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Abstract

In human alcoholics, the cell density is decreased in the prefrontal cortex (PFC) and other brain
areas. This may be due to persistent activation of cell death pathways. To address this hypothesis,
we examined the status of cell death machinery in the dorsolateral PFC in alcoholics. Protein and
MRNA expression levels of several key pro- and anti-apoptotic genes were compared in post-
mortem samples of 14 male human alcoholics and 14 male controls. The findings do not support
the hypothesis. On the contrary, they show that several components of intrinsic apoptotic pathway
are decreased in alcoholics. No differences were evident in the motor cortex, which is less
damaged in alcoholics and was analysed for comparison. Thus, cell death mechanisms may be
dysregulated by inhibition of intrinsic apoptotic pathway in the PFC in human alcoholics. This
inhibition may reflect molecular adaptations that counteract alcohol neurotoxicity in cells that
survive after many years of alcohol exposure and withdrawal.
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Introduction

Several brain areas including the prefrontal cortex (PFC) demonstrate physiological and
structural alterations in human alcoholics (Chanraud et al., 2007; Dao-Castellana et al.,
1998; Fadda and Rossetti, 1998; Goldstein et al., 2004; Sullivan and Pfefferbaum, 2005).
Imaging studies show reduced grey- and white-matter volumes, with marked losses in the
frontal lobes, while regional alterations are associated with impairment of cognitive
functions (Chanraud et al., 2007; Dao-Castellana et al., 1998; Goldstein et al., 2004;
Sullivan and Pfefferbaum, 2005). Histopathological analyses demonstrate that neurons and
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glial cells of alcoholics are abnormal and their density is decreased in the PFC and several
other brain areas (Harper et al., 2003; Kril et al., 1997; Miguel-Hidalgo et al., 2002).
Cellular and white-matter loss may contribute to cognitive impairment associated with
alcoholism. Mechanisms underlying cell loss/neurodegeneration have not yet been
identified, although apoptosis or programmed cell death has been implicated (Fadda and
Rossetti, 1998; Freund, 1994; lkegami et al., 2003).

Apoptosis appears to contribute to the pathogenesis of neurodegeneration (Mattson and
Magnus, 2006; Okouchi et al., 2007). Protein families that control apoptosis include the
caspases with caspase-3 as the effector enzyme and the Bcl-2 group of proteins, of which
Bcl-2 and Bcl-X|_suppress cell death and Bax induces it. Studies of the developing and
adult murine brain demonstrate that acute ethanol intoxication triggers apoptotic
neurodegeneration or excitotoxic cell death, which are dependent on activation of caspase-3
and up-regulation of Bax, and is negatively regulated by Bcl-2 (Heaton et al., 1999;
Nowoslawski et al., 2005; Rajgopal et al., 2003; Young et al., 2005).

Similarly, persistent activation of cell death pathways by alcohol consumption may
contribute to neurodegenerative changes in the brain of human alcoholics. To address this
hypothesis, we evaluated the status of the cell death machinery in the PFC of human
alcoholics. Expression of several key pro- and anti-apoptotic genes were analysed at protein
and mRNA levels in post-mortem samples from alcoholics and control subjects. The motor
cortex (MC), which is less damaged in alcoholics (Harper et al., 2003; Ikegami et al., 2003;
Kril et al., 1997; Miguel-Hidalgo et al., 2002), was analysed for comparison.

Case selection

Samples of the dorsolateral PFC (Brodmann area 9) and MC (Brodmann area 4) were
collected from 14 alcoholic and 14 control subjects (Table 1), all Caucasian males at the
Tissue Resource Center, University of Sydney, Australia (Sheedy et al., 2008), and matched
for age at death and post-mortem interval (PMI). Cortical samples were punched from
coronally sliced frozen sections, powdered and used for extraction of proteins and RNA. The
samples contained all cortical layers with both grey and white matter at approximately equal
composition. Alcohol subjects met DSM-IV criteria and National Health and Medical
Research Council/World Health Organization criteria as individuals who had consumed >80
g ethanol per day for the majority of their adult lives. Controls had either abstained from
alcohol completely or were social drinkers who consumed <20 g ethanol per day on average.
Cases with a history of poly-drug abuse (evidence that the individual abused other drugs
such as cocaine or heroin) or with medical complications such as liver cirrhosis and the
Wernicke—Korsakoff syndrome or alcoholic cases with concomitant diseases were excluded.
The main body of the population was smokers including 83% of alcoholics and 75% of
control subjects. Samples were taken by qualified pathologists under full ethical clearance
from the Sydney South West Area Health Service Human Ethics Committee (X03-0074)
and informed written consent was obtained from next of kin.

