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Abstract

Heterochromatin comprises tightly compacted repetitive regions of eukaryotic chromosomes. The 

inheritance of heterochromatin through mitosis requires RNA interference (RNAi), which guides 

histone modification 1 during the DNA replication phase of the cell cycle2. Here, we show that the 

alternating arrangement of origins of replication and non-coding RNA in pericentromeric 

heterochromatin results in competition between transcription and replication. Co-transcriptional 

RNAi releases RNA polymerase II (PolII), allowing completion of DNA replication by the leading 

strand DNA polymerase, and associated histone modifying enzymes3 which spread 

heterochromatin with the replication fork. In the absence of RNAi, stalled forks are repaired by 

homologous recombination without histone modification.
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In fission yeast, the Rik1/CLRC (Recombination in K, Cryptic Locus Regulator) complex 

silences heterochromatin via Clr4 and Lid2, which methylate histone H3 lysine 9 (H3K9) 

and demethylate histone H3 lysine 4 (H3K4), respectively2. This complex is recruited in part 

by RNA interference, which processes non-coding transcripts found in the pericentromeric 

heterochromatin1,4. Interactions between the RITS (RNAi transcriptional silencing) complex 

and CLRC have recently been found5,6, but spreading of the Rik1 complex into reporter 

genes depends on the catalytic activity of RNAi, and the mechanism remains unknown7. 

Recently, we found that Cdc20 and Mms19 interact with Rik1 and are required for histone 

modification3. Cdc20 is the catalytic subunit of the leading strand DNA polymerase Polε, 

while Mms19 is a regulatory subunit of the PolII transcription factor TFIIH. Both proteins 

participate in transcription coupled nucleotide excision repair (TC-NER) which depends on 

damage-stalled PolII to detect structural lesions in the DNA which are repaired by the Polε 

after PolII release8.

The pericentromeric heterochromatin of fission yeast comprises outermost (otr) repeats 

called dg (5kb) and dh (1-6kb), flanked by innermost (imr) repeats (~6kb) containing 

clusters of tRNA genes (Fig. 1a). Histone H3 lysine-9 methylation is associated with dg and 

dh repeats (Fig. 1b), but ends abruptly at the tRNA clusters, and so is confined to 

heterochromatin9. The dg and dh repeats are transcribed by RNA polymerase II 10, and 

processed into siRNA clusters up to 4.5kb in length (Fig. 1b). To investigate the extent of 

siRNA precursor transcripts, we first cloned and sequenced dh and dg repeat complementary 

DNA from dcr1Δ mutants (Fig. 1c). Polyadenylation sites were then identified using RACE-

PCR (Methods), and sequencing revealed they were located within the clusters of siRNA 

(Fig. 1c). In previous studies of dcr1Δ mutants, PolII enrichment was detected by ChIP11, 

while transcriptional run-on (TRO) analysis indicated over-accumulation of forward (but not 

reverse) transcripts1. We found that these PolII ChIP (cen-dg) and TRO probes lie 

downstream of “forward” polyA sites (Fig. 1d), indicating inefficient termination and PolII 

readthrough in the absence of RNAi. To confirm readthrough, Northern blots of 

polyadenylated and total RNA from dcr1Δ, ago1Δ and rdp1Δ mutants were probed with 

strand specific probes. Transcripts corresponding to full length dh (1.3kb) and dg 

(1.3-2.3kb) cDNA clones were enriched in polyA+ RNA, as expected, but much longer 

readthrough transcripts up to 4.5kb could also be detected (Supplementary Fig. 1) indicating 

that polyadenylation was highly inefficient at these internal sites.

Inefficient polyadenylation is a strong indication of failure to release RNA polymerase II12, 

and we hypothesized that slicing7 and dicing13 of nascent transcripts via RNAi promotes 

3’-5’ degradation by the exosome7 and release of RNA Polymerase II from the 3’ end12. The 

exosome is required for silencing consistent with this idea1415. To examine PolII release, we 

performed ChIP-seq with PolII antibodies, and found peaks of both poised (S5 

phosphorylated) and elongating forms (S2 phosphorylated) of PolII in dcr1Δ mutants that 

corresponded to the polyadenylation sites on each strand (Fig. 1b,c). Peaks of siRNA 

accumulation mapped just downstream. Thus siRNA in WT cells accumulated where PolII 

was released (Fig. 1b).

siRNA accumulate during S phase2 and we found that siRNA clusters ended abruptly at the 

replication origin homology regions contained within each repeat16 (Fig. 1b). To assess the 
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influence of DNA replication on PolII accumulation we blocked replication in high 

concentrations of hydroxyurea (HU) and performed ChIP-seq using PolII antibodies. In 

arrested dcr1Δ mutants, PolII accumulated throughout the otr repeats, but in dividing dcr1Δ 

cells, PolII accumulation was absent from replication origins (Fig. 2a and data not shown). 

To test if PolII was expelled by replication fork progression (Fig. 2b), HU-arrested dcr1Δ 

cells were released into the cell cycle (Fig. 2c). As predicted, accumulation at replication 

origins was quickly lost, and PolII was only found between origins, closer to promoters10, in 

each subsequent S phase.

