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Abstract

Despite the importance of blood vessels and lymphatic vessels during development and disease, the signalling pathways
underpinning vessel construction remain poorly characterised. Primary mouse endothelial cells have traditionally proven
difficult to culture and as a consequence, few assays have been developed to dissect gene function and signal transduction
pathways in these cells ex vivo. Having established methodology for the purification, short-term culture and transfection of
primary blood (BEC) and lymphatic (LEC) vascular endothelial cells isolated from embryonic mouse skin, we sought to
optimise robust assays able to measure embryonic LEC proliferation, migration and three-dimensional tube forming ability
in vitro. In the course of developing these assays using the pro-lymphangiogenic growth factors FGF2 and VEGF-C, we
identified previously unrecognised roles for FGFR1 signalling in lymphangiogenesis. The small molecule FGF receptor
tyrosine kinase inhibitor SU5402, but not inhibitors of VEGFR-2 (SU5416) or VEGFR-3 (MAZ51), inhibited FGF2 mediated LEC
proliferation, demonstrating that FGF2 promotes proliferation directly via FGF receptors and independently of VEGF
receptors in primary embryonic LEC. Further investigation revealed that FGFR1 was by far the predominant FGF receptor
expressed by primary embryonic LEC and correspondingly, siRNA-mediated FGFR1 knockdown abrogated FGF2 mediated
LEC proliferation. While FGF2 potently promoted LEC proliferation and migration, three dimensional tube formation assays
revealed that VEGF-C primarily promoted LEC sprouting and elongation, illustrating that FGF2 and VEGF-C play distinct,
cooperative roles in lymphatic vascular morphogenesis. These assays therefore provide useful tools able to dissect gene
function in cellular events important for lymphangiogenesis and implicate FGFR1 as a key player in developmental
lymphangiogenesis in vivo.
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Introduction

The cellular processes underpinning the growth and develop-

ment of lymphatic vessels (lymphangiogenesis) include prolifera-

tion, migration, adhesion and lumen formation. All of these events

need to be precisely orchestrated in order to build a lymphatic

vascular network able to function optimally to maintain tissue fluid

homeostasis, coordinate immune cell trafficking and absorb lipids

from the digestive tract. Aberrant lymphangiogenesis is associated

with a spectrum of human disorders including vascular malfor-

mations, lymphoedema, inflammatory diseases and cancer [1,2].

Deciphering the genes and signalling pathways that control

lymphangiogenesis is crucial in order to uncover targets to which

new therapeutics able to combat these diseases can be designed.

While the study of lymphangiogenesis in vivo using animal

models including the mouse, frog and fish has yielded invaluable

information regarding the genetic pathways important for

lymphatic vascular development [1,2], the dearth of established

assays to manipulate primary lymphatic endothelial cells (LEC)

isolated from mouse tissue in culture has restricted our ability to

dissect lymphangiogenic signalling pathways ex vivo. Models

established to study lymphangiogenesis in vitro include the culture

of LEC isolated from bovine [3,4], canine [5], human [5], rat [6]

and ovine [7] collecting mesenteric lymphatic vessels or thoracic

duct, and the culture of LEC isolated from adult mouse [8] or

human skin [9]. Approaches to yield greater numbers of cells for

analysis have included the culture of immortalised LEC from

human [10,11] or mouse lymphangiomas [12,13], the introduc-

tion of telomerase to human LEC [14] and the isolation of SV40

large T antigen immortalised LEC from the thoracic duct of rats

[15] and from various organs of mice [16,17]. Conditions that

promote the differentiation of LEC from embryonic stem cells

have also been established [18,19,20]. Three dimensional models

employed to study sprouting lymphangiogenesis in vitro include the

culture of small segments of rat [21] or mouse [22] thoracic duct in

collagen gels, culture of human LEC subjected to flow in collagen

[23] or fibrin gels [24] and the culture of beads coated with human

LEC or LEC spheroids in fibrin gels [25]. Each of these
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approaches has limitations; very small numbers of primary cells

can be purified from collecting lymphatic vessels, there is

considerable heterogeneity in the endothelial cells that line large

collecting vessels compared to lymphatic capillaries, and immor-

talisation and extended culture alters the molecular properties and

identity of LEC. Moreover, while the culture of primary human

LEC over several passages has been feasible, the culture of

primary mouse LEC has been challenging. We sought to optimise

methodology for the isolation and short-term culture of primary

embryonic mouse LEC in order to establish lymphangiogenesis

assays able to: 1. Measure LEC proliferation, migration and tube

formation in response to established and candidate pro- and anti-

lymphangiogenic stimuli. 2. Assess gene function in defined aspects

of lymphangiogenesis by utilising siRNA to silence gene expression

in wild-type LEC.

Here, we describe methodology for the isolation, short-term

culture and transfection of highly pure populations of primary

embryonic mouse LEC and BEC. Furthermore, we have

optimised robust assays to quantify primary mouse LEC prolifer-

ation, migration and three-dimensional tube formation in vitro. We

have utilised these techniques to investigate the roles of FGF2 and

VEGF-C signalling in lymphangiogenesis in vitro and report that

FGF2 and VEGF-C drive distinct cellular events; FGF2 potently

promotes LEC proliferation while VEGF-C stimulates LEC

sprouting and elongation. Our data uncover a previously

unrecognised role for signal transduction via FGFR1 in primary

mouse LEC and suggest that this signalling axis is likely to play a

key role during lymphangiogenesis in vivo.

Methods

Animal studies and Ethics Statement
Experiments using mice were performed using C57Bl/6 mice

and were approved and conducted in accordance with the SA

Pathology/Central Health Network (CHN) Animal Ethics Com-

mittee and Australian National Health and Medical Research

Council (NHMRC) guidelines.

