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Abstract
Extracellular appendages of the dissimilatory metal-reducing bacterium Shewanella oneidensis
MR-1 were recently shown to sustain currents of 1010 electrons per second over distances of 0.5
microns [El-Naggar et al., Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 18127]. However, the
identity of the charge localizing sites and their organization along the “nanowire” remain
unknown. We use theory to predict redox cofactor separation distances that would permit charge
flow at rates of 1010 electrons per second over 0.5 microns for voltage biases of ≤1V, using a
steady-state analysis governed by a non-adiabatic electron transport mechanism. We find the
observed currents necessitate a multi-step hopping transport mechanism, with charge localizing
sites separated by less than 1 nm and reorganization energies that rival the lowest known in
biology.

1 Introduction
Biological systems are challenged to move charge efficiently over large distances.1–3 In the
crowded environment of the cell, intricate redox machines orchestrate local charge flow
coupled to energy storage and release.4 Much is known about single step biological electron
transfer (ET) at short distances.5–7 However, recent work on the gram negative bacterium
Shewanella oneidensis MR-1 has challenged our conventional view of charge flow in
biology.8

When its environment is depleted of soluble electron acceptors such as oxygen, S.
oneidensis MR-1 grows long, pilus-like appendages that have been called “nano-wires” (see
Fig. 1).8,9 By conductive probe atomic force microscopy (cpAFM), these pili were shown to
sustain charge flow at rates of up to 1010 electrons per second over distances of 0.5 microns
for low voltage biases (≤1 V).

What are the charge localizing sites responsible for these high currents? What is the
mechanism of charge transport along a “nanowire”? Why should MR-1 be “wired” at all?

Strong arguments have been made that a ten-heme c-type cytochrome, MtrC, is the charge
localizing site responsible for the observed currents.8,10 However, there is no crystal
structure of MtrC available, nor is there any information concerning the packing density
along the pilus.
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The aim of this paper is to explore potential mechanisms that could give rise to the fast
charge flow rates. Several mechanisms come to mind, ranging from fully incoherent
hopping—characteristic of biological ET—to fully coherent band transport—characteristic
of metals and semiconducting materials. We explore the two extremes of this spectrum. Our
theoretical analysis sheds light on the physical parameters necessary to give rise to the
steady-state currents observed in S. oneidensis MR-1 pili.

2 Methods
We use two approaches to model hopping transport along “nanowires”. In the first, we solve
a kinetic master equation for the steady-state current. In the second, we use the Einstein–
Smoluchowski formula to calculate charge mobilities based on hopping rate constants. Both
models of charge hopping involve fitting a set of parameters to the experimental current–
voltage measurements of El-Naggar et al.,8 an example of which is reprinted in Fig. 3. We
aim to elucidate the charge hopping site distance and energetic constraints that the pili must
satisfy. How far apart are the charge hopping sites? Are they localized only on the surface or
found throughout the “nanowire” interior? We describe both hopping methods briefly
below, but save the treatment of band transport for the results section.

2.1 Kinetic master equation
We model a donor–bridge–acceptor system, such as that shown in Fig. 2, by solving a
kinetic master equation of the form

(2.1)

where ki→j is the rate constant for the transition from site i with time-dependent population
Pi to site j with time-dependent population Pj, and η is the number of hopping sites.

Transition rates between bridge sites are given by the non-adiabatic ET rate equation11

(2.2)

where HDA is the charge transfer integral between donor and acceptor, λ is the
reorganization free energy and ΔG is the change in free energy upon charge transfer. We use
eqn (2.2) in the phenomenological form3

(2.3)

where rnn is the nearest neighbor hopping distance, r0 is the distance at van der Waals
contact (which we take to be 0.35 nm), and 1013 s−1 is the maximum rate of activationless
(λ = −ΔG) charge transfer at contact.

Both donor and acceptor in our kinetic mechanism are electrodes, which necessitates the use
of the electrochemical form12 of the non-adiabatic ET rate equation for the rate constants to
and from these sites (see eqns (A.5) and (A.6) in Appendix). The chemical potential
difference (ΔμRL ≡ μR − μL) between the two electrodes drives charge flow explicitly via
the electrochemical rate equations and through a linear potential drop along the pilus, with
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hopping free energies given by ΔμRL/(N + 1), where N is the number of bridge sites in one
dimension between the left and right electrodes. For transitions that are transverse to the
electric field between the electrodes, ΔG was taken to be zero.

