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Is more better? Polyploidy
and parasite resistance
Ploidy-level variation is common and can drasti-
cally affect organismal fitness. We focus on the
potential consequences of this variation for para-
site resistance. First, we elucidate connections
between ploidy variation and key factors deter-
mining resistance, including allelic diversity,
gene expression and physiological condition. We
then argue that systems featuring both natural
and artificially manipulated ploidy variation
should be used to evaluate whether ploidy level
influences host–parasite interactions.
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1. INTRODUCTION
Polyploidization1 has generated variation in ploidy level
within and across species [1,2], and new examples are
continually being discovered, particularly in animals
[3]. Intraspecific ploidy-level variation is associated
with a suite of connections between polyploidy and
biological phenomena [4,5], and has the potential to
influence fitness-related traits [6,7]. We discuss
whether ploidy variation could mediate resistance to
a ubiquitous enemy—parasites (defined here as an
organism that harms its host). Although current
theory suggests ploidy level can profoundly influence
infection dynamics and host–parasite evolution [8,9],
data are scarce [10,11].
2. PLOIDY AND IMMUNE FUNCTION
Polyploidy (i.e. autopolyploidy) could directly influence
immune response to a parasite attack in at least two
ways. Firstly, the addition of a new genome may increase
allelic diversity. Higher allelic diversity at immune genes
could help hosts recognize a greater diversity of parasites
[12]. Secondly, if the additional genome copies are
expressed, then polyploids may generate higher amounts
of gene products related to immune function.

(a) Allelic diversity and immune function

The high allelic diversity of immune genes is partly a
consequence of parasite-mediated selection for rare geno-
types and/or novel immune functions [13]. Parasite-
mediated selection may generate such diversity through
mechanisms such as heterozygote advantage [14] and
negative frequency-dependence [13]. Heterozygote
advantage could be influenced by ploidy level because
the extra alleles present in polyploids may increase
1Polyploids can have either non-hybrid (autopolyploid) or hybrid
(allopolyploid) origins. Because hybridization can influence
phenotype and genotype, we focus on autopolyploids, unless stated
otherwise.
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the probability of heterozygosity for an individual at
a given locus. The presence of an extra genome
could also increase the likelihood that an individual
possesses a rare genotype at resistance loci; this
would be advantageous if parasite-mediated negative
frequency-dependent selection favours rare genotypes.

Studies from natural populations have documented
connections between parasite-mediated selection and
the maintenance of allelic variation at genes associated
with immune function [12,15]. Genetic polymorphism
can play an important role in generating variation in
recognition molecules [16], and diversity is important
for disease resistance in host individuals and populations
[17,18]. Furthermore, measures of genome-wide
genetic variation (e.g. microsatellite heterozygosity
[19,20]) are often correlated with individual immune
function and susceptibility [20–22]. Increased allelic
diversity associated with polyploidy may thus enhance
host ability to detect and fight off a variety of parasites.
However, polyploidy might be irrelevant in generating
functional diversity if increased allelic variation is
dwarfed by variation generated at the protein level via
somatic diversification of recognition molecules [23,24].

(b) Expression levels and immune function

Protein [25] and RNA content [26] often increase with
ploidy level [27], suggesting that extra chromosome
sets can increase gene expression. However, certain
loci or even whole genomes (generally, in allopoly-
ploids) are up- or downregulated (or even silenced)
as ploidy increases [28]. This among-locus variation
may be system specific [27,28], making it difficult to
predict how polyploidy will affect particular genes.

Although the relationship between expression levels
and immune function is not well characterized [29,30],
some suggest that the two could be positively related
[29]. Data consistent with this possibility come from
comparisons of immune function in male and female
mammals, which is typically higher in females. One
explanation for this sexual dimorphism in immune func-
tion could be differences in sex chromosome number
[29], although higher investment [31] by females
cannot be excluded. Although females typically express
only one of their X-chromosomes per cell (owing to inac-
tivation), some X-chromosome genes (involved in
immune function [29]) escape silencing. Given the
difference in sex chromosome number, the dosage of
these gene products may be higher in females [32].
3. THREE-WAY INTERACTION: PLOIDY,
CONDITION AND RESISTANCE
Individuals suffering from environmental stressors are
often more susceptible to infection [33,34]. This may
be a consequence of weakened immune defences in
hosts of poor condition [35], because immune func-
tions are energetically costly to maintain and use
[36]. Consequently, any effects of ploidy-level vari-
ation on host condition could indirectly influence
parasite resistance.

Current knowledge regarding connections between
body condition and ploidy level comes largely from studies
that focused on reallocation to growth in artificially gener-
ated and sterile triploid fish and shellfish used for
aquaculture [37–39]. While the applicability of these
studies to natural, fertile autopolyploids is limited, they
This journal is q 2012 The Royal Society
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do suggest that ploidy level influences traits that can inter-
act with condition. The few relevant studies from natural
animal polyploids have also demonstrated that variation in
body composition [26] and growth rate [40], among
others, can be associated with ploidy level.
4. DIRECT EMPIRICAL CONNECTIONS
Studies directly addressing ploidy level and host immune
function suggest that polyploidy may have no effect or
be detrimental. In both the farmed Pacific oyster
(Crassostrea gigas) [41] and field-collected New Zealand
freshwater snails (Potamopyrgus antipodarum) [42], hae-
mocyte concentration in the haemolymph of triploids is
lower than in diploids. Similarly, nitroblue tetrazolium
reaction and hypoferraemic response are reduced in tri-
ploid versus diploid goldfish (Carassius auratus) and
salmon (Salmo salar), respectively [43,44]. Additionally,
while the transcriptional responses of several immune-
related genes to bacterial infection do not differ between
diploid and triploid Chinook salmon (Oncorhynchus
tshawytscha), some genes show reduced performance in
triploids [45]. Polyploidy may thus negatively affect
immune defence, or polyploid individuals may not
need to mount a strong immune response.

Like many animal polyploids, these triploid fishes
and molluscs are asexual, and so the effects of ploidy
and reproductive mode may be confounded [1,46].
This problem can be circumvented by taking advantage
of systems that feature both mating system and ploidy-
level variation [47,48] and by comparing resistance in
triploid and tetraploid asexuals.
5. CONCLUSION
Connections between ploidy and parasite resistance
are certainly complex, and selection on resistance is
not necessarily positively linear [49] (e.g. because of
immune defence costs [36]). More is not inevitably
better. In fact, higher ploidy may be harmful [50].
To determine if ploidy-level variation can affect disease
spread and resistance evolution, we must first ask: Is
increased ploidy associated with higher allelic diversity
at resistance genes? Do organisms with higher ploidy
levels have higher expression levels of immune genes?
How is resistance affected by host conditions mediated
by polyploidization?

An effective way to evaluate these connections
between parasitism and ploidy will be focus on natu-
rally existing, non-hybrid species or conspecifics that
contain a mix of diploids and autopolyploids. These
systems will also ideally be amenable to the artificial
creation of neopolyploids [51], allowing the direct
phenotypic effects of polyploidy and the long-term
consequences of extra genomic copies to be decoupled.
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