Figure 1. Isolation and purity of primary mouse embryonic dermal lymphatic (LEC) and blood vascular (BEC) endothelial cells. (a)
Schematic representation of mouse embryonic dermal endothelial cell isolation. Skin of E16.5 embryos was removed and digested to generate a
single cell suspension. Macrophages and hematopoietic cells were depleted using anti-F4/80 and anti-CD45 antibodies, in combination with anti-rat
magnetic beads. LEC were captured using anti-LYVE-1 antibody and anti-rabbit magnetic beads, prior to isolation of BEC using anti-CD31 antibody
and anti-rat magnetic beads. (b) Analysis of mRNA levels of established markers of LEC identity in LEC and BEC isolated from E16.5 dermis. (c) Analysis
of mRNA levels of known markers of BEC (Flt1, Nrp1, Cd34), macrophage (Emr1), vascular smooth muscle (Acta2) and keratinocyte (Krt14) identity in
LEC and BEC isolated from E16.5 dermis. Data were normalised to Actb and show mean 6 s.d. of triplicate samples. Data are representative of at least
three independent cell isolations, each prepared from multiple litters of embryos.
doi:10.1371/journal.pone.0040497.g001
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Reagents and Antibodies
We used Dulbecco’s Modified Eagle’s Medium (DMEM,

Sigma), Hank’s Balanced Salt Solution (HBBS, Sigma), recombi-

nant human FGF basic 146 aa (R&D Systems), recombinant

human VEGF-C (R&D Systems), SU5402 (Merck), SU5416

(Sigma-Aldrich), MAZ51 (Sigma-Aldrich), rabbit anti-mouse

Prox1 (AngioBio), goat anti-human Prox1 (R&D Systems), rabbit

anti-mouse LYVE-1 (AngioBio), rat anti-mouse CD31 (BioLe-

gend), rat anti-mouse CD45 (BD Pharmingen), rat anti-mouse

CD34 (eBioscience), rat anti-mouse F4/80 (Invitrogen), goat anti-

Figure 2. Purity of isolated embryonic dermal LEC and BEC populations assessed by immunostaining. Analysis of markers indicative of
LEC and BEC identity on cells isolated from E16.5 dermis and cultured in EGM-2MV for 72 h. LEC are uniformly Prox1 and CD31 positive and depleted
of hematopoietic cells. BEC are uniformly CD31, CD34, VEGFR2 and Nrp1 positive and devoid of LEC and hematopoietic cells. Scale bars represent
40 mm.
doi:10.1371/journal.pone.0040497.g002
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mouse VEGFR2 (R&D Systems), goat anti-mouse VEGFR3

(R&D Systems), rabbit anti-KDR (Upstate/Millipore), goat anti-

rat Neuropilin-1 (R&D Systems), rabbit anti-Flg (FGFR1) (C-15)

(Santa Cruz).

Preparation of skin cell suspensions
Where practicable all procedures were carried out on ice and as

quickly as possible. Intact uteri were removed from 2–3 pregnant

female mice and placed in ice-cold DMEM (Sigma) until

dissection. Skin was removed in large pieces from 15–25 embryos

and transferred to ice-cold 10 ml HHF (5% FBS, 10 mM Hepes

Buffer in HBBS) until all embryos were processed. Dissected skin

was rinsed twice with DHF (DMEM/20%FCS/10 mM Hepes)

and replaced with 10 ml DHF containing 25 mg Collagenase

Type II, 25 mg Collagenase Type IV and 10 mg Deoxyribonu-

clease I (all from Worthington), followed by incubation at 37uC for

30 min, pipetting with a wide-bore transfer pipette every 5 min to

assist tissue dissociation. Skin cell suspensions were filtered through

a 40 mm cell strainer and rinsed with 2 volumes ice-cold DHF.

Filtrates were centrifuged at 300 g for 10 min. Cell pellets were

resuspended in 5 ml HHF and cell counts performed. Cell

suspensions from adult skin were prepared as follows: ears from 3–

4 adult mice were peeled apart, excess cartilage was removed and

remaining skin was cut into small pieces. Tissue digestion was

Figure 3. FGF2 stimulates primary mouse LEC proliferation. (a) Primary LEC were cultured in EBM-2+0.5 mg ml21 Albumax (Control) or EBM-
2+0.5 mg ml21 Albumax containing FGF2 or VEGFC at the indicated concentrations for 48 h. LEC proliferation was measured using the CellTiter 96H
AQueous One Solution Cell Proliferation Assay (Promega). Data shown represent mean 6 s.e.m. and are derived from 3 independent cell isolations,
each prepared from multiple litters of embryos, and 5 replicates of each treatment (n = 15). (b) FGF2 stimulated LEC proliferation is inhibited by an
FGFR tyrosine kinase inhibitor but not by VEGFR inhibitors. Primary LEC were cultured in EBM-2+0.5 mg ml21 Albumax (Control), or EBM-
2+0.5 mg ml21 Albumax and FGF2 (10 ng ml21), together with the tyrosine kinase inhibitors SU5402 (10 mM, FGFR inhibitor), SU5416 (5 mM, VEGFR-2
inhibitor) or MAZ51 (5 mM, VEGFR-3 inhibitor). LEC proliferation was measured using the CellTiter 96H AQueous One Solution Cell Proliferation Assay
(Promega). Data shown represent mean 6 s.e.m. and are derived from 3 independent cell isolations prepared from multiple litters of embryos and 5
replicates of each treatment (n = 15). **P,0.01 ***P,0.001.
doi:10.1371/journal.pone.0040497.g003