If the kinetic mechanism described by the master equation ends with an irreversible step

(i.e.,  in Fig. 2), integration of eqn (2.1) from t = 0 to t = ∞ gives the flux balance
condition13

(2.4)

where the population on site i falls to zero at t = ∞ due to the irreversible step to the charge
sink. In eqn (2.4), τi is the mean residence time at site i,13,14

(2.5)

The sum of all the residence times normalized by the initial populations gives the mean first
passage time, 〈t〉,

(2.6)

which is the average time for a particle to traverse the bridge from the initially prepared state
(here, an electrode) to the sinks (here, the other electrode).13–15 We define an effective rate
constant through the pathway as keff ≡ 1/〈t〉.15 We note that, as a steady-state quantity, the
mean first passage time does not necessitate finding and integrating the time-dependent
populations from the master equation. Instead, one can work directly with the nullspace16 of
the matrix of rate constants, Kss, which solves the equation Kssp⃗ss = 0, where p⃗ss is the (η −
c) × 1 steady-state population vector of a system of η sites with c sinks,

 (see Appendix A.2).

We have written MATLAB code that solves for the effective steady-state rate constant of a
particle traversing a nonequilibrium pathway from the electrode of higher chemical potential
to the electrode of lower chemical potential. We define the current (I) as

(2.7)

where n< is the smaller of the number of sites coupled to the left or right electrode (see
Appendix A.2 for more detail). We explore one and two dimensional mechanisms, including
two dimensional cylindrical boundary conditions (see Fig. 2) with relevance to the charge
hopping site distribution on the surface of the cylindrical pilus.

2.2 Einstein relation
MR-1 pili display ohmic currents in response to an applied voltage. We calculate this linear
response by the following relationships:

(2.8)
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where R is the resistance, I is the current, L is the length between electrodes, A is the cross-
sectional area of the pilus, σ is the conductivity, e is the electron charge,  is the charge
hopping site density and V is the applied voltage. The charge mobility, μ, has units of a
diffusion constant per unit of applied voltage, and can be related to a hopping rate constant
(khop, eqn (2.3)) by17

(2.9)

where r is the distance between hopping sites. This definition of the mobility in 3D is the

Einstein–Smoluchowski equation with diffusion constant . Substitution of (2.9)
into (2.8) gives the ohmic hopping current:

(2.10)

3 Results
We aim to model a particular experiment described in Figs 3 and 4.8 S. oneidensis MR-1
cells were chemically fixed and dried onto a SiO2 substrate with a gold microgrid electrode
(Fig. 3A). A Pt/Cr-coated AFM tip was used as the second electrode to probe the current
response of the pilus along different lengths from the gold grid. A voltage bias between the
electrodes was swept from −1 to 1 V at a rate of 0.2 Hz. The longest distance probed along
the pilus was 600 nm and contact-mode AFM was used to estimate its cross-sectional area to
be ~80 nm2. We use these parameters to explore the physical constraints that the pilus must
satisfy to sustain nanoAmp currents. We employ a master equation (see eqn (2.1)) to
elucidate 1D and 2D hopping and use the Einstein relation to explore a cylindrical shell and
3D packing.

3.1 Hopping currents via the master equation
What controls the conductivity of the pili? We explored the effects of dimensionality and
cylindrical boundary conditions on the effective net rate constant of charge flow between the
electrodes for a given potential difference. Shown numerically in Fig. 5 (and proven
analytically in the Appendix), the effective rate constant through a 1D unidirectional
hopping pathway scales as 1/N, with N the number of hopping sites. For flow biased from
the left to the right electrode, the 2D and 2D cylindrical mechanisms behave identically to
the 1D case if each row (see Fig. 2 for nomenclature) has an irreversible exit channel to the
right electrode.

Diffusional transport was modeled by setting equal the forward and backward hopping rates
through the bridge while keeping an irreversible step at the left and right electrodes. The 1D
case (Fig. 5, green) shows a 1/N2 dependence representative of diffusion.18 Slightly higher
order distance dependencies were observed for the 2D mechanisms when only one site
coupled into the bridge from the left electrode and one site coupled out to the right electrode
(Fig. 5, yellow and red). This can be rationalized by definition of the mean first passage time
as the sum of the local residence times at each site. In a 2D mechanism on a square lattice,
there are N2 − N more sites than in 1D.

Cylindrical boundary conditions slightly soften the decay with distance relative to the 2D
mechanism without them, but do not contribute to any noticeable increase in transport
efficiency when all rows feed into the sink. We believe that the 2D cylindrical model with a
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variable number of sites coupled to the AFM tip and the full cross-sectional area coupled to
the gold grid (see Fig. 4) is the most appropriate to describe the experiments, but accede that
the 1D case provides an indistinguishable approximation when all bridge rows couple to the
electrode (Fig. 5, green).

