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PURPOSE. To delineate astrocyte-mediated inflammatory pro-
cesses in glaucoma, we analyzed proteomic responses of
retinal astrocytes in an experimental rat model using a cell-
specific approach.

METHODS. IOP elevation was induced in rats by hypertonic
saline injections into episcleral veins. Enriched samples of
astrocytes were isolated through the immunomagnetic cell
selection process established originally for retinal ganglion cell
(RGC) sampling. Ocular hypertensive and control samples
were collected by pooling from rat eyes matched for the
cumulative IOP exposure. Protein expression was analyzed
complementarily by quantitative two-dimensional capillary
liquid chromatography and linear ion trap mass spectrometry
(LC-MS/MS) followed by quantitative Western blot analysis and
retinal tissue immunolabeling using specific antibodies to
selected proteins.

RESULTS. Following validation of enriched astrocyte samples,
LC-MS/MS analysis resulted in the identification of over 2000
proteins with high confidence. Bioinformatic comparison
analysis of the high-throughput MS/MS data along with the
findings of immunoblotting and immunohistochemistry sup-
ported distinct responses of ocular hypertensive astrocytes
during the experimental paradigm, which exhibited predom-
inantly cellular activation and immune/inflammatory responses
as opposed to activation of cell death signaling in ocular
hypertensive RGCs. Inflammatory responses of astrocytes in
experimental glaucoma included up-regulation of a number of
immune mediators/regulators linked to TNF-a/TNFR signaling,
nuclear factor kappa-B (NF-jB) activation, autophagy regula-
tion, and inflammasome assembly.

CONCLUSIONS. These findings validate an astrocyte-specific
approach to quantitatively identify proteomic alterations in
experimental glaucoma, and highlight many immune media-
tors/regulators characteristic of the inflammatory responses of
ocular hypertensive astrocytes. By dissecting the complexity of
prior data obtained from whole tissue, this pioneering

approach should enable astrocyte responses to be defined
and new treatments targeting astrocytes to be developed.
(Invest Ophthalmol Vis Sci. 2012;53:4220–4233) DOI:
10.1167/iovs.11-9101

Retinal ganglion cell (RGC) axons, somas, and synapses are
specific victims of glaucomatous neurodegeneration, but

glial cells, including retina and optic nerve astrocytes, survive
the glaucomatous tissue stress and respond differently. By
exerting both neurosupportive and detrimental effects, glial
cells have key roles in determining neuronal life or death
decisions in glaucoma. It has become clear over the past two
decades that elucidation of RGC and glia responses are equally
important for glaucoma research aiming to better understand
and treat neurodegeneration.1

An unbalanced environment created by a variety of stress
stimuli in glaucomatous tissues becomes a major initiator and
propagator of secondary injury processes, which include
neuroinflammation.1,2 Chronic activation of the glia, resident
immune regulatory cells, is commonly accepted as an indicator
of ongoing neuroinflammation in the glaucomatous retina and
optic nerve.1 A growing number of studies analyzing gene and
protein expression in these tissues support increased produc-
tion of various immune mediators in human glaucoma3–5 and
different animal models.6–11 Based on in vitro observations,
glial immune mediators are important to establish autocrine
and paracrine feedback circuits for innate immune injury, glia-T
cell interactions, and antigen presentation.12 For example,
TNF-a, which is a major pro-inflammatory cytokine produced
increasingly by activated glial cells in glaucoma,13,14 has been
linked to glial activation response, inflammatory processes,
and mediation of RGC death in cell cultures.15–17

We previously used enriched samples of RGCs in proteomic
analysis to illuminate different aspects of RGC responses
during glaucomatous neurodegeneration.18–20 More recently,
we also started to isolate enriched samples of astrocytes
through a similar cell isolation technique. With the advantage
of cell-specific sampling, our study aimed to determine
astrocyte-mediated inflammatory processes in an experimental
rat model of glaucoma. Our findings highlighted various
molecules characteristic of the distinct inflammatory responses
of astrocytes during the experimental paradigm. Dissection of
cell-specific responses can help identify molecular pathways of
glaucomatous neurodegeneration toward new treatment strat-
egies, and better understanding of glial immune response
pathways can lead us to immune modulatory treatments for
neuroprotection.

MATERIALS AND METHODS

Experimental Rat Model of Glaucoma

Similar to previous studies,19–21 IOP elevation was induced in 8-month-

old Brown Norway rats by hypertonic saline injections into episcleral
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veins as originally described by Morrison et al.22 IOP was measured in

awake rats twice weekly using a handheld rebound tonometer

(TonoLab, Colonial Medical Supply, Franconia, NH) and monitored

for up to 8 weeks.

To determine optic nerve injury, 1 lm plastic cross-sections of the

optic nerves were used for imaging-based axon quantification as

described in our previous studies.19–21 However, unlike previously

used systematic sampling protocol, optic nerve cross-sections were

imaged in their entirety as non-overlapping frames using the Zeiss/

AxioVision/MosaiX-Panorama software (Carl Zeiss, Thornwood, NY).

This methodological improvement allowed axon counts representing

the entire surface area of optic nerve cross-sections, free from sampling

bias. After image acquisition, processing and analysis of captured

images were performed as described previously using the Axiovision

software (Carl Zeiss).19–21 By following the same protocol, we

manually traced nerve outlines on mosaics of images, and determined

the size and shape parameters to exclude intervening glia, myelin

debris, and highly degenerated axons to ensure accurate counts.