Failure to release RNA polymerase II during S phase is a strong and robust signal for DNA 

damage8. In order to monitor DNA repair, the HU-arrested cells contained a Rad22-fusion 

protein Rad22-YFP. Rad22 (Rad52 in budding yeast) is essential for homologous 

recombination (HR) and is associated with single stranded DNA ends early during DNA 

repair. Chromatin immunoprecipitation revealed that Rad22 Rad52 was weakly associated 

with heterochromatic origins in wild-type cells arrested with HU, but quickly declined 

following release (Fig. 2c). In dcr1Δ mutants, on the other hand, Rad22 Rad52 peaked early 

in each successive S phase, indicating engagement of the repair machinery during 

heterochromatin replication17. In order to exclude the impact of HU arrest on DNA damage, 

we also examined Rad22-YFP accumulation in untreated WT and dcr1Δ mutant cells by 

fluorescence microscopy (Supplementary Fig. 2). The results were consistent with 

chromatin IP, in that 6 times as many dcr1Δ than WT cells had Rad22 Rad52 foci during 

septation (early S phase). Therefore, Dcr1 activity prevents DNA damage and the 

engagement of HR at the centromere.

We performed genetic tests to determine the role of RNAi in preventing DNA damage 

during S phase. DNA damage during replication can be rescued by HR repair, and we found 

that double mutants in the RecA homolog rhp51 rad51 and dcr1Δ or ago1Δ were inviable or 

formed microcolonies (Fig. 2d). A similar requirement for Rhp51 Rad51 has been 

demonstrated for convergent stalled replication forks18, which are protected from collapse in 

fission yeast by a stable replication-pausing complex comprising Swi1/Swi3 and Mrc1 

(Mediator of replication checkpoint 1)19. Low concentrations of HU stalls replication forks, 

and we found that while dcr1Δ, ago1Δ and rdp1Δ cells were insensitive, double mutants 

with swi3Δ or mrc1Δ were very sensitive to low concentrations of HU (Supplementary Fig. 

3). Similar results were obtained with Camptothecin (CPT) which causes arrest during S 

phase when the replication fork encounters the CPT-topoisomerase I complex. In genome-

wide epistasis tests, mutants in more than 30 genes, mostly encoding proteins involved in 

DNA repair and histone modification interacted significantly with both mrc1 and dcr1, 

forming a striking genetic network (Supplementary Table 1). This indicates that loss of Dcr1 

activity engages replication fork protection.

In order to assess fork integrity, we examined replication of the repeats by 2D gel 

electrophoresis using probes from the ura4 transgene, which was inserted into a passively 

replicated dg repeat on chromosome 1 (Fig. 2b). In WT cells, we detected strong X 

intermediates, indicative of joint molecules, as well as the expected fork or Y molecules 

(Fig. 3a). Similar X-DNA sister chromatid junctions arise at origins20 but also at stalled 

replication forks21. These X-molecules were unaffected in dcr1Δ (Fig. 3b) but reduced in 
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mms19Δ, in swi6Δ and especially in clr4Δ cells (Fig. 3c-e). Both Mms19 and Clr4 interact 

with Rik1, and Mms19 participates in transcription initiation3. Swi6 on the other hand is 

required to initiate replication within heterochromatic repeats17, and recruitment depends on 

Clr4. Thus simultaneous replication and transcription of heterochromatic repeats promote 

local replication fork stalling.

In WT cells (Fig. 4a), modified histones recruit Swi6 and the Rik1 complex via chromo- and 

other domains. Swi6 promotes early replication, and the Rik1 complex interacts with DNA 

Polε, which allows spreading of histone modification along with fork progression3. Flanking 

tRNA genes (Fig. 1a) pause replication22, preventing further spreading into neighboring 

euchromatin9,23. Transcription during S phase stalls the replication fork, accounting for 

interactions between the replication and transcription machineries3, but RNAi releases PolII 

allowing replication to proceed. In the absence of RNAi (Fig. 4b), PolII remains stalled at 

replication forks and signals DNA repair by homologous recombination, which restarts 

blocked forks24. The Rik1 complex is lost along with the replisome, preventing spreading of 

heterochromatin into reporter genes, which lose H3K9 methylation entirely. Recombination 

also removes modified histones from at least one of the two daughter chromatids25 reducing, 

but not eliminating, methylation of the repeats as previously observed7.

We tested this model in several ways. First, we predicted that the interaction between the 

Rik1 complex and Polε should depend on RNAi, and we found that co-immunoprecipitation 

of Cdc20/ Polε with Dos2/Clr7 was reduced in dcr1Δ cells, along with H3K9me2 

(Supplemental Fig. 4). Second, we observed that mutants in the cyclin-dependent PolII CTD 

kinase Cdk9 display slow growth and loss of pericentromeric silencing and sRNA 

(Supplemental Fig. 5). cdk9 is a central regulator of transcription elongation that links cell-

cycle regulated pre-mRNA processing, co-transcriptional histone methylation and DNA 

damage26. Finally, Clr4 has recently been found to have additional roles in recruiting the 

RNA-induced transcriptional silencing (RITS) complex to accessory PolII factors27, 

providing a potential mechanism for PolII release by RNAi. We found long transcripts 

indicative of strong transcriptional readthrough in clr4Δ mutant cells consistent with this 

model (Supplementary Fig. 1).

