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Abstract
An enantioselective arylation–cyclization cascade has been accomplished using a combination of
diaryliodonium salts and asymmetric copper catalysis. These mild catalytic conditions provide a
new strategy for the enantioselective construction of pyrroloindolines, an important alkaloid
structural motif that is commonly found among biologically active natural products.

The pyrroloindolines and poly-pyrroloindolines represent a diverse family of structurally
complex polyindoline alkaloids that have been isolated from a widespread series of natural
sources, including amphibians, plants and marine algae.1 An important structural subclass,
the C(3)-aryl pyrroloindoline unit (Figure 1) is incorporated in a range of natural products
that have been shown to be cytotoxic against both lymphocytic leukemia2a and
lymphoblastoma2b cell lines. Moreover, the structurally related pyrroloindoline-
thiodiketopiperazine family display nematicidal activity against pathogenic fungi such as P.
ultimum and R. solani,2c while the C(3)-aryl-containing hodgkinsine (not shown) has been
found to exhibit antinociceptive properties that are similar to morphine.2d, 3 The structural
complexity of the C(3)-aryl pyrroloindolines makes them a particularly elusive and at the
same time appealing target for total synthetic efforts.4 In this context, both Overman and
Movassaghi have made seminal contributions in the design of new reaction methods that
allow for the rapid construction of many of these complex alkaloids. The Overman group
has focused on the development of a Heck strategy for the enantioselective construction of
oxindoles that were elegantly converted into quadrigemine C, psycholeine, asperazine and
idiospermuline.4d–g In a complementary approach, the Movassaghi group has employed
Friedel–Crafts additions to enantiopure tryptophan derivatives in the synthesis of
naseseazines A and B.4a–b, 5

Recently our laboratory reported the enantioselective α-arylation of carbonyls using copper
bisoxazoline catalysis and iodonium salts.6 As a thematic extension, we postulated that this
Cu(III)-aryl strategy could serve as a platform for pyrroloindoline construction via an
enantioselective arylation–cyclization cascade process using indole-based nucleophiles.
Herein we present the successful execution of these ideas and describe an operationally
trivial, asymmetric catalytic approach that allows the formation of a diverse range of C(3)-
aryl pyrroloindoline architecture in only one step. We expect this new enantioselective
catalysis method should be broadly applicable to natural product and medicinal agent
synthesis.
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Design Plan
As outlined in Scheme 1, we proposed that oxidative insertion of a ligand-bound Cu(I)
complex into a suitable diaryliodonium salt7,8 would result in a highly electrophilic chiral
Cu(III) species.9,10 Subsequent addition of the indole nucleophile followed by reductive
elimination and amine–iminium cyclization would then yield the desired enantioenriched
pyrroloindoline product while reconstituting the Cu(I) catalyst. As in our previous studies,
we recognized that substrate-catalyst bidentate coordination should be important, and as
such, we sought to incorporate a pendent carbonyl on the tryptamine nucleophile unit to
facilitate formation of a square pyramidal Cu(III) complex.11 Given the architectural
constraints of the ligand framework, this would impose a significant bias for enantiofacial
indole Si-face coordination (as shown), thereby enabling the required enantioselective
addition and cyclization steps.

The feasibility of the proposed arylation–cyclization cascade was first examined using the
indole acetamide 4, diphenyliodonium triflate and a series of copper catalysts. As shown in
Table 1, the absence of catalyst resulted in no detectable product formation. In contrast,
when 5 mol% of (CuOTf)2•PhMe was employed, complete consumption of the iodonium
was observed; however, only the undesired product of C(2)-indole arylation was observed
(entry 2, 69% yield). We next turned our attention to ligated copper catalysts in the hope that
this would allow the Cu(III) aryl species to more rapidly participate in the reductive
elimination step (thereby circumventing a deleterious C(3) to C(2) migration step). Indeed,
implementation of both the t-butyl- and isopropyl- substituted bisoxazoline (Box)12 ligands
with copper yielded an improved level of the desired C(3)-aryl adduct albeit with modest
enantiocontrol (entries 3 and 4, 8–61% ee). Fortunately, when the phenyl-substituted
bisoxazoline ligand was employed, a dramatic increase in regio- and enantioselectivity was
observed (entry 5, 90% yield, 98% ee). Moreover, further optimization of temperature and
the iodonium counterion afforded the desired C(3)-aryl pyrroloindoline in 96% yield and
>99% ee as essentially a single regioisomer (entries 6–8).