Cumulative IOP exposure was determined by calculating the area

under the pressure-time curve in the ocular hypertensive eye, then

subtracting this IOP-time integral from that in the normotensive fellow

eye (expressed in units of mm Hg-days) as described previously.21 To

minimize the influence of IOP variability among animals and within the

same eye over time, cell-specific samples of retinal proteins were

collected by pooling from rat eyes matched for the cumulative IOP

exposure of 200–400 mm Hg-days. Based on optic nerve axon counts,

this selection criterion corresponded to a relative axon loss value of no

more than 50% (42.6 6 7.3%). Animals with no measurable IOP

exposure were excluded from further analysis.

Mass spectrometric analysis and following Western blot analysis for

data validation required cell-specific protein samples collected from

over 200 rats. In an adult rat retina approximately 150,000 RGCs are

present and the rat retina exhibits an astrocyte-to-RGC ratio of 1:5–7.

The cell selection procedure used (with cell yields of more than 75%)

isolates at least 50 lg of astrocyte protein from 15 rat eyes with or

without ocular hypertension. Although 50 lg or more RGC protein can

be obtained by pooling from 2–3 normotensive rat eyes, the same

amount of RGC protein can be obtained from 8–9 ocular hypertensive

rat eyes with 50% axon loss.

All animals were handled according to the regulations of the

Institutional Animal Care and Use Committee, and all procedures

adhered to the tenets of the ARVO Statement for the Use of Animals in

Ophthalmic and Vision Research.

Sampling of Enriched Astrocyte Proteins

Enriched samples of astrocytes were obtained through the immuno-

magnetic technique we described originally to isolate RGCs.15 Briefly,

retinas were dissected from enucleated rat eyes and the neural retina

was peeled gently from the retinal pigment epithelium under a

microscope. Tissues were dissociated briefly in Eagles’s minimum

essential medium (EMEM) containing 20 U/mL papain, 1 mM L-cystein,

0.5 mM EDTA, and 0.005% DNase (Worthington, Lakewood, NJ). After

rinsing in an inhibitor solution containing EMEM, 0.2% ovomucoid (US

Biological, Swampscott, MA), 0.04% DNAase, and 0.1% BSA (Sigma-

Aldrich, St. Louis, MO), gentle trituration through a 1 mL plastic pipette

was used to yield a suspension of single cells.

The immunomagnetic technique used antibody coated magnetic

beads (4 · 108 beads/ml; Invitrogen, Grand Island, NY). After blocking

by incubation with 1% gamma globulin, retinal cells were incubated

with a monoclonal ASTRO1 antibody specific to an astrocyte surface

protein for 20 minutes (100 lg for 1 · 105 cells/ml; Abcam,

Cambridge, MA). Incubation was followed by washing steps with

PBS containing 0.1% BSA, and 2 mM EDTA, pH 7.4. To select astrocytes,

cells then were incubated with anti-mouse IgM-coated magnetic beads

(25 ll; Invitrogen) for 20 minutes at 48C. For complementary

comparative analysis, we also obtained enriched samples of RGCs

using a monoclonal antibody to Thy-1.1 (100 lg/ml; Millipore/

Chemicon, Billerica, MA) as described previously.15,18–20 Protein

samples were prepared with a lysis buffer containing 50 mM Hepes-

KOH at pH 8.0, 100 mM KCl, 2 mM EDTA, 0.10% NP-40, 2 mM

dithiothreitol, 10% glycerol, and protease and phosphatase inhibitors as

described previously.23

All quantitative analyses of protein expression were repeated at

least three times with different sample pools. The Mann-Whitney rank

sum test was used to determine the statistical significance of

differences in protein expression between ocular hypertensive and

control samples.

Proteomic Analysis

Cell-specific samples (10 lg) were analyzed quantitatively by two-

dimensional capillary liquid chromatography and linear ion trap mass

spectrometry (LC-MS/MS) as described previously.23 Briefly, trypsin-

digested samples were loaded onto an analytical 2D-capillary chroma-

tography column packed with strong cation exchange (SCX) and C18

reversed-phase (RP) resin (Phenomenex, Torrance, CA). This biphasic

column was attached to an analytical RP chromatography column with

an integrated, laser-pulled emitter tip. Peptides were eluted from SCX

with seven-step gradients of 500 mM ammonium acetate and eluted

into a linear ion trap mass spectrometer (Thermo Fisher Scientific,

Waltham, MA) according to a linear HPLC gradient. Protein identifica-

tion was performed with Sequest Sorcerer (Sage-N Research, San Jose,

CA) set up to search a FASTA formatted rat protein database with a

fragment ion mass tolerance of 1.00 Da and a parent ion tolerance of

1.2 Da. The Scaffold (Proteome Software Inc., Portland, OR) was used

to validate peptide and protein identifications based on the criteria of

greater than 95.0% and 99.0% probability, and at least two peptides as

specified by the Prophet peptide24 and protein25 algorithms. The

protein abundance was determined by normalizing the number of

unique spectral counts matching to the identified protein by its

predicted molecular weight.26

Similar to previous studies,3–5 we used the Ingenuity Pathways

Analysis (Ingenuity Systems, Mountain View, CA) to define functional

patterns and generate interaction networks of the identified proteins.

Canonical pathway analysis identified the pathways from the Ingenuity

Pathways Analysis library that were most significant to the data set by

the right-tailed Fisher’s exact test.