Western blotting (Yakovleva et al., 2007)

Powdered tissue samples were boiled in pre-warmed SDS extraction buffer [0.45 M Tris—
HCI (pH 8.5), 2.5% glycerol, 4% SDS, 0.5 mM DTT] and 5x protease inhibitors for 5 min,
sonicated and protein extracts aliquoted and kept at —80 °C until usage. Protein
concentration was determined with the DC protein assay (Bio-Rad Laboratories, Hercules,
CA, USA). Aliquots of tissue extracts [10-140 wg protein for the calibration curve (see Fig.
1); and 70 wg protein for comparison of alcoholics and controls] were heated for 5 min at 95
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°C in the presence of 5 mM g-mercaptoethanol and resolved by SDS-PAGE on 10% tricine
gels. Reference samples consisting of pooled cerebellar extracts from control subjects were
loaded onto three wells, two at each edge and one in the middle of each gel and their density
values used to ascertain reproducibility on each blot and for interblot comparison. Proteins
were transferred onto nitrocellulose membranes (Schleicher and Schuell, Dassel, Germany)
at 4 °C and stained with Memcode Reversible Protein Stain kit (Pierce, Rockford, IL, USA).
Densitometry values of protein load were used for normalization of Western blot data
[immunoreactivity optical density (OD)]. After destaining, membranes were incubated with
stripping buffer [62.5 mM Tris—=HCI, 2% SDS, 100 mM g-mercaptoethanol (pH 6.7)] for 20
min at 55 °C, blocked for 30 min with 5% non-fat dry milk in 50 mM Tris—HCI, 0.15 M
NaCl, 0.05% Tween-20 buffer and probed with monoclonal antibodies against BAX (B-9;
1:330; Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA), BCL-2 (clone 100, 1:500;
Upstate Biotechnology, Lake Placid, NY, USA), BCL-X| (H-5, 1:50; Santa Cruz
Biotechnology), p53 (PAb 1801, 1:100; Calbiochem, San Diego, CA, USA), S-tubulin class
Il (MMS-435P, 1:10000; Nordic Biosite AB, Téby, Sweden), y-enolase (NSE-P2, 1:1000,
Santa Cruz Biotechnology) or glial fibrillary acidic protein (GFAP) (cocktail of monoclonal
antibodies, 1:1000; BD Transduction Laboratories, Lexington, KY, USA); or with rabbit
polyclonal antibodies against activated caspase-3 (PAb CM1, 1:800; BD Transduction
Laboratories). Goat anti-mouse and anti-rabbit antibodies conjugated with horseradish
peroxidase (Bio-Rad) were used as secondary antibodies. Membranes were developed with
the ECL detection system (Amersham, Little Chalfont, UK). Fuji Film image gauge
software 3.12 was used for densitometric analysis. Protein levels were calculated as the ratio
of OD of protein immunoreactivity to Memcode OD.

MRNA analysis by quantitative RT-PCR (Johansson et al., 2007)

RNA was prepared using RNeasy Lipid Tissue Mini kit (Qiagen, Germantown, MD, USA)
and was quantified by Nanodrop® (Nanodrop Technologies, Wilmington, DE, USA). RNA
quality was controlled using Agilent 2100 Bioanalyzer (Agilent, Palo Alto, CA, USA). RNA
with clear ribosomal 18S and 28S RNA was used for further analysis. cDNA synthesis was
performed with the High Capacity cDNA Archive kit (Applied Biosystems, Foster City, CA,
USA). Analysis of mRNA levels was performed with TagMan® low density arrays (Applied
Biosystems) fabricated according to custom design. A pre-prepared micro fluidic card
containing probes and primers for each gene, cDNA and TagMan® Universal PCR Master
Mix (Applied Biosystems) was added in a final concentration of 65 pg cDNA per sample
and gene. Every sample was run in duplicate on the same array for each gene. The PCR
amplification was performed at 50 °C for 2 min, 94.5 °C for 10 min and 40 cycles of 97 °C
for 30 s followed by 59.7 °C for 1 min. To measure the quantity of a given RNA species, the
threshold cycles (C;) were monitored by the Applied Biosystems 7900HT Fast Real-Time
PCR system. The levels were normalized using a normalization factor (geometric mean of
two reference genes selected by the gegNORM program: http://medgen.ugent.be/genorm/)
and gBASE program for internal and external calibration and also for easy care of large RT—
PCR datasets (http://medgen.ugent.be/gbase/). The S-actin (ACTB) and ribosomal large PO
(RPLPO) genes were chosen for normalization in the PFC, and the 18S and RPLPO genes in
the MC.