The current will scale with the number of sites coupled to the electrode, as in eqn (2.7). The
lowest current is given by the effective rate constant itself. The maximum current is this rate
constant multiplied by the densest concentration of sites possible at the electrode. We
estimate that an AFM tip of typical radius ~50 nm, if plunged1 nm into the pilus interior,
could have a surface coverage of ~103 carriers (for a maximum carrier surface density of
(1/.35 nm)2, appropriate to closely packed molecular materials). This is similar in magnitude
to the number of localizing sites that could pack into the cross sectional area of a pilus
approximated as a cylindrical shell of thickness 1 nm and outer radius 5 nm. At most we can
scale by ~103 the magnitude of the current given by the 2D mechanism.

Assuming the applied potential varies linearly along the pilus, the energetic driving force for
charge flow would be ~1/600 eV nm−1. Hopping sites separated by 1 nm would feel a
driving force an order of magnitude less than thermal energy at room temperature.
Therefore, the charge transport along the pilus would be dominated by diffusion and exhibit
a ~1/N2 dependence on the number of hopping sites.

Through calculations governed by eqn (2.7), we identify restrictions on the charge transfer
parameters given in Table 1. The effective transport rate is sensitive to the distance (rnn)
between charge localizing sites. If rnn increases, Ncol, will decrease (Ncol ≡ L/rnn, where L is
the distance between the electrodes), but the former gives an exponential dependence to the
nearest neighbor hopping rate while the latter gives a near-inverse-quadratic dependence to
the effective transport rate. Specifically, the effective rate constant for transport through the
pilus was found to decrease as ~1/N1.85, different from the characteristic diffusional 1/N2

dependence due to the small but non-zero hopping bias. We note that our calculations will
not yield nanoAmp currents if the pilus couples to the AFM tip by ten or even one hundred

sites. In this case, we are forced to break the non-adiabatic “speed limit”3 of  in
order to account for the rates. For ~1000 contacts, rnn < 1 nm and λ ≤ 0.3 eV, the observed
currents are described by the master equation for site to site hopping along a cylindrical shell
of thickness 1 nm.

3.2 Hopping mobility via the Einstein relation
From the slope of the current–voltage curve in Fig. 3C, the conductance (1/R) is
approximated as ~3.2 × 10−9 C s−1 V−1. The resistance is then 3.1 × 108 Ω, where Ω is the
symbol for ohms, or V/Amps. A contact resistance of 5.8 × 107 Ω between the pilus and
electrode was estimated by El-Naggar et al. by measuring resistance as a function of
distance from the cpAFM tip to the gold electrode (see Fig. 3D).8 The intrinsic resistance
along the 600 nm “nanowire” is then ~2.5 × 108 Ω. Any theory accounting for the magnitude
of these currents must establish a resistance of this order. With R defined in this way, the
resistivity (ρ) is calculated by ρ = RA/L, where A is the cross-sectional area of the pilus and
L is the segment length. Using the full cross-sectional area of the pilus, a resistivity of ρ =
30 Ω cm is obtained, a value comparable to that of moderately doped silicon nanowires.8 If
the charge localizing sites fill the pilus volume, the conductivity of the pilus is

(3.1)
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where the units are given in parentheses and S is siemens (ohms−1). Substituting the value of
the conductivity from (3.1) into σ = eμ and utilizing eqn (2.9), we discern possible
restrictions on the microscopic parameters that govern charge flow, shown in Table 2. We
repeat the process assuming only the outer surface of the pilus contains the charge localizing
sites. In this case the cross-sectional area is that of a cylindrical shell of width ~1 nm and
outer radius of 5nm. Restrictions on microscopic parameters for this case are also shown in
Table 2.

We observe that for both models (Vshell and Vfull, respectively), the pilus must be tightly
packed with charge carriers that are embedded in an environment particularly suited for
charge transfer. Summarizing the results obtained from the Einstein relation and from the
master equation formalism of section 3.1, the large, experimentally observed currents are
well described by a diffusive charge hopping model, assuming all available charge
localizing sites in the pilus between the two electrodes contribute to the observed current,
with λ ≤ 0.85 eV and rnn ≤1 nm.