Figure 4. FGF2 and VEGF-C promote migration of primary mouse LEC. (a) Confluent monolayers of primary LEC were scratched and cultured
in EBM-2+0.5% FBS (Control), or EBM-2+0.5% FBS containing FGF2 (10 ng ml21) 6 SU5402 (10 mM) or VEGF-C (200 ng ml21) for 8 h. Dotted white
lines mark the boundaries of the wound at 0 h. Scale bars represent 125 mm. (b) Quantification of area migrated in 8 h. Data represent mean 6 s.e.m.
and are derived from 3 independent cell isolations, each prepared from multiple litters of embryos, and 5 replicates of each treatment (n = 15).
*P,0.05, **P,0.01, ***P,0.001.
doi:10.1371/journal.pone.0040497.g004
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carried out at 37uC for 60 min with frequent pipetting and single

cell suspensions were processed as described above.

Depletion of F4/80(+)/CD45(+) haematopoietic cells
Crude dermal cell mixtures were centrifuged at 400 g for 5 min

and pellets resuspended at approximately 108 cells ml21 in HHF

together with anti-F4/80 and anti-CD45 antibodies (1:100). Cells

were mixed by gentle rotation at 4uC for 5 min, washed with 10–

20 volumes MACS Buffer (PBS, 2 mM EDTA, 5% FBS),

centrifuged as above and resuspended at 108 cells ml21 in MACS

Buffer. F4/80(+)/CD45(+) cells were depleted using goat anti-rat

IgG Microbeads (MiltenyiBiotec), using 200 ml beads per 108 cells,

according to manufacturer’s instructions. F4/80(2)/CD45(2)

negative cells were collected and the entire process repeated to

ensure maximal depletion of contaminating haematopoietic cells.

Isolation of Lyve1(+) LEC and CD31(+) BEC
F480(2)/CD45(2) cells were centrifuged at 400 g for 5 min

and resuspended at approximately 108 cells ml21 in HHF with

anti-Lyve1 antibody (1:200). Lyve1(+) LEC were purified using

goat anti-rabbit IgG Microbeads according to manufacturer’s

instructions and eluted cells reapplied promptly to a fresh MACS

MS column to increase purity. F480(2)/CD45(2)/Lyve1(2) cells

were centrifuged at 400 g for 5 min and resuspended at

approximately 108 cells ml21 in HHF with anti-CD31 antibody

(1:100). CD31(+) BEC were purified using goat anti-rat IgG

Microbeads according to manufacturer’s instructions and eluted

cells reapplied to a fresh MACS MS column. Isolated primary

dermal LEC and BEC were either used immediately for RNA and

protein isolation, or plated on fibronectin (50 mg ml21, Roche)

coated dishes in EBM-2 medium supplemented with EGM-2MV

SingleQuots (Lonza) and grown at 37uC in 5% CO2.

Approximate yields:

20 embryos2–46107 total cells (approx 0.6% LEC, 2% BEC)

20 embryos1–26108 total cells (approx 1% LEC, 4% BEC)

5 embryos1–26108 total cells (approx 1% LEC, 4% BEC)

Transfection with siRNA
LEC transfection with siRNA was performed using Lipofecta-

mineTM 2000 (Invitrogen) according to manufacturer’s instruc-

tions. The sequence of the siRNA used to target Fgfr1

(NM_010206.2, 59-GAAGACUGCUGGAGUUAAUTT-39) was

designed and synthesized by Shanghai GenePharma Co., td.

Briefly, freshly isolated LEC were seeded on fibronectin

(50 mg ml21, Roche) coated 24-well dishes or m-Slides 8 well

(Ibidi) at a density of 0.5–16105 cells/well, or on fibronectin

coated 96-well plates at 26105 cells/well. Cells in 24-well dishes

were cultured overnight and transfected with 20 pmol siRNA

(33 nM final concentration). After a further 24 h, media was

replaced and cells were subjected to a second transfection using

40 pmol siRNA (66 nM). Cells in 96-well plates were transfected

in the same manner, using 4 and 8 pmol siRNA, respectively.

Cells were harvested 48 h after the second transfection and

subjected to RNA and protein analyses.

Immunostaining
For analysis of cell purity, primary LEC and BEC isolated from

E16.5 embryos were grown on fibronectin (50 mg ml21, Roche)

coated m-Slides 8 well (Ibidi) for 3 days, fixed with 4% phosphate-

buffered paraformaldehyde (PFA) and incubated with primary

antibodies overnight at 4uC as previously described [26].

Transfected LEC were fixed 48 h after the second transfection.

Alexa FluorH -488, -555 and 647 conjugated secondary antibodies

(Invitrogen) were used for visualization. Cells were mounted in

Prolong Gold with DAPI (Invitrogen). Images were captured at

room temperature using a Bio-Rad Radiance 2100 confocal

microscope (Bio-Rad Laboratories) equipped with 3 lasers

(488 nm Argon ion, 543 nm Green HeNe and 637 nm Red

Diode) attached to an Olympus IX70 inverted microscope

(Olympus). Adobe Photoshop CS5 version 12.0 (Adobe) was used

for subsequent image processing.

RNA Analysis
Total RNA was isolated from transfected cells using TRIzolH

reagent (Invitrogen) according to the manufacturer’s instructions.

For investigation of mRNA expression, total RNA was reverse

transcribed using Superscript III Reverse Transcriptase (Invitro-

gen) with a mixture of oligo dT and random hexamer primers.

Primers used for real-time RT-PCR analysis are shown in Table

S1. PCR was performed with RT2 Real-Time SYBR Green/Rox

PCR master mix (SA Biosciences) and analysed on a Corbett

Rotor-Gene 6000 Real-Time PCR machine. Data were normal-

ised to the housekeeping gene Actb as previously described [27].