Quantitative Western Blot Analysis

For proteomic data validation, cell-specific samples (10 lg) were also

studied by quantitative Western blot analysis as described previously.3–5

Briefly, SDS-PAGE used 7.5% or 12% gels (Bio-Rad, Hercules, CA), and

separated proteins were transferred electrophoretically to a nitrocel-

lulose membrane (Bio-Rad). Following a blocking step, membranes

were probed with a primary antibody to ASTRO1 (1:100; Abcam), glial

fibrillary acidic protein (GFAP; 1:1000; Abcam), Thy-1.1 (1:1000;

Millipore/Chemicon), neuronal nucleus protein (NeuN; 1:1000; Milli-

pore/Chemicon), glutamine synthetase (GS; 1:1000; Millipore/Chem-

icon), cellular retinaldehyde-binding protein (CRALBP; 1:2000; Abcam),

retinal pigment epithelium-specific protein 65 (RPE65; 1:5000; Abcam),

TNF-a (1:500; Abcam), TNF receptor-1 (TNFR1; 1:500; Abcam), cleaved

caspase-8 (1:500; Cell Signaling, Danvers, MA), a subunit of nuclear

factor-kappa B (NF-jB), p65 (phospho-Ser276, 1:1000; Cell Signaling),

an immunity-related GTPase (IRG), IRGM (1:500; LifeSpan Biosciences,

Seattle, WA), mammalian target of rapamycin (mTOR; phospho-

Ser2448, 1:100; Cell Signaling), nucleotide-binding domain, leucine-

rich repeat containing (NLR) family-pyrin domain containing 3 (NLRP3;

1:500; Abcam), or procaspase-1/cleaved caspase-1 (1:150; Millipore/

Chemicon). The antibody dilutions used were optimum as assessed

preliminarily by signal intensity, background staining, and amount of

non-specific detection with varying antibody concentrations. After a

second blocking step, membranes were incubated with secondary

antibodies conjugated with horseradish peroxidase (1:2000; Sigma-

Aldrich). Immunoreactive bands were visualized by enhanced chemi-
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luminescence using commercial reagents (GE Healthcare, Pittsburgh,

PA). Images were captured at optimum condition for proper balance

between signal and background, and avoided band saturation with

signal. A beta-actin antibody (1:1000; Sigma-Aldrich) was used to

reprobe the stripped immunoblots for loading and transfer control.

For densitometry of immunoblots, images were acquired using a

scanning device with a linear dynamic range (Typhoon 9400, GE

Healthcare), image analysis used the ImageQuant software (GE

Healthcare), background correction was applied to each lane by

baseline subtraction, and integral values were selected as measurement

parameters. Following normalization to beta-actin, the average values

obtained from normotensive control samples was used to calculate the

fold change in protein expression in ocular hypertensive samples.

Retinal Immunolabeling

To determine the cellular localization of selected proteins, histological

sections of the rat retina were analyzed by immunohistochemistry as

described previously.3,4 Immunofluorescence labeling used the same

primary antibodies described above for Western blot analysis, including

antibodies to TNF-a, TNFR1, cleaved caspase-8, phospho-p65, IRGM,

phospho-mTOR, NLRP3, and procaspase-1/cleaved caspase-1. In

addition, a specific antibody against GFAP (1:200; Santa Cruz

Biotechnology, Santa Cruz, CA) was used to identify astrocytes. A

mixture of Alexa Fluor 488- or 568-conjugated species-specific IgGs

(1:500, Invitrogen) was used for the secondary antibody incubation.

Similar to Western blot analysis, optimum antibody dilutions (1:100–

500) were pre-selected based on retinal immunolabeling with

minimum non-specific background staining. DAPI (Thermo Fisher

Scientific) was used for nuclear counterstaining. Slides were examined

by fluorescence microscopy and images were recorded by digital

photomicrography (Carl Zeiss). Negative controls were performed by

replacing the primary antibody with serum or using an inappropriate

secondary antibody to determine species specificity. At least six

histological sections obtained from three ocular hypertensive and

control retinas were used for each antibody immunolabeling.

RESULTS

Our data validated the feasibility of astrocyte-specific sampling
to detect cell-specific differences in protein expression in
experimental glaucoma. We initially aimed to verify our
enriched astrocyte samples by Western blot analysis using
specific antibodies to different retinal cell markers. Similarly
isolated RGC samples were verified previously based on
retrograde fluorescence labeling,15 cell morphology and
immunolabeling in culture,15 RT-PCR,20 and Western blot
analysis of specific markers.18 However, to provide comple-
mentary information, we re-examined RGC samples, and also
retinal protein samples obtained after depletion of astrocytes
and RGCs, along with the analysis of astrocyte samples (Fig.
1A). Western blots verified GFAP and ASTRO1 expression in
selected astrocytes. However, neuronal markers, including
NeuN and Thy-1.1, were not detectable in these samples.
Despite faint immunoreactivity for GS (a marker for Müller
cells) and CRALBP (expressed in Müller cells and retinal
pigment epithelium), enriched samples of astrocytes were
negative for RPE65, a marker for retinal pigment epithelium.
Similar to previous observations, RGC samples were positive
for NeuN and Thy-1.1, but negative for ASTRO1, GFAP, GS,
CRALBP, or RPE65. The minimum contamination of enriched
astrocyte samples with Müller cell proteins (GS and CRALBP
expressed only by developing astrocytes27) likely is due to the
ASTRO1 antibody used for cell isolation, which is specific for
astrocytes but also may bind weakly some Müller cells in the
retina. To provide an internal control and complementary
information, Figure 1A also presents Western blots of retinal

protein samples obtained after depletion of astrocytes and
RGCs. Note that dark immunoreactive bands for GS and
CRALBP support Müller cell proteins remaining in these
astrocyte/RGC-depleted samples. Altogether, the data present-
ed in Figure 1A indicate no prominent contamination of
enriched astrocyte samples with other retinal cell types and
support the high purity of these samples.