3.3 The applicability of band theory
Charge flow in S. oneidensis MR-1 “nanowires” has been proposed to occur by band
transport.19 Charge flow via band conduction is subject to the uncertainty principle
constraint and the condition that carriers scatter into states with energy shifts that are small
compared to the band width:17

(3.2)

where  is the scattering time of the carriers and W is the width of the energy band, defined
as W = 4|HDA|, with |HDA| the effective charge transfer integral between the charge
localizing units.17 The mobility in band theory is17

(3.3)

Substitution of |HDA| given by eqn (3.3) into eqn (3.2) gives

(3.4)

which is the equation for the validity of band transport theory. In typical π-stacked materials
and organic polymers, rnn is 0.35 nm.17 This value for rnn constrains μBT to be greater than
~1 cm2 V−1 s−1 for band theory to accurately describe the charge transport. The mobility is
related to the conductivity (σ) by σ = eμBT, where  is the charge carrier density. Using
a number density appropriate to closely packed molecular materials ( ≈25 nm−3) and the
experimentally determined conductivity of the bacterial pilus (~1 S cm−1), one arrives at a
mobility of ~10−4 cm2 V−1 s−1 for the pilus, much less than the magnitude needed for band
theory to be applicable. We note that for lower carrier densities, the mobility in general will
increase for a given conductivity, but so will the uncertainty principle constraint on the

magnitude of μBT. For a uniform packing density equal to , the relationship for the rnn
that satisfies the uncertainty principle constraint is
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(3.5)

and for a conductivity of σ = 1 S cm−1, rnn ≫ 103 nm. The distance between nearest
neighbor sites of the pilus would need to be greater than the distance between the electrodes
for band theory to accurately describe the charge transport!

4 Discussion
The measured currents through MR-1 pili challenge our traditional views of charge transfer
in biology. Without a multiplicative factor of ~1000, corresponding to the number of carriers
in the pilus coupled to the electrodes, a hopping model can not account for the reported
currents of nanoAmps while hopping steps remain under the non-adiabatic charge transfer
“speed limit.” A completely unidirectional mechanism that scales as 1/N could account for
the current magnitude but not for its symmetry under sign inversion of the potential bias (see
Fig. 3C). If the wire were “designed” to favor charge transfer in one direction, it would
disfavor transfer in the other.

Would charge delocalization over a range of sites bolster the effective transport rate?
Delocalization across n sites dilutes the wavefunction amplitude by .20 The charge
transfer rate constant depends on the squared overlap of the donor and acceptor wave
functions, so a delocalization over n sites must be accompanied by a dilution of the hopping
rate constant by 1/n2. If the hopping distance from de-localized site to delocalized site
remains the same as the distance from localized to localized, the gains from delocalization
are canceled by the diffusive nature of the transport, assuming that other charge transfer
parameters are weakly influenced by the delocalization. Explicitly for a non-cofacial
hopping site arrangement, a reduction by n in the number of hopping sites will increase the
net diffusive transport rate constant by n2 but will decrease the hopping rate constant by 1/
n2.

How many redox sites couple to the cpAFM tip? For hopping governed by a master
equation, ten will not suffice to describe the currents. We note that among the two hopping
models, there is only limited disagreement in the parameter constraints. The master equation
restricts reorganization energies to be slightly lower than those allowed by the Einstein
relation. However, both formalisms agree on the maximum distance between charge carriers
of ~1 nm. We conclude that the charge localizing sites must be very closely packed with
reorganization energies at the lower limit of what is known in biology.21 Still, the
environment probed in the experiments was not the native one. The bacteria were
chemically fixed with aldehydes that cross-link proteins and then air dried. These conditions
may lead to more rigid structures with lower charge transfer reorganization energies than in
vivo.

c-Type cytochromes have been strongly implicated as the charge carriers along bacterial
“nanowires”.8,23,41 Indeed, a c-type cytochrome was recently shown via transmission
electron microscopy to be aligned along the conductive pili of Geobacter sulfurreducens,
albeit separated by distances prohibitive for interprotein charge transfer (>20 nm).22 The
identity of the charge localizing site present on the pilus of Shewanella oneidensis MR-1 has
yet to be conclusively shown. Recently, the crystal structure of MtrF, an important
decaheme cytochrome in Shewanella oneidensis MR-1, was solved.23 The structure reveals
a linear arrangement of 8 of the 10 hemes, with edge-to-edge spacings less than 0.7 nm,
compatible with our modeled rnn (see Fig. 6). Could arrays of proteins such as this generate
the “conductive ridges” in Fig. 1?
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Alternate sites of conduction have also been proposed.41 Charge transfer may occur through
hole hopping between stacked aromatic amino acids of the pilus protein subunit. However,
the relative distances between stacked aromatic residues in the pilus remain unknown.

Our numerical finding of section 1 can be summarized by a simple, approximate equation
for the current (I): I = n<keff = n<khop/N1.85, with N the number of hopping steps. To find the
current, one must multiply the effective rate constant by a factor (n<) equal to the minimum
number of contacts at both electrodes. Explicitly, for ΔG = 0, the relationship for the current
becomes (based on the master equation results of section 1)

(4.1)

The relationship between n< and rnn is shown graphically for a few cases in Fig. 7. For λ =
0.2 eV, rnn = 0.35 nm, β = 10 nm−1, L = 600 nm, and kBT = 1/40 eV, about 3000 bridge
contacts with each electrode must be established to achieve a nanoAmp current.