Western Blotting
Transfected cells were either lysed using T-PER reagent

including Protease Inhibitors (Thermo Scientific) or following

RNA extraction using TRIzolH reagent, whereby protein was

recovered from the remaining organic phase according to the

manufacturer’s instructions. For analysis of protein levels in

transfected cells, equal volumes of protein lysate isolated from

three separate transfections were pooled and electrophoresed on

8% SDS-PAGE gels prior to being transferred to PVDF (Perkin

Elmer). Western blots were performed according to standard

protocols using anti-Flg (C-15) (Santa Cruz) and anti-b-actin

(Sigma) antibodies, followed by anti-rabbit AP (GE Healthcare)

and anti-mouse Cy5 (GE Healthcare). Signal was detected using

ECF Western Blot substrate (GE Healthcare) and blots were

directly scanned on a Typhoon Imager (GE Healthcare).

Densitometry was performed with ImageQuant TL software

(GE Healthcare).

Figure 5. FGF2 and VEGF-C promote tube formation of primary mouse LEC. (a) Primary LEC were cultured for 24 h and imaged immediately
following the addition of Matrigel. (b) Primary LEC were cultured for 24 h followed by addition of Matrigel alone or Matrigel containing FGF2
(10 ng ml21), VEGF-C (200 ng ml21) or a combination of FGF2 and VEGF-C. Images were captured after a further 48 hours. (c) Primary LEC were
cultured for 24 h followed by addition of Matrigel containing FGF2 (10 ng ml21) or a combination of FGF2 (10 ng ml21) and VEGF-C (200 ng ml21)
and tyrosine kinase inhibitors SU5402 (10 mM, FGFR1), SU5416 (5 mM, VEGFR-2) or MAZ51 (5 mM, VEGFR-3). Three replicates of each treatment were
performed and images are representative of at least three independent cell isolations. Inset panels in (c) illustrate magnified views of boxed regions.
Scale bars represent 250 mm. Quantification of average vessel diameter (d) using Lymphatic Vessel Analysis Protocol (LVAP) [28] and ImageJ [29]
software and branch points per well (e) using AngioTool software [30], for each treatment indicated. Data show mean 6 s.e.m. and are derived from 2
independent cell isolations, each prepared from multiple litters of embryos, and 3 replicates of each treatment (n = 6). *P,0.05, **P,0.01,
***P,0.001.
doi:10.1371/journal.pone.0040497.g005
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Figure 6. FGFR1 is important for LEC proliferation. (a) FGF receptor profile in primary embryonic mouse dermal LEC and BEC. Real-time RT-PCR
analysis of Fgfr1-4 mRNA levels in freshly isolated E16.5 LEC and BEC. Data are normalised to Actb and show mean 6 s.d. of triplicate samples. Data
are representative of at least three independent cell isolations from multiple litters of embryos. (b) FGFR1 is localized to the nucleus of LEC following
stimulation with FGF2. Immunostaining of primary LEC cultured for 24 h in either EBM-2+0.5 mg ml21 Albumax (serum starved) or EGM-2MV
containing FGF2 (complete media). Scale bars represent 40 mm. (c) siRNA mediated knockdown of FGFR1 in primary embryonic LEC. Primary LEC were
cultured for 24 h prior to transfection with control or Fgfr1 siRNA. Fgfr1 mRNA levels were analysed 72 h post-transfection. Data are normalised to
Actb and represent mean 6 s.e.m. Data are derived from 3 independent cell isolations, each prepared from multiple litters of embryos, and 3
transfections per isolation (n = 9). ***P,0.001. (d) FGFR1 protein levels were assessed by Western blot 72 h post-transfection and quantified relative
to b-actin. (e) Immunostaining of primary LEC cultured in complete medium for 72 h after transfection with control or Fgfr1 siRNA revealed efficient
reduction in FGFR1 protein levels. Scale bars represent 100 mm. (f) FGFR1 is important for LEC proliferation. Primary LEC were cultured for 24 h prior
to treatment with control or Fgfr1 siRNA. LEC proliferation was measured by counting cells 72 h post-transfection. Data show mean 6 s.e.m. Data are
derived from 2 independent cell isolations, each prepared from multiple litters of embryos and multiple transfections per isolation (n = 11).
***P,0.001. (g) Primary LEC were cultured in EGM-2MV (complete media, CM) for 24 h prior to treatment with SU5402 (10 mM) for 72 h. LEC
proliferation was measured using the CellTiter 96H AQueous One Solution Cell Proliferation Assay (Promega). Data shown represent mean 6 s.e.m.
and are derived from 3 independent cell isolations prepared from multiple litters of embryos and multiple replicates of each treatment (n = 14).
*P,0.05.
doi:10.1371/journal.pone.0040497.g006
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Tube Formation assay
Freshly isolated LEC were seeded on fibronectin (50 mg ml21,

Roche) coated wells at a density of 105 cells/0.3 ml in m-Slides 8

well (Ibidi) or 104 cells/0.01 ml in m-Slides Angiogenesis (Ibidi)

and allowed to adhere overnight. Cells were rinsed with EBM-2

and overlaid with 0.2 ml (or 0.04 ml) of Matrigel diluted 1:1 in ice-

cold EBM-2 containing growth factors and/or inhibitors at double

the required final concentration. All treatments and controls were

adjusted to contain the same final concentration of DMSO (0.2%).