The quantitative LC-MS/MS analysis of enriched astrocyte
samples identified 2104 proteins by two peptides or more at
the 0.2% peptide and 0.1% protein false discovery rates, and
the MS/MS data included proteins exhibiting up-regulated or
down-regulated expression in ocular hypertensive samples.
Bioinformatic comparison analysis using the Ingenuity Path-
ways Analysis supported distinct responses of ocular hyper-
tensive astrocytes during the experimental paradigm. To
provide overall information about our high-throughput data,
Figure 1B shows the functional groups of up-regulated proteins
in ocular hypertensive astrocytes in comparison to ocular
hypertensive RGCs. Ocular hypertensive astrocytes exhibited
predominantly cellular activation and immune/inflammatory
responses as opposed to the stress response and cell death
signaling prominent in RGCs.

The Table lists 50 astrocyte proteins most relevant to
inflammatory responses in ocular hypertensive samples. Data
presented in this table include GFAP expression verifying
astrocyte samples. Additional proteomic data are given in the
Supplementary Table (http://www.iovs.org/lookup/suppl/
doi:10.1167/iovs.11-9101/-/DCSupplemental). Selected pro-
teins from this list were studied further for data validation.
We ran Western blot analysis to validate increased expression
and/or activation of selected proteins. As an additional effort to
provide further validation for distinct responses of astrocytes
during glaucomatous neurodegeneration, we also analyzed
enriched samples of RGCs for these proteins and presented our
astrocyte data along with this complementary data from RGC
samples. In addition, we immunolabeled histological sections
of the rat retina with specific antibodies to verify the cellular
localization of selected proteins in astrocytes.

As listed in the Table, identified immune mediators/
regulators in ocular hypertensive astrocyte samples included
a number of downstream proteins linked to TNF-a/TNFR
signaling. As an initial step for data validation, we aimed to
determine whether cell-specific samples reflect previously
detected differences in TNF-a and TNFR1 expression in human
glaucoma.5,14 In parallel to previous observations, Western blot
analysis supported increased expression of TNF-a and TNFR1
in astrocyte samples isolated from ocular hypertensive eyes
relative to normotensive controls. This observation was also
consistent with TNF-a immunolabeling localized predominant-
ly to GFAP-positive astrocytes in the ocular hypertensive rat
retina. However, TNFR1 immunolabeling was detectable on
both GFAP-positive and GFAP-negative cells in the RGC/nerve
fibers layers of the same tissues (Fig. 2).

The proteins linked to TNF-a/TNFR signaling in ocular
hypertensive astrocytes mainly included mediators of inflam-
matory processes, not mediators of apoptosis. In contrast,
inflammatory proteins were not detectable by mass spectro-
metric analysis of ocular hypertensive RGCs. Due to prominent
up-regulation of TNFR signaling in ocular hypertensive
samples, the next set of validation studies determined cell-
specific differences in TNFR1-mediated caspase activation by
Western blot analysis and immunohistochemistry using a
cleavage site-specific antibody. In support of the MS/MS data,
cleaved caspase-8 (a proximal caspase in the TNFR1-mediated
apoptosis pathway) was detectable in ocular hypertensive
RGCs, but not in astrocytes (Fig. 3).

While caspase activation was not detectable in ocular
hypertensive astrocytes, the opposing pathway of TNFR
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FIGURE 1. Validation of enriched astrocyte samples. (A) Enriched samples of astrocytes exhibited prominent immunoreactivity for ASTRO1 and
GFAP. Despite faint immunoreactive bands for GS (a marker for Müller cells) and CRALBP (expressed in Müller cells and retinal pigment epithelium),
enriched samples of astrocytes were negative for RPE65, a marker for retinal pigment epithelium, as well as for neuronal markers (including NeuN
and Thy-1.1). However, Western blot analysis detected neuronal markers (NeuN and Thy-1.1) in RGC samples. Also presented are Western blots of
retinal protein samples obtained after depletion of astrocytes and RGCs. Note the dark immunoreactive bands for GS and CRALBP in these astrocyte/
RGC-depleted samples, which support remaining Müller cell proteins. Protein samples were separated using 12% SDS-PAGE gels (except for ASTRO1
immunoblots in which 7.5% gels were used), and membranes were cut into strips to probe with different antibodies specific to target proteins. Data
represent three independent sets of analyses with different samples. (B) Bioinformatics analysis of the comparative proteomic data by the Ingenuity
Pathways Analysis supported distinct responses of astrocytes and RGCs in ocular hypertensive eyes. Shown are functional groups of the up-
regulated proteins in ocular hypertensive astrocytes and RGCs relative to their controls.
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signaling that promotes NF-jB activation was detectable

prominently. Based on the Ingenuity Pathways Analysis, the

NF-jB activation pathway was among the top canonical

pathways associated most significantly with our astrocyte

dataset (right-tailed Fisher’s exact test, P < 0.05). Western blot

analysis using a phosphorylation site-specific antibody indicat-

ed increased phosphorylation of p65 (RelA) in ocular

hypertensive astrocytes. Based on immunohistochemical anal-

ysis, phospho-p65 was localized predominantly to GFAP-
positive astrocytes in the ocular hypertensive rat retina (Fig. 3).