With these optimized conditions in hand, we next turned our attention to the scope of the
aryl or heteroaryl coupling partner in this new pyrroloindoline forming reaction (Table 2).
While symmetrical diaryliodonium salts can be successfully employed in this context, the
approach pioneered by Gaunt in which aryl-mesityl reagents are used to generate Ar-Cu(III)
intermediates is preferred for reasons of practicality.9b Importantly, both electron-rich
(entries 1, 2 and 11, 82–92% yield, ≥98% ee) and electron-deficient arenes (entries 4–8 and
10, 55–89% yield, 91–98% ee) were found to be suitable coupling partners in this new
protocol. Moreover, a broad range of ortho-, meta- and para-substituted aryl rings with
diverse steric and electronic properties can be readily exploited (entries 2, 4, 5, 7, 8, 10 and
11, 55–92% yield, 91–99% ee). Notably, halogen-substituted aryl rings are tolerated in this
Cu(I)-catalyzed transformation, a critical consideration for further elaboration of these
pharmacophores in medicinal chemistry or natural product studies (entry 5, 83% yield, 97%
ee).

As revealed in Tables 3 and 4, this enantioselective arylation–cyclization technology is
tolerant to a wide range of substituents on the indole component. Initial examination of the
possible substitution on the indolic nitrogen13 demonstrates that a range of alkyl protecting
groups are compatible; e.g. N-methyl, N-benzyl, and N-allyl substituted indole acetamides
undergo addition–cyclization in >92% yield and near perfect enantiocontrol (Table 3, entries
1–3, 8, 92–96% yield, 97–99% ee). Moreover, unsubstituted indolic nitrogens were tolerated
with little or no effect (entries 4–6, 80–98% yield, 90–95% ee). Examination of the
substituent patterns on the nucleophile framework revealed that this protocol is amenable to
both electron-rich (Table 4, entries 3 and 5, 91–96% yield, 97–99% ee) and electron-poor

Zhu and MacMillan Page 2

J Am Chem Soc. Author manuscript; available in PMC 2013 July 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



indoles (Table 4, entries 1, 2, 4, 80–93% yield, ≥99% ee). As was the case for the aryl
coupling partner, this addition–cyclization sequence proceeds with perfect chemoselectivity
for oxidative addition into the iodonium C–I bond in the presence of halogens on the
nucleophilic substrate (entry 1, 88% yield, >99% ee). Finally, we were delighted to find that
this mechanism can be translated to the formation of six-membered piperidinyl-indolines
with excellent enantiocontrol using an indole propionamide substrate (entry 6, 67% yield,
97% ee). This result suggests that a variety of alkaloid pharmacophores might be readily
generated using this new asymmetric arylation strategy.

In conclusion, we have developed a new copper-catalyzed cascade protocol that allows the
rapid and enantioselective construction of C(3)-aryl pyrroloindoline architecture. Further
investigations into the mechanistic details of this transformation including models for
asymmetric induction are currently underway.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Representative Pyrroloindolines and Arylation Strategy
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Scheme 1.
Mechanism of Asymmetric Arylation–Cyclization
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Table 2

Scope of the Iodonium Aryl Coupling Componenta,b

a
Absolute configuration assigned by chemical correlation or by analogy.

b
Enantiomeric excess determined by chiral HPLC analysis of the isolated product.

c
Reaction performed at −15 °C.

d
Reaction performed at 0 °C.

e
Symmetrical diaryliodonium salt was used.

f
Reaction performed at −5 °C.

g
Using PF6 counterion.

h
Reaction performed at −10 °C.

i
Reaction performed at rt.
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Table 3

Scope of the N(1), N(10) Indole Acetamide Componenta,b

entry R PG yield (%) ee (%)

1 Me Bn 96 > 99

2 Bn Bn 96 > 99

3c Allyl Bn 92 > 99

4 H Bn 80 90

5 H Me 98 93

6 H H 86 95

7 Me H 92 > 99

8 Me Me 96 97

a
Absolute configuration assigned by chemical correlation or analogy.

b
Enantiomeric excess determined by chiral HPLC analysis.

c
Reaction performed at rt.
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Table 4

Scope of the Indole Nucleophile Coupling Componenta,b

a
Absolute configuration assigned by chemical correlation or analogy.

b
Enantiomeric excess determined by chiral HPLC analysis.

c
Using 30 mol% catalyst.

d
Using PF6 counterion at 0 °C.
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