#of
features

#of
classes

of
samples Reference

1 Arcene 10000 2 100 [17]

2 Prostate 12600 2 102 [18]

3 Madelon 500 2 2000 [17]

4 Duke 7129 2 88 [19]

5 Leukemia 7129 2 144 [20]

6 Sonar 60 2 416 [21]

7 DLBCL 661 3 282 [22]

8 Carcinoma 7457 2 72 [23]

doi:10.1371/journal.pone.0040419.t001

CBFS: High Performance Feature Selection Algorithm

PLoS ONE | www.plosone.org 4 July 2012 | Volume 7 | Issue 7 | e40419

each feature selection algorithm and classifiers, and choose the

best accuracies. The proposed CBFSorg and CBFSexact occupy top

accuracies for each datasets except Prostate. In particular,

CBFSexact produces 22.7% and 23.8% higher than Lect on the

Duke and Madelon dataset, respectively. It is clear that the

number of features to produce best accuracy of CBFSorg and

CBFSexact are generally smaller than other algorithms. For

example, Lect, CBFSorg and CBFSexact produce best accuracy

on the Leukemia dataset, and Lect uses 25 features whereas

CBFSexact uses only 5 features.

Table 2 also shows that CBFSexact produces better accuracy

than CBFSorg in some cases. CBFSintersection has lower accuracy

than CBFSorg and CBFSexact. We can consider combining multiple

feature selection algorithms to improve classification accuracy.

Some microarray datasets have a small number of samples. For

example, Carcinoma has only 72 samples. In that case,

classification accuracy is not a reliable measure to evaluate feature

selection algorithms, and instead we need to analyze the risk of

mis-classification or prediction using the ‘loss function’ [14] or

Receiver Operating Characteristic (ROC) curve [15]. ROC curves

show a two-dimensional graph using sensitivity and 1- specificity.

Figure 5. Comparison of classification accuracy using KNN where K = 5. In every case, CBFSorg shows best classification accuracy.
doi:10.1371/journal.pone.0040419.g005

CBFS: High Performance Feature Selection Algorithm

PLoS ONE | www.plosone.org 5 July 2012 | Volume 7 | Issue 7 | e40419

They are widely used in biology and medical science for evaluating

prediction methods or markers. We used ROC curves to compare

the stability of CBFS with that of Lect. Currently, Lect is a top

ranked feature selection algorithm, and we only use it for

comparison purposes. Fig. 8 and 9 show ROC analysis for CBFS

and Lect on the Duke and Prostate dataset, respectively. We

extract five features using CBFS and Lect, and list the relationship

values between samples in the features and their class labels. We

also draw AUC curves according to [15] which use the average

values obtained from the ROC curves. Fig. 8(c) and Fig. 9(c) shows

AUC value of CBFS is greater than Lect, which means that CBFS

is a more stable and superior method than Lect.

Discussion

Time complexity of calculating CScore
CBFS is a fast and efficient algorithm. From the steps to

calculate CScore() in section 2.1, we analyze time complexity. Let

n, c, and f equal the number of samples, classes, and features of

Figure 6. Comparison of classification accuracy using SVM with linear kernel. LECT and CBFSorg show similar performance, but CBFSorg is
a little bit better than LECT.
doi:10.1371/journal.pone.0040419.g006

CBFS: High Performance Feature Selection Algorithm

PLoS ONE | www.plosone.org 6 July 2012 | Volume 7 | Issue 7 | e40419

given dataset, respectively. The time complexity of each step for

CBFS method is as follows:

(1) Calculate centroid of each class in each feature: O(mNn)

(2) Produce n 6m matrix M1 and M2: O(mNnNc)

(3) Calculate CScore() for each features: O(mNn)

Therefore, the total time complexity is O((2+c)NmNn). Table 3

shows computation times of feature selection for selected

algorithms. CBFS is the fastest feature selection algorithm.

Overfitting problem of proposed algorithm
Overfitting is a general problem of machine learning algorithms

such as classification. To avoid overfitting, K-fold validation and

LOOCV skims are used in classification tests. Validation errors

can be used to evaluate feature selection algorithms. Table 4 shows

the classification accuracy and validation errors of Lect and CBFS

on benchmark datasets. We calculate validation errors from five to

twenty features derived by Lect and CBFS. Lect uses the L1-

regularization technique to avoid overfitting problem, so we can

indirectly evaluate the validation error of CBFS by comparing

Lect and CBFS. CBFS gives lower validation errors than Lect for

every dataset except Sonar. The average validation error of Lect

Figure 7. PCA analysis for feature selection results for the Arcene dataset. Congestion areas of red and black points are narrow in CBFS
graphs comparing with the others.
doi:10.1371/journal.pone.0040419.g007

CBFS: High Performance Feature Selection Algorithm

PLoS ONE | www.plosone.org 7 July 2012 | Volume 7 | Issue 7 | e40419

and CBFS are 68.33% and 66.85%, respectively. If a feature

selection algorithm has a lower validation error, it means that the

algorithm is less sensitive for distribution of samples and may

produce less overfitting problems. Most distance-based filters

assume that if a feature has short intra-classes and long inter-

classes distances, it can produce high classification accuracy, but

this assumption carries the risk of higher overfitting. Proposed

CScore() evaluates each feature based on the degree of conden-

Table 2. Best classification accuracies and number of features to produce accuracies.