Matrigel was allowed to solidify and was further overlaid with

EBM-2 containing the indicated treatments. Cells were grown for

24 or 48 h in Matrigel and images were captured using an inverted

microscope (Olympus MVX10) and F-view camera (Soft Imaging

System) and analysed using CellR software (Olympus Soft Imaging

System). Average vessel diameter was quantified using Lymphatic

Vessel Analysis Protocol (LVAP) [28] and ImageJ [29] software.

The number of vessel branch points was quantified using

AngioTool software [30].

Proliferation assay
Proliferation assays were performed using the CellTiter 96H

AQueous One Solution Cell Proliferation Assay reagent (Pro-

mega), as per manufacturer’s instructions. All experiments were

performed in 96 well plates with 4–5 replicates. Briefly, freshly

isolated LEC were diluted to 16105 cells ml21 in EGM-2MV

(Lonza) and 0.1 ml of cells was added to each well. Plates were

cultured at 37uC/5% CO2 for 16–18 h and then serum starved for

4 h in control media comprising EBM-2 containing 0.5 mg ml21

Albumax II (Invitrogen). Control and treatment groups were

added to cells and incubated for 48 h. Cell proliferation was

measured either by trypsinization and cell counting using a

haemocytometer, or following the addition of CellTiter 96H
AQueous One Solution Cell Proliferation Assay reagent (0.02 ml)

to each well and incubation for a further 4 h. Absorbance was

measured at 490 nm on a FLUOstar OPTIMA microplate reader

(BMG LABTECH).

Migration scratch assay
All experiments were performed in pre-marked 96 well plates

with 4–5 replicates. Freshly isolated LEC were diluted to 56105

cells ml21 and 0.1 ml of cells was added to wells. Cells were

cultured in EGM-2MV (Lonza) at 37uC/5% CO2 until confluent.

Cells were then starved in EBM-2 containing 0.5% FBS (base

media) overnight. A single scratch was made in each confluent cell

layer using a 200 ml pipette tip and cells were washed gently in

EBM-2 (Lonza). Images at time 0 (initial) were captured using an

inverted phase contrast microscope (Olympus CKX41) at 46
magnification. Cells were then incubated in base media (Control)

or base media containing FGF2 (10 ng ml21), FGF2

(10 ng ml21)+SU5402 (10 mM) or VEGF-C (200 ng ml21) for

8 h. Images were captured 8 h later using an inverted phase

contrast microscope (Olympus CKX41) at 46magnification. For

imaging purposes, wells were completely filled with EBM-2 to

overcome distortion caused by the meniscus. Initial and final

scratch areas were measured using ImageJ version 1.41 software

[29] and the difference between the 0 and 8 h measurements was

expressed as migration area.

Statisitics
For proliferation and migration assays with multiple treatments,

randomised complete block design with sub sampling was

assumed. Data was analysed using SAS/STATH 9.2 software

and the PROC MIXED procedure. If a difference between

treatments was detected at the 5% level, pair-wise comparisons of

the means (with Sidak adjustment) were used to determine P

values. Unless otherwise stated, error bars in each figure represent

s.e.m. of at least three independent experiments with multiple

replicates of each treatment.

Results

Isolation, purity and shot-term culture of primary mouse
lymphatic and blood vascular endothelial cells

Primary lymphatic (LEC) and blood vascular endothelial cells

(BEC) were purified from single cell suspensions of embryonic

mouse skin. Cell suspensions were first depleted of hematopoietic

cells including macrophages, using a magnetic bead isolation

approach coupled with anti-F4/80 and anti-CD45 antibodies.

Two rounds of depletion were employed to ensure complete

removal of these potentially contaminating cell types. LEC were

then isolated using an anti-LYVE-1 antibody and following this,

BEC were selected using an anti-CD31 antibody (Figure 1a). The

purity of isolated LEC and BEC was assessed immediately

following cell isolation and RNA extraction, by real-time RT-

PCR for a panel of genes characteristic of LEC, BEC,

hematopoietic, vascular smooth muscle and epithelial identity

(Figure 1b, c). These assessments revealed that genes characteristic

of LEC identity including Lyve1, Prox1, Flt4, Pdpn and Ccl21 were

highly enriched in embryonic dermal LEC (Figure 1b), while genes

including Flt1, Nrp1 and Cd34 were highly enriched in embryonic

dermal BEC (Figure 1c). Pan-endothelial genes including Pecam1

and Kdr (encoding VEGFR-2) were expressed in both LEC and

BEC populations, though were higher in BEC (Figure 1b). Both

primary embryonic endothelial cell populations were negative for

macrophage (Emr1, encoding F4/80), vascular smooth muscle

(Acta2, encoding smooth muscle actin, alpha 2) and epithelial

(Krt14, encoding keratin 14) genes (Figure 1c), indicating a high

degree of specificity in our cell isolation approach.

Purified LEC and BEC cultured on fibronectin coated dishes

grew rapidly to confluence. Interestingly, the morphology of each

cell type was distinct; primary dermal LEC grew in clusters and

were large, oak-leaf shaped cells (Figure 2a–c). By comparison,

primary dermal BEC were smaller, more spindle shaped, tended

to grow in tube-like structures and grew more slowly than LEC

(Figure 2d–f). These features mirror the morphology of lymphatic

and blood vascular capillaries in embryonic skin; lymphatic

capillaries are of a much larger calibre than their blood vascular

counterparts (Figure S1a). Immunostaining for proteins charac-

teristic of lymphatic and blood vascular capillaries in primary

embryonic LEC and BEC following 3 days in culture confirmed

the highly pure nature of isolated primary LEC and BEC (Figure 2,

Figure S2). LEC were positive for Prox1, VEGFR-3 and CD31

and negative for macrophage (F4/80) and blood vascular markers

(CD34) (Figure 2a–c). Interestingly, purified embryonic LEC, like

adult mouse LEC [8], exhibited heterogeneous levels of LYVE-1

in culture (Figure 2a). BEC were positive for CD34, VEGFR-2

and Nrp1 and negative for Prox1 and LYVE-1 (Figure 2d–f).