Another group of proteins up-regulated in ocular hyperten-
sive astrocytes was related to autophagy signaling, including
mTOR and autophagy-related proteins (ATGs), ATG3 and
ATG7. Immunolabeling with a phosphorylation site-specific
antibody also indicated phosphorylation-mediated activation of
mTOR in ocular hypertensive astrocytes. However, phospho-
mTOR was not prominently detectable in ocular hypertensive

TABLE. Astrocyte Proteins Linked to Inflammatory Responses

Symbol Protein Name Protein ID Fold Change

TRADD TNFRSF1A-associated via death domain gij281427214 2.1*

PEA15 Astrocytic phosphoprotein PEA-15 gij61557370 1.8*

TNFAIP2 Tumor necrosis factor alpha-induced protein 2 gij212549631 1.9*

RelA Nuclear factor NF-kappa-B subunit p65 gij40538870 3.1*

NFKB-2 Nuclear factor NF-kappa-B subunit p100 gij56605774 5.4*

IKBIP Inhibitor of nuclear factor kappa-B kinase-interacting protein gij148539967 1.9*

MKK1 Dual specificity mitogen-activated protein kinase kinase 1 gij13928886 2.2*

MKK3 Mitogen activated protein kinase kinase 3 gij197333734 1.8*

MKK4 Dual specificity mitogen-activated protein kinase kinase 4 gij71795640 1.5

ERK2 Mitogen-activated protein kinase 1 gij16758698 1.2

ERK1 Mitogen-activated protein kinase 3 gij8393331 3.2*

P38 Mitogen-activated protein kinase 14 gij62461582 2.4*

ROCK2 Rho-associated protein kinase 2 gij6981478 �1.4

AKT1 RAC-alpha serine/threonine-protein kinase 1 gij15100164 2.8*

PDLIM1 PDZ and LIM domain protein 1 gij8393153 1.1

PDLIM7 PDZ and LIM domain protein 7 gij27465579 1.4

SGN1 COP9 signalosome complex subunit 1 gij42476092 2.3*

SGN2 COP9 signalosome complex subunit 2 gij23463271 �1.2

SGN3 COP9 signalosome complex subunit 3 gij51948372 3.9*

SGN4 COP9 signalosome complex subunit 4 gij51948518 0.2

SGN5 COP9 signalosome complex subunit 5 gij71043620 1.6

SGN6 COP9 signalosome complex subunit 6 gij157821399 1.2

COPS7A COP9 complex subunit 7a isoform 2 gij255760057 1.7

SGN8 COP9 signalosome complex subunit 8 gij61557351 �0.7

ASCC311 Activating signal cointegrator 1 complex subunit 3-like gij281371480 4.1*

AP1B1 AP-1 complex subunit beta-1 gij8392872 1.4

AP1G1 AP-1 complex subunit gamma-1 gij189491695 1.2

AP1M1 AP-1 complex subunit mu-1 gij112984344 2.2*

AP1S1 AP-1 complex subunit sigma-1 gij205360945 �0.9

STAT1 Signal transducer and activator of transcription 1 isoform alpha gij77695926 2.5*

STAT2 Signal transducer and activator of transcription 2 gij58865380 1.6

STAT3 Signal transducer and activator of transcription 3 gij6981592 2.0*

STAT6 Signal transducer and transcription activator 6 gij113205500 3.1*

TLR2 Toll-like receptor 2 gij38454274 2.1*

TOLLIP Toll-interacting protein gij157823763 �1.6

IRGQ Immunity-related GTPase family, Q gij209364508 1.8*

mTOR Serine/threonine-protein kinase mTOR gij9845251 2.1*

ATG3 Ubiquitin-like-conjugating enzyme autophagy-related 3 gij19705511 1.5

ATG7 Ubiquitin-like modifier-activating enzyme autophagy-related 7 gij58865764 2.7*

ASC Apoptosis-associated speck-like protein containing a CARD gij27229294 1.9*

CASP1 Caspase-1 gij31542341 2.0*

ILF2 Interleukin enhancer-binding factor 2 gij114145744 0.5

ILF3 Interleukin enhancer-binding factor 3 gij16758150 1.2

IL-1RA Interleukin-1 receptor antagonist protein gij11559964 �1.9*

TGFB2 Transforming growth factor beta-2 gij13592109 1.3

TGFB3 Transforming growth factor beta-3 gij6981650 0.3

MIF Macrophage migration inhibitory factor gij13591985 1.5

GMFB Glia maturation factor beta gij13624295 1.8*

GMFG Glia maturation factor gamma gij30842809 2.2*

GFAP Glial fibrillary acidic protein gij158186732 1.6

Protein samples of enriched astrocytes were collected by pooling from rat eyes matched for the cumulative IOP exposure and analyzed by
quantitative LC-MS/MS. All listed proteins were identified with high confidence (based on at least two peptides with greater than 99.0% probability).

* Significant difference in protein expression between OHT and control samples (Mann-Whitney rank sum test, P < 0.05).
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RGCs. An IRG linked to immunity-related autophagy, IRGM,

also exhibited increased expression by Western blot analysis of

ocular hypertensive astrocytes (Fig. 4).

Western blot analysis also validated NLRP3 expression and

caspase-1 cleavage supporting inflammasome assembly in

ocular hypertensive astrocytes. In addition, immunohistochem-

ical analysis of ocular hypertensive rat retinas indicated

prominent localization of these inflammasome components

in GFAP-positive astrocytes (Fig. 5).