Statistical analysis

Data normality was analysed using Shapiro-Wilk’s Wtest. A general stepwise linear
regression model and Student’s #test were used for normally distributed datasets. Datasets
that were not normally distributed were analysed by Mann—Whitney Utest and Spearman
correlations. Each protein/fmRNA was treated individually such that no multiple comparison
tests were made. Significance was set at p<0.05 and trends considered for p<0.10. Statistica
6.0 package (StatSoft Scandinavia, Uppsala, Sweden) was used for analysis.
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Analysis of the demographic characteristics (Table 1) showed no significant differences in
age (5g=0.01, p=0.99), PMI (%g=0.85, p=0.40), brain pH (%g=0.11, p=0.91), storage time
(g=2.34, p=0.37) and proportions of smokers and non-smokers (Fisher’s test, p=0.5)
between controls and alcoholics.

Levels of proteins of cell suicide (activated caspase-3, BAX and p53) and protection
machineries (BCL-2 and BCL-X| ), and levels of neuronal (B-tubulin class 11l and -
enolase) and glial (GFAP) protein markers were analysed using Western blot (Figures 1 and
2a). Measurements of all proteins were performed within the linear range of detection as
evident from experiments with serial dilutions of reference sample (Figure 1b); the
correlation coefficient between protein immunoreactivity measured as OD and protein load
measured as Memcode OD was =0.98 (Figure 1c).

In the PFC, activated caspase-3 was significantly decreased in alcoholics (1.9-fold ; Mann-
Whitney U'test, p=0.017) (Figure 2a, Table 2). In contrast, BCL-2 was increased with trend
(1.4-fold, Mann-Whitney U'test, p=0.073). Levels of other proteins did not differ between
controls and alcoholics. No differences were evident in the MC. The absence of differences
between the two groups of subjects in neuronal and glial markers suggests that these
proteins and total protein content are altered in parallel, and that cell death/
neurodegeneration affects both cell types similarly in alcoholics. Alternatively, remaining
cells may increase synthesis of the markers.

MRNA levels of pro-apoptotic BAX, PDCD8, BID, CCND1 and TP53, anti-apoptotic
BCL-2, BIRCZ, FLIPand CDKN1A; and GADD45A were measured by quantitative RT—
PCR (for functions of protein products in cell death pathways, see Discussion). In the PFC,
the following mMRNAS were significantly decreased in alcoholics; PDCDE& (1.5-fold ;
Student’s ttest, p=0.001), B/D (1.4-fold; Mann-Whitney U'test, p=0.031), CCND1 (1.6-
fold ; Mann-Whitney U'test, p=0.010), and B/RC2 (1.5-fold; Mann-Whitney U'test,
p=0.002) (Figure 2b, Table 2). Levels of other mMRNAs did not differ between the two
groups. No differences were found in the MC.

Two-way ANOVA (group and region as independent factors) revealed significant
groupxregion interaction [ A1, 40)=6.62, p<0.01] for activated caspase- 3, indicative of a
region-specific alteration in levels of this protein. No interaction was evident for other
proteins.

No influence of brain pH, age at death and PMI as covariates on the differences found was
observed. Although influence of storage time was found for PDCD8[H1, 19)=21.78,
p=0.001], use of storage time as a covariate failed to affect significance of differences for
this mMRNA. Non-parametric Spearman correlation analysis revealed significant association
between age and BCL-2 (/R=+0.46, p<0.05); age and activated caspase-3 (/”=+0.42, p<0.05);
and storage time and activated caspase-3 (R=-0.44, p<0.05). Covariate analysis revealed
significant influence of smoking on PDCD8[AH1, 19)=14.68, p=0.001], however, without
apparent effects on the significance of differences found.

Discussion

The findings of the present study do not support the hypothesis that chronic alcohol
consumption activates cell death pathways that may underlie neurodegenerative changes in
chronic alcoholics. On the contrary, down-regulation of activated caspase-3, the key pro-
apoptotic protein along with decreases in mRNA levels of both pro-apoptotic PDCD&
(apoptosis-inducing factor, AlF) and B/D, and of CCND1 (cyclin D1) in the PFC of

Int J Neuropsychopharmacol. Author manuscript; available in PMC 2012 July 08.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Johansson et al.