Lect FSDD ReliefF CBFSorg CBFSintersection CBFSexact

Arcene KNN 0.863(20) 0.758(20) 0.789(35) 0.832(15) 0.832(20) 0.905(25)

SVM 0.840(20) 0.620(35) 0.720(25) 0.720(5) 0.700(5) 0.720(5)

Prostate KNN 0.930(15) 0.750(30) 0.650(15) 0.940(5) 0.950(5) 0.940(15)

SVM 0.961(15) 0.647(40) 0.598(10) 0.912(15) 0.922(10) 0.931(10)

Madelon KNN 0.646(35) 0.874(15) 0.528(5) 0.884(15) 0.865(15) 0.865(20)

SVM 0.624(20) 0.617(20) 0.519(5) 0.619(40) 0.612(20) 0.619(35)

Duke KNN 0.725(20) 0.700(5) 0.675(25) 0.975(20) 0.925(5) 0.950(10)

SVM 0.750(25) 0.727(15) 0.636(25) 0.977(20) 0.955(35) 0.955(10)

Leukemia KNN 0.986(25) 0.643(40) 0.686(15) 0.986(30) 0.971(25) 0.986(5)

SVM 0.986(20) 0.653(5) 0.694(15) 0.986(5) 0.972(30) 0.972(40)

Sonar KNN 0.776(10) 0.673(10) 0.712(15) 0.737(5) 0.751(10) 0.732(5)

SVM 0.807(10) 0.697(30) 0.760(40) 0.803(25) 0.808(15) 0.813(20)

DLBCL KNN 0.859(10) 0.844(10) 0.815(40) 0.941(40) 0.867(15) 0.904(25)

SVM 0.851(10) 0.872(30) 0.617(40) 0.879(40) 0.716(20) 0.851(5)

Carcinoma KNN 1.000(25) 0.900(40) 0.933(40) 1.000(5) 1.000(20) 0.967(5)

SVM 0.972(5) 0.944(35) 0.889(30) 1.000(5) 1.000(20) 0.972(5)

doi:10.1371/journal.pone.0040419.t002

Figure 8. ROC curve and AUC values for CBFS and Lect feature selection algorithms on the Duke dataset.
doi:10.1371/journal.pone.0040419.g008

CBFS: High Performance Feature Selection Algorithm

PLoS ONE | www.plosone.org 8 July 2012 | Volume 7 | Issue 7 | e40419

sation of samples to the centroid of classes, and reduces validation

error.

Application of CBFS
CBFS can be applied to any areas of data analysis that require

feature selection scheme such as microarray gene selection, text

categorization, and image classification. Microarray data is used to

screen thousands of genes and determine whether genes have

relationship with specific disease such as cancer. A gene

corresponds to a feature and CBFS may suggest candidate genes

according to feature evaluation values. Medical expert will analyze

the biological functions of the candidate genes and find target

genes that are related with diseases. Feature selection is an

essential part of text classification. Document collections have

10,000 to 100,000 or more unique words. Many words are not

useful for classification. Restricting the set of words that are used

for classification makes classification more efficient and can

improve generalization error [16]. Image retrieval is one of

application area of CBFS. In image retrieval, each image data may

have so many features to characterize the data. In feature

extraction step, we don’t know which features are efficient to

Figure 9. ROC curve and AUC values for CBFS and Lect feature selection algorithms on Prostate dataset.
doi:10.1371/journal.pone.0040419.g009

Table 3. Computation time of feature selection for the
Madelon dataset.

(Unit: ms)

FS algorithm Computation time

LECT 1,732,000

FSDD 266

ReliefF 46,047

CBFS 141

Analyses were conducted using a computer with an IntelH CoreTM2 Duo CPU
E7400 2.80 GHz, 3.46 GB RAM, and windows XP professional version 2002
service pack 3.
doi:10.1371/journal.pone.0040419.t003

Table 4. Classification accuracies and validation errors for
Lect and CBFS.

Lect CBFS

Arcene 77.468.8% 79.968.3%

Prostate 77.368.8% 79.868.3%

Madelon 59.661.6% 83.061.6%

Duke 52.16.5% 91.866.5%

Leukemia 96.463.6% 96.463.5%

Sonar 63.3614.4% 63.8618.4%

DLBCL 79.668.8% 88.467.8%

Carcinoma 95.864.1% 99.560.4%

doi:10.1371/journal.pone.0040419.t004

CBFS: High Performance Feature Selection Algorithm

PLoS ONE | www.plosone.org 9 July 2012 | Volume 7 | Issue 7 | e40419

characterize each image. After applying CBFS, we can evaluate

quality of each feature and select best features for image retrieval

system.