In the budding yeast S. cerevisiae, the Dicer-related RNAse III Rnt1 releases PolII during 

transcription termination28 while in E.coli, failure of transcription termination stalls 

replication forks and triggers recombination29, providing a precedent for the mechanism we 

propose. According to this mechanism, transcription during S phase triggers histone 

modification, so long as RNA polymerase is released by RNAi, and not by homologous 

recombination repair. In plants, fungi and invertebrates, heterochromatic silencing may 

involve similar mechanisms (Supplemental Table 1), while in mammals, both X inactivation 

and imprinting require transcription of non-coding RNA in dividing cells30. In each case, 

release of PolII during S phase, by RNAi or by other means, could allow fork restart and 

spreading of histone modification in a similar way.
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Methods summary

Non-coding transcripts were cloned from a cDNA phage library by hybridization to dh and 

dg consensus probes. Cloning and high throughput sequencing of sRNA was performed 

using the Illumina genome analyzer according to manufacturer’s instructions. Two 

dimensional gel electrophoresis of replication intermediates from steady state cultures was 

performed with probes to the otr1∷ura4+ insertion. For ChIP experiments, cultures were 

arrested in 15mM HU for 4.5 hours, released and harvested at indicated times, to be 

crosslinked and processed for Chromatin immunoprecipitation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Transcription and replication of pericentromeric heterochromatin in fission yeast
a. Pericentromeric heterochromatin on Centromere 3. dh (red), dg (green) and imr (magenta) 

repeats are shown, bordered by tRNA genes (brown). Replication origins (yellow) are found 

in each repeat. b. Tiling microarrays of K9me2 ChIP (light blue) and clusters of small RNA 

sequences (dark blue) from wild-type cells. ChIP-seq reads corresponding to poised (S5-P) 

and elongating (S2-P) RNA polymerase II enriched in dcr1Δ cells relative to WT cells are in 

black. c. cDNA clones (beige) from dcr1Δ cells. PolyA sites are indicated as vertical lines 

and correspond to peaks of PolII. Arrows indicate the direction of “Forward” transcription. 

d. Alignment of probes used in previous studies indicates that regions enriched for PolII11 

(cen-dg) and transcriptional run-on probes1 (TRO) lie downstream of forward orientation 

polyA sites
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Figure 2. RNA interference and DNA replication restrict RNA polymerase II accumulation and 
prevent DNA damage
a. Small RNA (blue) and PolII ChIP-seq reads (black) and regions of significant enrichment 

(blue and red rectangles) from WT and dcr1Δ on the right arm of Centromere 1. b. A 

replication bubble is shown, initiated at one of the 3 origin homology regions at centromere 

1 (yellow boxes). c. Chromatin immunoprecipitation for RNA PolII and Rad22Rad52 from 

HU-arrested and released wild-type (dashed lines) and dcr1Δ (solid lines). Cell cycle 

progression after release from HU block is monitored by septation index, which peaks 

coincident with S phase. d. Representative parental and non-parental di-type tetrads from 

crosses between rhp51Δ cells, defective in homologous recombination, and dcr1Δ or ago1Δ.
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Figure 3. Replication fork stalling during heterochromatin replication
Replication intermediates in wild-type and mutant cells resolved by 2D gel electrophoresis 

and probed with the unique DS/E probe from the ura4 transgene within the dg repeat on 

chromosome 1 (Fig. 2a). (a) A schematic of replication intermediates in 2D gels indicates 

joint molecules (X), and forks (Y). Junction molecules indicate fork stalling in (b) WT and 

(c) dcr1Δ mutant cells, and are reduced in (d) mms19Δ, (e) swi6Δ and (f) clr4Δ.
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Figure 4. Replication-coupled transcriptional silencing through histone modification and RNAi
a. The Rik1 complex (red octagon) is recruited to heterochromatic replication forks by 

interactions with methylated histone H3K9me2 and with the leading strand DNA 

polymerase (Pol ε, green). Swi6 induces origin firing, but collision with RNA polymerase II 

(orange) stalls replication forks. RNAi releases PolII by processing of pre-siRNA transcripts 

(red lines) allowing leading strand DNA polymerase to complete DNA replication and the 

associated Rik1 histone modification complex (red hexagon) to spread histone modification 

(black circles).

b. In the absence of RNAi, origins fire but PolII is not released, stalling replication forks. 

Stalled PolII signals repair via homologous recombination instead. Recombination could in 

principle occur with sister chromatids (shown here) or with other copies of the same repeat 

(not shown). DNA polymerase ε and the associated Rik1 complex are lost along with the 

replisome, and fail to spread histone modification into neighboring reporter genes.
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