Figure 6 summarizes the protein expression data based on

quantitative Western blot analysis. Figure 7 shows a simplified

network of the studied proteins that characterize inflammatory
responses of ocular hypertensive astrocytes.

DISCUSSION

Cell-Specific Approach to Glaucomatous

Neurodegeneration

Our study used a cell-specific approach to determine retinal
astrocyte responses in experimental rat glaucoma. Our
reproducible data supported the feasibility of cell-specific

FIGURE 2. TNF-a and TNFR1 expression in astrocytes. Western blot analysis detected TNF-a expression in astrocyte samples, not in RGCs.
However, TNFR1 expression was detectable in samples of RGCs and astrocytes isolated from ocular hypertensive (OHT) rat eyes.
Immunohistochemistry images show the OHT retina that indicated prominent localization of TNF-a (green) in GFAP-positive (red) astroglia.
GFAP-positive cells in the RGC and NFL correspond to astrocytes, while Müller cells (located in the inner nuclear layer) and their processes through
the retina may also exhibit immunolabeling for GFAP in OHT animals similar to human glaucoma. Regarding TNFR1 immunolabeling (green), in
addition to GFAP-positive astroglia, some GFAP-negative cells in the RGC layer, likely corresponding to RGCs (arrows), also exhibited TNFR1
immunolabeling in the OHT rat retina. Blue corresponds to nuclear DAPI labeling. Data represent three independent sets of analyses with different
samples. NFL, nerve fibers layer; RGCL, retinal ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer. Scale bar 100 lm.
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sampling, and validated the sensitivity of cell-specific analysis to
characterize distinct responses of astrocytes during the exper-
imental paradigm. Similar to our previous studies,15,16,18–20 we
used a technique through which target cells are coupled
immunologically to magnetic beads and then separated out
from the mixed cell population using a magnetic field. This cell
isolation process, which can be completed within approximate-
ly one hour, presents advantages over alternative techniques. A
similar immunomagnetic technique has been used previously
for rapid isolation of brain astrocytes with high purity and
viability in culture.28 Cell-specific sampling allows direct
analysis of primary astrocytes by avoiding phenotypic changes
in tissue cultures. Due to this unique advantage, we had no

intention to culture isolated astrocytes in this in vivo study,
although we successfully used similarly isolated RGCs in
previous in vitro studies.15,16 Despite appropriate sensitivity to
determine differences in protein expression within distinct cell
types, it remains unclear whether even a minimum contamina-
tion with a few other cell types may be problematic for the
analysis of gene expression using these samples. In addition,
sufficient sampling of astrocytes for protein analysis (and data
validation by immunoblotting) may require large numbers of
animals; however, rapidly emerging experimental techniques,
ultrasensitive instruments, and new antibodies are expected to
improve cell-specific sampling and analysis even further. There
is no doubt that assessing cell-specific responses is an ideal way

FIGURE 3. Components of TNF-a/TNFR signaling in OHT astrocytes. Western blot analysis using a cleavage site-specific antibody detected cleaved
caspase-8 only in OHT RGCs. However, based on Western blots with a phosphorylation site-specific antibody, p65 (a subunit of NF-jB) activation
was detectable most prominently in OHT astrocytes. Immunohistochemistry images show the OHT retina. No immunofluorescence labeling for
cleaved caspase-8 (green) was detectable in GFAP-positive astroglia, while phospho-p65 (green) was localized predominantly to GFAP-positive (red)
astrocytes. Arrow shows a GFAP-negative cell in the RGC layer, exhibiting prominent immunolabeling for cleaved caspase-8. Based on its larger,
lighter, and circular nucleus, this GFAP-negative cell in the RGC layer possibly is a RGC. Blue corresponds to nuclear DAPI labeling. Data represent
three independent sets of analyses with different samples. Scale bar 100 lm.
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to determine molecular pathways involved in disease pathogen-

esis, since analysis of whole retina or optic nerve may reflect

only the sum of opposing responses from many different cell

types. By dissecting the complexity of prior data obtained from

whole tissue, the cell-specific analysis enables specific cellular

responses to be defined and cell-specific treatment strategies to

be developed. Characterization of astrocyte responses can help

design treatments to similarly enhance RGC survival in glaucoma

and also enable to manipulate astrocyte responses for the gain of

RGCs so that neurodestructive consequences may be interfered

selectively without compromising glial neurosupportive and

homeostatic functions.

Astroglial Components of TNF-a/TNFR Signaling

Linked to Neuroinflammatory Responses

Analysis of enriched astrocytes detected predominantly cellular
activation and immune/inflammatory responses in ocular
hypertensive samples as opposed to various cell death
mediators detected in RGCs isolated from the same experi-
mental eyes. Ocular hypertensive astrocytes exhibited NF-jB
activation regulating inflammatory consequences of TNF-a/
TNFR signaling as discussed later below, but not caspase
activation mediating TNF-a-induced apoptosis. Based on our
findings, TNF-a/TNFR signaling during glaucomatous neurode-
generation may induce cell death in RGCs but mediate

FIGURE 4. Regulation of autophagy signaling in ocular hypertensive astrocytes. Western blot analysis detected prominent up-regulation of IRGM in
OHT astrocytes. In addition, probing with a phosphorylation site-specific antibody to mTOR indicated increased immunoreactivity in these samples
of OHT astrocytes. Based on immunofluorescence labeling, GFAP-positive (red) astrocytes and also some GFAP-negative cells in the RGC layer, likely
corresponding to RGCs (arrows), exhibited IRGM immunolabeling (green) in the OHT rat retina. However, phospho-mTOR (green)
immunolabeling was detectable predominantly in GFAP-positive astrocytes. Blue corresponds to nuclear DAPI labeling. Data represent three
independent sets of analyses with different samples. Scale bar 100 lm.
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immune/inflammatory responses in astrocytes. This is consis-
tent with previous in vitro findings that support a relative
resistance of astrocytes, including retinal astrocytes,15 to death
receptor-mediated apoptosis.29 Our present data suggested
that various molecules may regulate cell-specific outcomes of
TNF-a/TNFR signaling in glaucoma.