We also note that a one dimensional biased mechanism is the most efficient for long-
distance transport, but the most vulnerable to structural defects. Charge transfer in two or
three dimensions is an effective means to avoid the issue of road blocks due to anisotropic
carrier environments, even if the net effective rate constant decreases more rapidly with the
length of the chain than in 1D.

Why would S. oneidensis MR-1 evolve “nanowires”? The pili may serve as biological
“capacitors” waiting to be discharged upon attachment to a metal oxide or electrode surface.
They may provide a “conductive matrix” that makes possible the sustained growth of
bacteria far from the charge sink.24,25 The wires may constitute a conductive pathway for
efficient, long-range cell-to-cell communication by electron transfer.26 Conductive pili
provide only one of three mechanisms for extracellular ET found in these bacteria.27,28

Whatever their role in vivo, these conductive pili challenge our understanding of mesoscale
charge flow in biological systems.

Understanding charge transfer between bacteria and metal interfaces is a grand challenge in
biogeochemistry.29 Indeed, electrogenic bacteria are being engineered to produce electricity
from organic waste and to store electrons from photovoltaics in chemical bonds with high
efficiencies.30,31 The idea of a “living catalyst” is particularly tantalizing. Imagine the value
of a catalyst such as photosystem II that will replicate, repair itself and adapt to a changing
environment.

5 Concluding remarks
Our analysis of charge flow in bacterial “nanowires” has emphasized the importance of
multi-step hopping. Charge localizing sites must be closely packed and reorganization
energies kept small in order to move charge over long distances at the fast rates observed.
Band theory can not accurately describe the current in these systems. However, quasi-
incoherent regimes intermediate between thermal hopping and band transport have not been
excluded by our analysis. Indeed, charge delocalization across hopping sites could account
for the low reorganization energy—which inversely scales with the size of the localizing site
—required by the modeling.

Several interesting issues remain. What really is the “speed limit” of charge transfer in pili?
The possibility of relaxation-limited or adiabatic charge transfer could potentially give rise
to hopping rates faster than 1013 s−1.32 Furthermore, the non-adiabatic rate equation assumes
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thermally equilibrated donor and acceptor states, which could be challenged for ultrafast
hopping rates. The hopping networks described in this paper lead us to wonder if hopping
pathways can be exploited for multi-carrier delivery of charges to a single site. Finally, one
is left to wonder at the effectiveness of the pili compared to other quasi-1D nanostructures to
transfer charge over long distances.
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A Appendix

A.1 Electrochemical electron transfers
The electrochemical reduction and oxidation rate constants are a sum of the individual rates
for all available energy states ρ(ε) of the electrode, weighted by the Fermi–Dirac
probabilities of occupancy (f+) or vacancy (f−) of those states:12

(A.1)

with energy states of the electrode −eε and Fermi level −eE, where E is the applied electrode
potential. Starting with the high temperature molecular ET rate constant given by eqn (2.2),
we make the substitution

(A.2)

where E°′ is the formal potential of the redox species. For an electrochemical reduction, the
electrode formally plays the role of the donor, with state occupancy f+. For an oxidation, the
electrode is the acceptor with state vacancies 1 − f+ = f−. The rate constants governing
reduction and oxidation become
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(A.3)

(A.4)

If the density of states, ρ(ε), as well as the electrode–molecule electronic interaction energy
(H(ε)) are assumed to be constant in the energy region of interest, the following forms for
the rate constants can then be derived with the substitutions x = e(E − ε)/kBT and y = −e(E −
ε)/kBT, respectively:

(A.5)

(A.6)

In (A.5) and (A.6)

where the bar indicates an energy average of these quantities, and λ, the reorganization
energy, is assumed to be equal for reduction and oxidation. Upon inspection, kred and kox
are equal when E = E°′, which must be so due to detailed balance. A representation of the
energy levels involved in electrochemical electron transfer and the corresponding state
densities is shown in Fig. 8.