Though LEC were successfully passaged up to 4 times, cell growth

and proliferation slowed with each passage. In addition, expression

levels of some markers of LEC identity including Ccl21 and

thrombospondin1 (Thbs1) were dramatically reduced once LEC

were cultured. For this reason, all of our experiments were

performed with freshly isolated cells in their first passage.

Intriguingly, LEC isolated from E16.5 embryos attached and

proliferated more readily than LEC isolated from E18.5, perhaps

reflecting elevated plasticity at this earlier developmental time-

point. Essentially the same cell isolation approach was used to
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purify primary LEC and BEC from adult ear skin, except that

enzymatic digestion of skin cell suspensions was increased from 30

to 60 min with frequent agitation.

FGF2 promotes primary mouse LEC proliferation
The proliferation of primary embryonic dermal LEC in culture

was assessed using an established colorimetric assay for the

quantification of viable cells. To investigate the effect of

established pro-lymphangiogenic growth factors on the prolifera-

tion of primary embryonic dermal LEC in culture, LEC were

seeded in full media (EGM-2MV) for 18 h and then starved in

basal media (EBM-2 containing 0.5 mg ml21 Albumax II) for 4 h.

Base media was then replaced with media containing either

VEGF-C or FGF2 at a range of concentrations and cell

proliferation was measured 48 h later. These assays revealed that

FGF2 potently stimulated the proliferation of primary embryonic

dermal LEC (Figure 3a). In fact, while 2.5 ng ml21 of FGF2

promoted approximately three-fold greater LEC proliferation than

did base media, 200 ng ml21 of VEGF-C stimulated LEC

proliferation only two-fold (Figure 3a). Previous reports have

ascribed a pro-lymphangiogenic role to FGF2, but suggested that

this effect is mediated indirectly, via the activity of VEGF-C and

VEGF-D [31,32]. We assessed whether this was the case in

primary embryonic dermal LEC by treating LEC with FGF2 in

combination with small molecule tyrosine kinase inhibitors of

FGFR (SU5402) [33], VEGFR-2 (SU5416) [34] and VEGFR-3

(MAZ51) [35]. The addition of SU5402 to LEC media in the

presence of FGF2 completely abrogated FGF2 stimulated

proliferation (Figure 3b). In contrast, small molecule tyrosine

kinase inhibitors of VEGFR-2 (SU5416) and VEGFR-3 (MAZ51)

that reduced VEGF-C mediated LEC proliferation (Figure S3),

did not significantly inhibit FGF2-mediated LEC proliferation

(Figure 3b). These data demonstrate that FGF2 promotes the

proliferation of primary LEC directly via FGF receptors and

independently of VEGF receptors.

FGF2 and VEGF-C promote the migration of primary
mouse LEC

We next established an assay to quantify the migration of

primary LEC in response to lymphangiogenic stimuli. We first

assessed the ability of LEC seeded in Boyden chambers to migrate

through a filter towards VEGF-C, but found that only a very low

proportion of cells were capable of chemotactic migration through

the filter, perhaps due to detrimental effects of trypsinization prior

to cell seeding. We next established a ‘‘scratch’’ assay to quantify

cell migration. For this assay, freshly isolated LEC were allowed to

grow to confluence and were then washed and starved for 16 h.

Scratches across LEC monolayers were made and LEC migration

in response to designated treatments was measured following 8 h.

A dose response assay revealed that maximal LEC migration was

achieved at a dose of 10 ng ml21 FGF2 (Figure S4) and that this

dose of FGF2 promoted the migration of primary embryonic

dermal LEC to a similar extent as 200 ng ml21 VEGF-C

(Figure 4). Moreover, FGF2 stimulated LEC migration was

inhibited by the small molecule FGFR inhibitor SU5402

(10 mM), illustrating that FGF2 promoted LEC migration directly,

via cell autonomous signalling through FGF receptors.

FGF2 cooperates with VEGF-C to promote tube
formation

We next sought to establish a three-dimensional assay able to

reproduce features of lymphatic vessel growth in vivo, and to this

end, developed a protocol to promote the assembly of primary

embryonic dermal LEC into tubes. We initially attempted to

promote LEC tube formation in an analogous fashion to methods

used to stimulate the formation of human LEC tubes, by plating

LEC onto Matrigel [9]. However, primary embryonic mouse

dermal LEC did not form tubes in this setting. To promote tube

formation, we first established semi-confluent (50–70%) cultures of

primary dermal LEC (Figure 5a) and then overlaid LEC

monolayers with Matrigel containing selected growth factors

and/or small molecule inhibitors. Tube formation was measured

24 and 48 h later. Primary embryonic mouse dermal LEC rapidly

organised into aggregates following the addition of Matrigel

(Figure 5b). However, in the presence of FGF2 (10 ng ml21), LEC

dynamically organised into a network of tubes and exhibited

features characteristic of lymphatic vessel growth including

proliferation, sprouting, migration and anastomosis (Figure 5b).