First, ocular hypertensive astrocytes exhibited up-regulated
expression of a signal transducer protein involved in the
multiprotein signaling complex formed after TNFR binding,
namely TNFR-associated death domain protein (TRADD). This
multifunctional protein not only is crucial for diverse
consequences of TNFR1 signaling but also for other signaling
pathways relevant to inflammatory responses.30 Second, up-
regulated proteins in ocular hypertensive astrocytes included a

dead domain-containing protein particularly abundant in

astrocytes, named phosphoprotein enriched in astrocytes 15

(PEA-15).31 This astrocyte phosphoprotein directs cytokine

outcomes toward survival and protects astrocytes from TNF-a-

induced apoptosis by binding dead domain-containing pro-

teins32,33 and controlling the activity of mitogen-activated

protein kinases.34,35 Another up-regulated protein in ocular

hypertensive astrocytes was TNF-a-induced protein 2, a

primary response molecule involved in inflammatory process-

es induced by TNF-a.36,37 More studies are needed to

determine the importance of identified molecules as treatment

targets to modulate neurodegenerative inflammation and

provide neuroprotection in glaucoma.

FIGURE 5. Inflammasome components in OHT astrocytes. Western blot analysis using specific antibodies detected a subset of NLRs named NLRP3
and cleaved caspase-1 predominantly in OHT astrocytes. Immunofluorescence labeling of the OHT rat retina indicated prominent localization of
NLRP3 and caspase-1 (green) in GFAP-positive (red) astrocytes. Arrows show GFAP-negative cells in the RGC layer exhibiting no detectable
immunolabeling for NLRP3 or caspase-1. Blue corresponds to nuclear DAPI labeling. Data represent three independent sets of analyses with
different samples. Scale bar 100 lm.

4228 Tezel et al. IOVS, June 2012, Vol. 53, No. 7



NF-jB Activation Regulating Neuroinflammatory
Processes in Astrocytes

Our findings support that many of the astrocyte-driven pro-
inflammatory processes are mediated by NF-jB. Our proteomic
data supporting NF-jB activation in ocular hypertensive
astrocytes included NF-jB subunits, p65 (RelA) and p100
(NF-jB2). In addition, immunolabeling with a phosphorylation
site-specific antibody detected active p65. In contrast to the
canonical pathway through RelA/p50 signaling, the non-
canonical pathway of NF-jB signaling upon binding of a small
subset of TNFR family members targets predominantly the
activation of RelB/p52 complex.38,39 However, the classical
pathway also feeds into the alternative pathway through up-
regulation of NF-jB2 expression,40 and the alternative pathway
regulates nuclear localization of RelA besides RelB.41

Phosphorylation triggers ubiquitination of inhibitor IjB
molecules for proteasomal degradation. The ubiquitination
machinery involved in NF-jB activation is regulated by a highly
conserved protein complex designated as COP9 signalosome
(CSN).42 The CSN complex interferes with ubiquitination and
proteasomal degradation of the inhibitory molecule, IjB, and
allows rapid activation of NF-jB.43 Our data included increased
expression of different CSN subunits in ocular hypertensive
astrocytes. In a fashion similar to this cytoplasmic control
mechanism, NF-jB activation may also be terminated through
intranuclear sequestration and degradation.44 Members of the
PDZ and LIM domain proteins, also detected in astrocyte
samples, have been shown to be expressed in brain
astrocytes45 and implicated in nuclear regulation of NF-jB
activation.46 Another protein up-regulated in ocular hyperten-
sive astrocytes was a subunit of activating signal cointegrator 1
complex (ASCC). This protein, originally isolated as a
transcriptional co-activator of nuclear receptors, is also known
to stimulate the activation of NF-jB.47

Thus, various molecules appear to be involved in NF-jB
activation in ocular hypertensive astrocytes. This redox-
sensitive transcription factor is a master regulator of inflam-
matory responses and secondary injury processes in the
brain,48,49 and inactivation of astroglial NF-jB reduces inflam-

matory environment after ischemic injury and promotes RGC
survival.50 Findings of our recent study also have supported
NF-jB activation in the glaucomatous human retina.5

In addition to NF-jB pathway controlling the transcription
of immune mediators, the c-Jun N-terminal protein kinase/
activator protein 1 (AP-1) signaling can stimulate inflammation
through the activation of gene transcription.51 The AP-1, also
up-regulated in ocular hypertensive astrocytes, is among the
best characterized inducible DNA-binding proteins involved in
a number of cellular processes linked to inflammatory
responses of brain astrocytes.52

We also detected increased expression of various signal
transducers and activators of transcription (STAT) in ocular
hypertensive astrocytes. The janus kinase (JAK)/STAT signal-
ing, along with the NF-jB signaling, has received a growing
attention as key regulators of cytokine-mediated inflamma-
tion53,54 and promising targets for immunomodulation.55

Various components of the JAK/STAT signaling pathway
recently have been indicated in the glaucomatous human
retina,5 ocular hypertensive rat retina,56 and optic nerve.57