The symbol k° is given to the heterogeneous electron transfer rate constant at zero potential
bias.33–36 Given an initial guess at k° and λ, c is calculated. This calculated c is then used as
the prefactor in the potential-dependent rate constants (A.5) and (A.6). Programs have been
developed to iteratively arrive at a k° and λ that fit electrochemical data in the form of
trumpet plots.33–36

The currents through bacterial “nanowires” were modeled with electrode-bridge injection
and ejection rates given by eqn (A.5) and (A.6). Because of the small value of λ needed for
fast hopping rates through the bridge, the value of k° needed to be large to sustain the
experimentally observed currents. We note that the measured k° of MtrC,23,37,38 the c-type
cytochrome implicated as the charge carrier along the pilus, from trumpet plot analysis is
orders of magnitude less (k° ≈ 200 s−1) than what is needed for the observed currents (k° ≥
1010 s−1, Table 1). However, these discrepancies may be resolved by the vastly different
experimental conditions under which these measurements were made.8,38

Polizzi et al. Page 11

Faraday Discuss. Author manuscript; available in PMC 2012 July 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



A.2 Steady-state kinetics
The master equation, (2.1), can be represented in matrix form as dp⃗/dt = Kp⃗, with solution

(A.7)

where K is the matrix of rate constants, S the matrix of the eigenvectors of K, Lambda; is
the diagonal matrix of eigenvalues of k, and p⃗ is the n × 1 population vector for a system of
n sites, p⃗ = [P1(t) … Pn(t)]T.

Solutions to all the time-dependent populations, p⃗(t), are not necessary at steady-state. In
this case, we are interested only in the eigenvector of K with eigenvalue zero. We note that
if all site-to-site transitions in the kinetic mechanism are reversible, this eigenvector has
components that are the equilibrium populations at each site, which are subject to detailed
balance, i.e. kj→iPj = ki→jPi. In this case there is no net flux and therefore no current. A net

flux necessitates an irreversible step, which we could impose by setting  equal to zero in
Fig. 2. However, the following treatment makes this unnecessary.

We are interested in the nonequilibrium steady-state flux through the bridge for a given
difference in chemical potential between the left and right electrodes, ΔμRL. We note that
the inclusion of an irreversible step implies a net flux even for ΔμRL = 0. Subtraction of the
net flux in the opposite direction will solve this problem only if the rate constants associated
with the irreversible step in both directions are equal. We avoid the issue of irreversibility by
working with mechanisms in the form of closed loops. The detailed balance condition for a
looped mechanism is

(A.8)

where  represents the clockwise rate constant from site i to i + 1 in the closed loop and 
is the counterclockwise rate constant from site i + 1 to i. For a given chemical potential
difference between the left and right electrodes, eqn (A.8) becomes

(A.9)

which is a nonequilibrium condition imposing a net flow from L to R if ΔμRL is negative or
from R to L if ΔμRL is positive.

Expanding upon the formalism of Hänngi, 39 one can identify a closed loop for the system in
Fig. 2 upon replacement of the L and R electrode states with a single state (L, R), which
represents the source and sink of electrons at different chemical potentials. The closed loop
representation is shown schematically in Fig. 9. The population of state (L, R) represents the
absence of the electron on the bridge and replaces the populations PL and PR in all the
corresponding terms in the master eqn (2.1) with transitions into and out of the left and right
electrodes. An electron that traverses a full loop in this cyclical reaction mechanism will
have a net change in free energy equal to the difference in the chemical potential of the left
and right electrodes, ΔμRL. In Fig. 9, a complete cycle is any population flowing out of (L,
R) in the direction of B1 and flowing back into (L, R) from BN.
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The application and utility of this kinetic scheme is best illustrated by example, for which
we use a two site bridge connected between two leads as shown in Fig. 10. One first writes
the rate equations, setting them equal to zero at steady-state:

(A.10)

Eqn (A.10) are written in the matrix form Kssp⃗ss = 0, with

(A.11)

and . We want solutions of ~ pss that solve the matrix equation above; that
is, we are looking for the nullspace of Kss. The nullspace for these rate matrices consists of a
single basis vector multiplied by an arbitrary constant, c, and in this example is

(A.12)

We choose c such that the steady-state populations sum to one, i.e. c = 1/Σi N(Kss)i, where
the sum is over all i components of the nullspace basis vector. We are, after all, looking for
the time it takes one particle on average to find its way to the sink under a constant flow.
The steady-state population vector is in general

(A.13)

and specifically for the example

(A.14)

where

(A.15)

The effective steady-state rate constant keff is defined
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(A.16)

where the sum is over each j of the n sites that have transitions into the left electrode. The
current I is defined as the effective rate constant (A.16) multiplied by the electron charge (e)
and by the lesser of the number of sites coupled into the bridge from the left or right
electrode (n<):

(A.17)

The expression for the effective rate constant in our example is

(A.18)

Setting  in eqn (A.18) recovers the expression given by the more familiar but less
general treatment of irreversible flow from L to R.

The looped kinetic scheme is preferable for a few reasons: 1. The effective rate constant
through the loop is calculated directly via eqn (A.16) and does not involve finding effective
rate constants at each site as the irreversible mechanism would require. 2. There are no
restrictions other than eqn (A.8) on the rate constants in order to achieve zero flux at zero
chemical potential difference. 3. Integrals over the time-dependent populations are avoided
by solving for the nullspace of the rate matrix.