Page 5

alcoholics were found. Previous studies established a critical role of these proteins in
neuronal and glial cell death. Thus, AIF released from mitochondria has a causative role in
caspase independent death signalling; Bid when cleaved by proteases may induce multiple
mitochondrial dysfunctions including the release of the inter-membrane space proteins and
generation of reactive oxygen species; while CCND1 plays critical roles in the delayed death
component (Heaton et al., 1999; Mattson and Magnus 2006; Nowoslawski et al., 2005;
Okouchi et al., 2007; Rajgopal et al., 2003; Sumrejkanchanakij et al., 2003; Young et al.,
2005). Down-regulated proteins/mRNAs and BCL-2 belong to the intrinsic apoptotic
pathway, or are essential for delayed cell death (CCNDYJ). Interestingly, B/RCZ [an inhibitor
of apoptosis protein 2 (clAP2)], which is not directly involved in apoptotic signalling but
may suppress effector caspase activity was also down-regulated. The mMRNA (7Pp53) and
protein levels of the critical regulator of neuronal and glial cell death, the p53 tumour
suppressor protein, and also MRNA levels of two p53 transcriptional targets, COKN1A
(cyclin-dependent kinase inhibitor p21Wafl), which may protect cells against apoptosis, and
GADD45A, which may regulate repair of DNA damaged by chronic alcohol exposure/
withdrawal, did not differ between alcoholics and controls. Moreover, no differences were
evident in FL/P, a modulator of caspases-8 and -10. Collectively, these findings suggest that
in the PFC of alcoholics the cell death machinery is dysregulated by inhibition of several
components of the intrinsic cell death pathway.

Some limitations of the present study are that the findings are applicable to only males (no
female subjects were analysed); and that toxicology screen was incomplete (data is available
only for five cases) and we were unable to make correlations with toxicological parameters.
Instead, the five patients who had traces of medications in their blood (two in the control
group with traces of paracetamol and codeine; three in the alcoholic group with traces of
diazepam) were excluded and the data were re-analysed; the differences between controls
and alcoholics remained significant besides those for B/D. PMI as covariate does not
influence the differences between the two groups albeit inclusion of four controls and seven
alcoholics with PMI >25 h is a limitation. Another limitation is that the alterations in the cell
death machinery were not localized to a specific cell type, or to grey or white matter.

Several scenarios might explain the findings. First, cell death machinery may be
differentially altered in the brain of alcoholics and controls after death. However, Spearman
rank correlation failed to reveal interactions of PMI and storage time with pro- or anti-
apoptotic proteins/mRNAs. Second, the findings may reflect inherited molecular differences
between controls and alcoholics. Third, the observed differences may be the manifestation
of molecular adaptations that counteract alcohol neurotoxicity in cells that survive after
many years of alcohol exposure and withdrawal. Consistently, up-regulation of several
genes involved in cell protection in the PFC in human alcoholics was reported (Flatscher-
Bader et al., 2005). Adaptations in cell suicide mechanisms would limit the extent of
alcohol-induced brain damage, thus protecting cognitive and other PFC functions in chronic
alcoholics. Such adaptations may be developed after initial activation of cell death pathways
during the first years of heavy alcohol drinking resulting in gross loss of gray and white
matter; this notion is generally supported by animal studies on acute alcohol intoxication
(Heaton et al., 1999; Nowoslawski et al., 2005; Rajgopal et al., 2003; Young et al., 2005).
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Western blot analysis of proteins in human brain samples. (a) Representative Western blots
of proteins in the prefrontal cortex (PFC) of three control subjects (C) and three alcoholics
(A). Identification numbers of subjects appear above the images. A total of 70 g protein

extracts were loaded on the gel. Proteins produced a single band with the predicted
molecular size of 21 (BAX), 26 (BCL-2), 50 (f-tubulin class I11), 48 (y~enolase) 18
(activated caspase-3), 28 (BCL-X| ) and 53 (p53) kDa, or a cluster of bands with the

predicted molecular size of 38-50 kDa [glial fibrillary acidic protein (GFAP)]. GFAP levels
were analysed as a sum of optical density (OD) of all bands. (b) Representative analysis of
p53 protein at serial dilutions of PFC extract. Sample buffer or extract aliquots containing
10-140 pqg protein were loaded on the gel and analysed by Western blot. (c) Densitometry

assessment of p53 bands shown in panel (b) demonstrates linear dependence (/2=0.97,
£~=0.0001) between the protein immunoreactivity measured as OD and protein load

measured as Memcode OD. OD is presented as relative units minus background determined
in the absence of protein load. Immunoreactivity OD and Memcode OD at the 10 ug protein

load were taken as 100 relati

Ve units.
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Figure 2.
(@) Protein and (b) mRNA levels of key components of cell death/protection machineries in

human alcoholics compared to controls. Data for alcoholics are presented as relative levels
(mean£S.E.M.) compared to controls, which are set as 1. Data for prefrontal cortex () and
motor cortex (H). * p<0.05, ** p<0.01, *** p=0.001.
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