CBFS java program is available at http://biosw.dankook.ac.kr/

cbfs

Author Contributions

Conceived and designed the experiments: SO MS. Performed the

experiments: MS. Analyzed the data: SO MS. Contributed reagents/

materials/analysis tools: MS. Wrote the paper: SO MS.

References

1. Guyon I, Elisseeff A (2003) An Introduction to Variable and Feature Selection.
J Mach Learn Res 3: 1157–1182.

2. Saeys Y, Inza I, Larranaga P (2007) A review of feature selection techniques in
bioinformatics. Bioinformatics l23 (19): 2507–2517.

3. Berrar DP, Dubitzky W, Granzow M (2009) A Practical Approach to

Microarray Data Analysis, Springer Publishing Company, Incorporated.
4. Liang J, Yang S (2008) A. Winstanley. Invariant optimal feature selection: A

distance discriminant and feature ranking based solution. Pattern Recogn 41:
1429–1439.

5. Robnik-Sikonja M, Kononenko I (2003) Theoretical and Empirical Analysis of

ReliefF and RReliefF. Mach Learn 53: 23–69.
6. Ding C, Peng H (2003) Minimum Redundancy Feature Selection from

Microarray Gene Expression Data. Proc IEEE Computer Society Conference
on Bioinformatics 523.

7. Zare H (2010) FeaLect: Feature seLection by computing statistical scores.
http://cran.rakanu.com, Accessed 2011 Dec 01.

8. Wainwright MJ (2009) Sharp Thresholds for High-Dimensional and Noisy

Sparsity Recovery Using L1 -Constrained Quadratic Programming (Lasso).
IEEE Trans Inform Theory 55(5): 2183–2202.

9. Oh S (2011) A New Feature Evaluation Method Based on Category Overlap.
Comput Biol Med 41(2): 115–122.

10. Blake C, Merz CJ (1998) UCI repository of machine learning databases. UCI

Machine Learning Repository. http://archive.ics.uci.edu/ml. Accessed 2011
Nov 11.

11. Kononenko I, Simec E (1995) Induction of decision trees using ReliefF. In: G.
Della Riccia, R. Kruse, and R. Viertl (eds.): Mathematical and Statistical

Methods in Artificial Intelligence, CISM Courses and Lectures No. 363.
Springer Verlag.

12. Chang C, Lin C (2005) LIBSVM – A Library for Support Vector Machines.

http://www.csie.ntu.edu.tw/̃cjlin/libsvm/. Accessed 2011 Nov 11.

13. Bengio Y, Grandvalet Y (2004) No Unbiased Estimator of the Variance of K-

Fold Cross-Validation. J Mach Learn Res 5: 1089–1105.

14. Cover T, Hart P (1967) Nearest neighbor pattern classification. IEEE Trans

Inform Theory 13(1): 21–27.

15. Fawcett T (2004) ROC Graphs: Notes and Practical Considerations for

Researchers. HP Laboratories, MS 1143, 1501 Page Mill Road, Palo Alto, CA

94304, March 16.

16. Winarko E, Data Mining, Available: http://ewinarko.staff.ugm.ac.id/blog/?

p = 17. Accessed 13 January 2012.

17. Guyon I, Li J, Mader T, Pletscher PA, Schneider G, et al. (2007) Competitive

baseline methods set new standards for the NIPS 2003 feature selection

benchmark. Pattern Recogn Lett 28: 1438–1444.

18. Singh D, Febbo PG, Ross K, Jackson DG, Manola J, et al. (2002) Gene

expression correlates of clinical prostate cancer behavior. Cancer Cell 1(2): 203–

209.

19. West M, Blanchette C, Dressman H, Huang E, Ishida S, et al. (2001) Predicting

the clinical status of human breast cancer by using gene expression profiles. Proc

National Academy of Sciences 98:11462–11467.

20. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, et al. (1999)

Molecular classification of cancer: class discovery and class prediction by gene

expression monitoring. Science, 286(5439):531.

21. Gorman RP, Sejnowski TJ (1988) Analysis of Hidden Units in a Layered

Network Trained to Classify Sonar Targets. Neural Networks, 1: 75–89.

22. Hoshida Y, Brunet JP, Tamayo P, Golub TR, Mesirov JP (2007) Subclass

Mapping: Identifying Common Subtypes in Independent Disease Data Sets.

PLoS ONE 2(11): e1195. doi:10.1371/journal.pone.0001195.

23. Notterman DA, Alon U, Sierk AJ, Levine AJ (2001) Transcriptional Gene

Expression Profiles of Colorectal Adenoma, Adenocarcinoma, and Normal

Tissue Examined by Oligonucleotide Arrays. Cancer Res 61: 3124.

CBFS: High Performance Feature Selection Algorithm

PLoS ONE | www.plosone.org 10 July 2012 | Volume 7 | Issue 7 | e40419