We have written MATLAB code that generates the rate matrices for 1D, 2D and 2D
cylindrical kinetic networks of any size and for any choice of rate constants. The code finds
the nullspace of the rate matrix and calculates the current as defined in eqn (A.17). We use
this program in section (3.1) to calculate the hopping currents through the pili subject to the
parameters: V (potential bias), r (hopping distance), k° (heterogeneous charge transfer rate
constant at zero applied bias), λ (reorganization energy), kBT (thermal energy), Ncol and
Nrow (number of columns and rows in a 2D kinetic mechanism, respectively), Nin and Nout
(number of sites that couple into and out of the 2D bridge, respectively, see Fig. 2). The
results of these calculations are summarized in Table 1 of section 3.1.

A.3 Unidirectional transport
We note that for a one dimensional, unidirectional transition process

(A.19)

with transitions characterized by a single rate constant, Γ, the time-dependent probability of
occupation at each site is known exactly.40 It is the Poisson distribution:

(A.20)

Defining the mean first passage time out of state m as
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(A.21)

which is equivalent to eqn (2.6), and substituting (A.20) into (A.21) leads to

(A.22)

(A.23)

The mean first passage time, eqn (A.21), is then

(A.24)

which can now be seen to be directly proportional to the number of hopping sites. Defining
an effective rate constant through the mechanism as 1/〈t〉, the rate decreases as 1/N for
unidirectional transport, which agrees with the result found numerically in Fig. 5. A review
of formulations to describe transport in kinetic networks is in preparation (Polizzi, Skourtis,
Beratan).
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Fig. 1.
STM images of isolated nanowires from wild-type MR-1, with a lateral diameter of 100 nm
and a topographic height of between 5 and 10 nm.9 (A) Arrows indicate the location of a
nanowire and a step on the graphite substrate. (B) Higher magnification showing ridges and
troughs running along the long axis of the structures. Figure reproduced with permission.
Copyright (2006) National Academy of Sciences, U.S.A.
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Fig. 2.
The two dimensional rate mechanism consisting of a left electrode (L), a set of bridge sites
{Bj}, a right electrode (R), and the transitions between them {k}. We define a “row” as all
the bridge sites with the same identifying tick mark, and the total number of “rows” as Nrow.
A “column” is all the sites with the same number subscript, and the total number of
“columns” is Ncol. Cylindrical boundary conditions are satisfied when the vertical transitions
described by the dotted arrows are included. The dotted transitions connect the last row of
bridge sites with the first row. The mechanism can be generalized to more sites coupled in
from the left electrode {L} and coupled out to the right electrode {R}.
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Fig. 3.
CP-AFM of a bacterial nanowire.8 (A) Topographic AFM image showing air-dried S.
oneidensis MR-1 cells and extracellular appendages deposited randomly on a SiO2/Si
substrate patterned with Au microgrids. (B) Contact mode AFM image showing a nanowire
reaching out from a bacterial cell to the Au electrode. (C) An I–V curve obtained by probing
the nanowire at a length of 600 nm away from the Au electrode (at the position marked by
the black dot in B). (Inset) The I–V curves obtained on bare Au and SiO2, respectively. (D)
A plot of total resistance as a function of distance between CP-AFM tip and the Au
electrode. Figure reproduced with permission. Copyright (2010) National Academy of
Sciences, U.S.A.
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Fig. 4.
Schematic of electron flow through a bacterial nanowire. The labels L, B and R stand for
Left electrode, Bridge and Right electrode, respectively. Here, L is the conductive AFM tip
of the experiment, B is the bacterial pilus and R is the gold grid shown in Fig. 3. The arrow
gives the path of the electrons, with direction depending on the sign of the chemical
potential difference between the electrodes. The star symbols on the pilus represent charge
carriers on the surface. The “…” represents the pilus extending in length far to the left. The
segment length of the pilus between the electrodes is 600 nm. The height and width of the
ellipsoidal pilus is approximated by a diameter of 10 nm.
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Fig. 5.
The hopping number dependence of the mean rate through a 1 or 2 dimensional bridge. The
injection into and ejection out of the bridge were modeled as irreversible for each scenario in
order to achieve a net flux from L to R. Lines labeled “with bias” have all backward rate
constants set to zero. All other rate constants were k = 1013 s−1. “No bias” means forward
and backward rate constants were equal, excepting the injection and ejection rate constants
which have no backward rate. 2Dreg refers to a “regular” 2D lattice of hopping sites. 2Dcyl
refers to a cylindrical and therefore periodic lattice of hopping sites. From the figure, one
can estimate order of magnitude drops in the effective rate constant as a function of the
number of hopping steps, with the assumption that all hopping rate constants throughout the
kinetic scheme are equal. The effective rate constants decay by a power law with the number
of sites, N. Each line is labeled with its fitted distance dependence and a letter A through F,
corresponding to its diagramatic representation below.
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Fig. 6.
Decaheme cytochrome MtrF from Shewanella oneidensis MR-1. Notice the close spacing of
the Fe hemes, with typical edge-to-edge distance of ≤0.7 nm. pdb: 3pmq.23
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Fig. 7.
Contour plots of the current described by eqn (4.1) as a function of nearest neighbor hopping
distance and number of electrode contacts. The reorganization energy, λ, the length of the
bridge, L, and the exponential decay constant, β, were chosen for relevance to a bacterial
pilus. For all cases, kBT was taken as 1/40 eV. The figure informs at a glance the distance
and contact constraints imposed upon each 2D cylindrical system for a given magnitude of
current.
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Fig. 8.
The energy picture of an electrochemical electron transfer. The molecular redox species
have state densities represented by gaussians (oxidized state: red, reduced state: blue).
Applying a negative potential to the electrode moves the chemical potential μ up the energy
scale. The electron transfer rate is related to the overlap between the Fermi function of the
electrode and the gaussian density of states of the redox molecule. Note that at very negative
applied potentials, the Fermi level of the electrode is far above the (red colored) gaussian of
the oxidized species and the overlap of the two functions remains constant and saturated
even when more negative potentials are applied. In this way, kred plateaus and saturates.
Likewise for kox at large positive potentials.
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Fig. 9.
The familiar form of the rate mechanism (see Fig. 2) is recast in terms of a closed loop,
where state (L, R) represents the state from where an electron is entering or exiting. The
symbols highlighted in blue are those included in a one dimensional bridge of length N.
Inclusion of the black states makes this mechanism two dimensional. Applying the
cylindrical boundary condition as described in the text makes this mechanism two
dimensional and cylindrical. The dotted arrows represent transitions between the variable
number of bridge sites between Bj and BN.
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Fig. 10.
A nonequilibrium steady-state flux can be imposed on this two bridge rate mechanism (top)
by either (A) making the last step irreversible, as is usually done, or (B) recasting in terms of
a closed loop. In (B), the four state mechanism becomes a cyclical three state mechanism,
from which the nonequilibrium steady-state flux is easily obtained without invoking