The effects of growth factor treatment on tube formation were

quantified by measuring average vessel diameter and the number

of vessel branchpoints per field. Cell proliferation was a striking

feature of FGF2-promoted tube formation, reflected in the

increased diameter of LEC tubes following treatment with FGF2

compared to Matrigel alone (Figure 5b, d). The addition of VEGF-

C to Matrigel also enhanced LEC tube formation, but the

morphology of tubes formed in response to VEGF-C treatment

was strikingly different to that promoted by FGF2. VEGF-C

potently promoted LEC sprouting and elongation, rather than

proliferation (Figure 5b); VEGF-C induced tubes contained

substantially more branchpoints than FGF2-induced tubes,

(Figure 5e), while vessel diameter was significantly lower

(Figure 5d). In combination, FGF2 and VEGF-C promoted

proliferation and sprouting, resulting in the development of large,

interconnected lymphatic vascular tubes (Figure 5b, d, e). Tube

formation promoted by FGF2 was inhibited by the small molecule

FGFR inhibitor SU5402, but not by the VEGFR-2 inhibitor

SU5416 (Figure 5c, d, e). Intriguingly, FGF2 promoted tube

formation was significantly affected by treatment with the

VEGFR-3 inhibitor MAZ51 (Figure 5 c, d). In particular, vessel

diameter and the morphology of cells were altered; LEC assumed

a more cuboidal, less elongated morphology (Figure 5c) in

response to MAZ51 treatment.

FGFR1 is the predominant FGF receptor in primary
dermal mouse LEC and is crucial for LEC proliferation

In order to investigate which FGF receptors were responsible

for transducing FGF2 mediated pro-lymphangiogenic signals, we

first quantified the mRNA expression level of each of the four FGF

receptors in primary dermal LEC and BEC immediately following

cell isolation from the skin. Real-time RT-PCR of embryonic and

adult LEC revealed that Fgfr1 was by far the predominant FGF

receptor in both embryonic (Figure 6a) and adult (Figure S5) LEC

and BEC. Moreover, Fgfr1 levels were more than two-fold elevated

in LEC compared to BEC, providing a possible explanation for

the sensitivity of LEC to low doses of FGF2. In comparison, Fgfr3,

previously suggested to have a pro-lymphangiogenic role [36], was

expressed at dramatically lower levels than Fgfr1 in primary

embryonic (Figure 6a) and adult (Figure S4) LEC. Investigation of

FGFR1 protein levels in primary embryonic LEC revealed that

FGFR1 was localised primarily to the nucleus of LEC grown in

complete media (Figure 6b). Nuclear FGFR1 has previously been

associated with cell proliferation [37]. In order to establish

whether this was also the case in primary embryonic LEC,

FGFR1 localisation was compared between cells grown in

complete media and cells that were serum starved. Substantially

more nuclear FGFR1 was observed in LEC grown in complete
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media containing FGF2, corresponding to elevated LEC prolifer-

ation under these conditions (Figure 6b).

We next set out to investigate the requirement for FGFR1 in

FGF2-mediated proliferation. Due to the reported inhibition of

FGFR3 by SU5402 [38], we sought to specifically ablate FGFR1

activity using siRNA to knockdown FGFR1 levels in primary

LEC. Transfection of primary embryonic dermal LEC with Fgfr1,

but not control siRNA, reduced Fgfr1 mRNA levels by ,70%

(Figure 6c) within 48 h of transfection. Fgfr3 mRNA levels were

not affected following transfection of LEC with Fgfr1 siRNA

(Figure S6), demonstrating specificity of Fgfr1 siRNA for its

intended target. A corresponding decrease in FGFR1 protein

levels by ,70% was also observed in Fgfr1 siRNA treated cells

(Figure 6d, e). Importantly, transfection of primary embryonic

LEC with Fgfr1 siRNA inhibited LEC proliferation in full media

containing FGF2 (Figure 6f) to a similar extent as treatment with

SU5402 (Figure 6g). These data reveal that FGFR1 plays a key

role in LEC proliferation and suggest that signal transduction via

FGFR1 is likely to be important for lymphangiogenesis in vivo.

Discussion

Though primary mouse endothelial cells have traditionally

proven difficult to culture, we have developed robust methodology

for the measurement of primary embryonic mouse LEC prolifer-

ation, migration and three-dimensional tube forming ability in

response to pro-lymphangiogenic stimuli in vitro. Moreover, we

have utilised these techniques to demonstrate that FGF2 potently

promotes LEC proliferation, migration and tube formation and

that these activities rely on signal transduction via FGFR1. Our

ability to dissect FGF signalling in a cell autonomous manner has

revealed that FGF2 promotes LEC proliferation independently of

VEGF receptors and moreover, that FGF2 and VEGF-C play

distinct roles in lymphatic vascular morphogenesis. The assays we

have developed fill a longstanding gap in the field and provide the

opportunity to rapidly and precisely determine gene function and

delineate signalling pathway activity in primary embryonic LEC

isolated from both wild-type and genetically modified mice ex vivo.

While long recognised as a pro-lymphangiogenic factor, the

mechanisms by which FGF2 acts on LEC have, to date, been

poorly understood. In contrast to previous work suggesting that

FGF2 promotes lymphangiogenesis indirectly, via increasing

VEGF-C and VEGF-D production and VEGFR-3 signalling

[31,32], our assays revealed that FGF2 potently promotes the

proliferation of primary embryonic mouse LEC directly, via

FGFR1. Though our studies focussed on embryonic mouse LEC,

previous work has shown that FGF2 stimulates the proliferation

and migration of postnatal bovine, human and rat LEC in vitro

[4,15,36] and promotes lymphangiogenesis when ectopically

introduced to adult mouse tissues in vivo [31,32]. On the basis of

these data, we predict that primary adult mouse LEC would also

be responsive to FGF2. Whether FGF2 primarily activates Ras/

MAPK, Plcc/Ca2+ or PI3K/Akt pathways (the 3 major pathways

activated by FGF signalling [39]) in primary embryonic mouse

LEC downstream of FGFR1 remains to be established.