Our MS/MS data also included glia maturation factors that
mediate inflammation in the central nervous system and
exhibit up-regulation in neurodegenerative diseases,58 and
the macrophage migration inhibitory factor (MIF), which is
expressed by retinal glia59 and has an important amplifying role
in cytokine-mediated inflammatory diseases.60

Cell-Specific Regulation of Autophagy

Molecular responses of ocular hypertensive astrocytes includ-
ed up-regulation of IRGs that are key mediators of the host
resistance to intracellular pathogens with important links to
autophagy.61,62 We also detected activation of a serine/
threonine protein kinase, mTOR, which is an upstream
negative regulator of autophagy signaling,63,64 and ATGs,
which are involved in the execution stages of autophagy.65

Autophagy is a physiological cell-autonomous defense
mechanism enabling cells to digest their own cytosol, remove
toxic products, and eliminate defective or surplus organelles.
This cytoplasmic homeostasis pathway allows cells to survive
nutrient depletion or the absence of growth factors; however,
under specific conditions, it also may determine cell death.66,67

Although the autophagic pathway is activated in RGCs following
optic nerve transaction68 or retinal ischemia,69 the role of
autophagy in glaucomatous neurodegeneration is unknown.
Many questions raised from our findings motivate further
research to clarify the importance and regulation of autophagy
and its crosstalk with RGC apoptosis in glaucoma. Autophagy
can be induced by cytokines, including TNF-a,70,71 which also
up-regulates IRGs in astrocytes,72 while NF-jB activation
represses TNF-a-induced autophagy through the activation of
autophagy inhibitor, mTOR.73 Since NF-jB was activated
predominantly in glaucomatous astrocytes, it would be interest-
ing to determine whether NF-jB-dependent activation of mTOR
controls the balance between activator and inhibitor pathways
of autophagy in astrocytes and other retinal cell types.

It also is interesting that autophagy has recently been
recognized as a biological pathway broadly associated with
innate and adaptive immunity.74–76 By eliminating intracellular
microbial pathogens, and regulating T and B cell homeostasis, a
properly functioning autophagy helps prevent inflammation
and autoimmunity. However, when functioning aberrantly, it
may contribute to immunogenic neurodegenerative human
diseases. Not only does it act as an innate effector downstream
of toll-like receptors (TLRs),77 but autophagy can also deliver
danger-associated molecular patterns to endosomal TLRs78 and
process cytosolic autoantigens for presentation on MHC class II
molecules.79–81 In conjunction with earlier studies of increased

FIGURE 6. Quantitative Western blot analysis of protein expression in
cell-specific samples. Comparison of the beta-actin-normalized intensi-
ty values between OHT and control samples supported distinct
responses of astrocytes and RGCs. Data represent three independent
sets of analyses with different samples. Presented is the mean 6 SD
fold increase in protein expression, which was determined by
comparing the actin-normalized densitometry values of specific
immunoreactive bands in OHT samples with those of normotensive
controls. Asterisk indicates statistically significant difference between
astrocyte and RGC responses (Mann-Whitney rank sum test, P < 0.05).
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serum autoantibodies in glaucoma, our findings bring about
additional questions stimulating further research. For example,
it is tempting to determine whether the autophagy-mediated
route for efficient presentation of autoantigens may have a role
in autoantibody generation in glaucoma. Retinal antigens
identified so far, which are not limited to RGC proteins,
possibly may reflect enhanced presentation of autoantigens on
various cell types undergoing autophagy. With respect to
chaperone-mediated autophagy,82 heat shock protein antibod-
ies commonly present in the glaucomatous sera may particu-
larly be relevant to autophagy-mediated immunity.

Neuroinflammatory Responses of Astrocytes
Linked to Inflammasome

Our data also supported inflammasome activation in ocular
hypertensive astrocytes. Upon sensing intrinsic danger signals
as well as microbial components, this cytosolic multiprotein
complex promotes proteolytic activation of pro-interleukins
and secretion of mature cytokines.83,84 This innate mechanism
mediates neuroinflammation in the brain, and its therapeutic
neutralization reduces the damaging effects of post-traumatic
brain inflammation.85,86 Similar to our recent study of human
glaucoma,5 the present study detected various inflammasome
components in experimental rat glaucoma. Up-regulated
astrocyte proteins in ocular hypertensive samples included a
specific NLRP adaptor for inflammasome assembly, apoptosis-
associated speck-like protein containing a caspase recruitment

domain (ASC).83,84 Also detected in ocular hypertensive
astrocytes was up-regulation and proteolytic activation of the
inflammatory caspase, caspase-1. In addition to potassium
efflux, amyloid-b, and pannexins,87 oxidative stress, evident in
human glaucoma,3,88 has been implicated in inflammasome
formation.89–91 Despite some controversies,92 caspase-1 acti-
vation is sensitive to alterations in the cellular redox balance.93

Emerging evidence also provides links between inflammasome
and autophagic pathways.94

In summary, our findings introduced a cell-specific proteo-
mic approach and validated its sensitivity to identify astrocyte
responses in experimental rat glaucoma. Various pathways,
including pro-inflammatory TNF-a/TNFR signaling, NF-jB
activation, and inflammasome (along with the TLR signaling4

and complement activation3), appear to be co-players of
inflammatory responses mediated by ocular hypertensive
astrocytes and may represent key treatment targets for
immunomodulation. Further research using focus-in strategies
and functional testing are expected to generate a greater
understanding of target molecules for cell-specific treatments
in glaucoma.
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