irreversibility. Detailed balance dictates that  when ΔμRL = 0.
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Table 1

Constraints on the hopping distance between charge carriers and on the reorganization energy (λ) as
calculated via the master equation for the 2D cylindrical mechanism, assuming ~1000 sites couple to each
electrode. The parameters were fit to eqn (2.7) to give a current magnitude on the order of 1010e s−1. The
length of the pilus was taken as 600 nm, kBT = 1/40 eV and β = 10 nm−1. Ncol is the number of columns in the
2D mechanism (the maximum value of a bridge site subscript in Fig. 2), with 1000 rows. k° is the
heterogeneous electron transfer rate constant at zero potential bias (see Appendix A.1). λ values listed are
values for charge transfers within the bridge. The electrochemical λ was taken as 1/2 the value for the bridge
hops. Note that the measured current magnitude could not be achieved for n = 10 or 100 without exceeding a
charge transfer kinetic limit3 of 1013 s−1

rnn (nm) Ncol λ (eV) k° (s−1) ΔG (eV)

0.35 1700 ≤0.3 ≥1010 0.0006

0.5 1200 ≤0.21 ≥1010 0.0008

0.7 860 ≤0.1 ≥1010 0.0012

1 600 ≤0.01 ≥1010 0.0017
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Table 2

Constraints on the hopping distance between redox sites and on the reorganization energy (λ) for an
experimentally measured resistance of 250 MΩ. The parameters were fit to the equation σ = eμ with μ
given by eqn (2.9) to give the conductivity using (1) the cross-sectional area and volume (Vfull) of the full

pilus (σ = 1/30 S cm−1) and (2) the cross-sectional area and volume (Vshell) of the outer cylindrical shell of the

pilus with thickness 1 nm (σ = 1/4 S cm−1). In both cases, the length of the pilus was taken as 600 nm, kBT =

1/40 eV, β = 10 nm−1, and the number density of charge carriers, , is given by . Note that for
carriers localized on the exterior of the pilus, the measured conductivity could not be achieved at rnn > 1 nm
even if λ was set to zero

rnn (nm) λ for Vfull (eV) λ for Vshell (eV)

0.35 ≤0.85 ≤0.75

0.5 ≤0.67 ≤0.57

0.7 ≤0.40 ≤0.27

1 ≤0.10 ≤0.01
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