Our assays revealed distinct effects of FGF2 and VEGF-C in

cellular functions important for lymphangiogenesis. While FGF2

potently promoted LEC proliferation, VEGF-C primarily pro-

moted cell sprouting and together, these growth factors cooper-

atively induced the formation of lymphatic vascular tubes. The

effect of the small molecule inhibitor of VEGFR-3, MAZ51, on

the morphology of primary LEC in a three dimensional

environment confirmed that signalling via VEGFR-3 is particu-

larly important for LEC sprouting and elongation. Taken

together, these data demonstrate that the assays we have

developed are useful tools with which to dissect pro-lymphangio-

genic signalling pathways in primary embryonic mouse LEC.

Further elucidating the downstream effectors of FGFR1 and

VEGFR-3 signalling pathways that are responsible for LEC

proliferation versus sprouting will provide important new insights

into how morphogenetic events important for lymphangiogenesis

are regulated. Moreover, our data pave the way for future

experiments to characterise the interplay between FGF and VEGF

signalling pathways in primary lymphatic endothelial cells.

Our discovery that FGFR1 is the predominant FGF receptor in

primary, non-cultured embryonic mouse LEC and that FGFR1

receptor levels are substantially higher in LEC than BEC, provides

an explanation for the potent stimulation of LEC proliferation by

FGF2. Furthermore, our finding that embryonic LEC prolifera-

tion is dependent on FGFR1 provides an explanation for the

observation that knockdown of FGFR3, identified as a gene

induced in response to ectopic Prox1 expression in BEC, does not

completely block FGF2 stimulated proliferation of human LEC

[36]. Further evidence of a predominantly pro-proliferative role

for FGFR1 in LEC was provided by our finding that in response to

the addition of growth media containing FGF2, FGFR1 accumu-

lated in the nucleus of LEC. Nuclear translocation of FGFR1 has

previously been shown to correlate with transcriptional activation

and cell proliferation [37,40]. Defining the proteins that interact

with nuclear FGFR1, together with the transcriptional targets of

FGFR1 in primary LEC will no doubt shed further light on the

mechanisms by which FGFR1 activation promotes LEC prolifer-

ation. The early embryonic lethality of Fgfr12/2 mice [41,42] has,

to date, precluded analysis of the role of this receptor in blood and

lymphatic vascular development, though the recent generation of

Fgfr1flox/flox mice [43], together with blood and lymphatic vascular

specific Cre lines, now enable this question to be addressed. Our

data provide compelling evidence in support of a crucial role for

FGF signalling in lymphangiogenesis and pave the way for further

analysis of FGFR1 function in developmental and disease

stimulated lymphangiogenesis in vivo.

Supporting Information

Figure S1 Vascular morphology and marker expres-
sion. (a) Whole mount immunostaining of E14.5 skin illustrating

that the calibre of lymphatic capillaries (Prox1-positive, Nrp2-

positive, CD31-positive) is substantially larger than that of blood

vascular capillaries (Prox1-negative, Nrp2-negative, CD31-posi-

tive). (b) LYVE-1 levels are heterogeneous on lymphatic

capillaries, while Nrp2 levels appear uniform. Scale bars represent

120 mm.

(TIF)

Figure S2 Purity of isolated primary embryonic mouse
LEC. Immunostaining of purified primary embryonic LEC

cultured in EGM-2MV demonstrating that the majority of

DAPI-positive nuclei are positive for the lymphatic endothelial

cell marker Prox1.

(TIF)

Figure S3 VEGF-C stimulated proliferation of primary
mouse LEC is inhibited by small molecule inhibitors of
VEGFR-2 and VEGFR-3. Primary LEC were cultured in

EBM+0.5 mg ml21 Albumax (Control) or EBM+0.5 mg ml21

Albumax containing VEGF-C (200 ng ml21) and the small

molecule tyrosine kinase inhibitors SU5416 (5 mM, VEGFR-2)

or MAZ51 (5 mM, VEGFR-3) for 48 h. LEC proliferation was

measured using the CellTiter 96H AQueous One Solution Cell
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Proliferation Assay (Promega). Data shown represent mean 6

s.e.m. and are derived from 3 independent cell isolations, each

prepared from multiple litters of embryos and 4 replicates of each

treatment (n = 12). ** P,0.01, ***P,0.001.

(TIF)

Figure S4 FGF2 promotes migration of primary mouse
LEC in a dose dependent manner. Confluent monolayers of

primary LEC were scratched and cultured in EBM+0.5% FBS

containing FGF2 at the indicated concentrations. The area of

LEC migration was quantified after 8 h. Data represent mean 6

s.e.m. of three independent scratches using one cell isolation

prepared from multiple litters of embryos (n = 3).

(TIF)

Figure S5 FGF receptor profile in primary LEC and
BEC isolated from adult mouse skin. (a) Real-time RT-

PCR analysis of Fgfr1-4 mRNA levels in LEC and BEC freshly

isolated from adult ear skin. Data are normalised to Actb and show

mean 6 s.d. of triplicate samples from one experiment. Data are

representative of three independent cell isolations using ears

pooled from 3–4 mice.

(TIF)

Figure S6 siRNA mediated knockdown of FGFR1 in
primary embryonic LEC does not affect Fgfr3 levels.
Primary LEC were cultured for 24 h prior to transfection with

control or Fgfr1 siRNA. Fgfr3 mRNA levels were analysed 72 h

post-transfection. Data are normalised to Actb and show mean 6

s.e.m. of three independent transfections (n = 3). Data are

representative of 3 independent cell isolations from multiple litters

of embryos.

(TIF)

Table S1 Primers used for real-time RT-PCR analysis.
(DOC)
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