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Abstract 

We propose a novel method called Partitioning based Adaptive Irrelevant Feature Eliminator (PAIFE) for 
dimensionality reduction in high-dimensional biomedical datasets. PAIFE evaluates feature-target relationships 
over not only a whole dataset, but also the partitioned subsets and is extremely effective in identifying features 
whose relevancies to the target are conditional on certain other features. PAIFE adaptively employs the most 
appropriate feature evaluation strategy, statistical test and parameter instantiation. We envision PAIFE to be used 
as a third-party data pre-processing tool for dimensionality reduction of high-dimensional clinical datasets. 
Experiments on synthetic datasets showed that PAIFE consistently outperformed state-of-the-art feature selection 
methods in removing irrelevant features while retaining relevant features. Experiments on genomic and proteomic 
datasets demonstrated that PAIFE was able to remove significant numbers of irrelevant features in real-world 
biomedical datasets. Classification models constructed from the retained features either matched or improved the 
classification performances of the models constructed using all features. 

Introduction 

Nowadays biomedical data are typically high-dimensional, often with thousands of features but much fewer 
samples. While more information certainly gives us potential of a better chance for knowledge discovery, many 
irrelevant features introduce noise that can interfere with the search for relevant features, and therefore severely 
hinder our efforts to produce meaningful and reliable classifiers. They also lead to a much larger model space, 
causing inefficiencies in data mining and model building that often necessitate greater computing power. Further-
more, most software packages for data analysis or classification have limitations in the number of features that they 
are capable of handling. Major modifications of existing software tools are often required for dealing with high-
dimensional datasets. In this paper, we focus on removing irrelevant features so that the subsequent data analysis or 
modeling can be performed in a more efficient and stable manner within a smaller model space. 

A feature is said to be relevant if there exists a statistically significant association between the feature and the target 
in a dataset or in an identifiable subset of it; otherwise, it is irrelevant to the target. Since there has been little study 
on irrelevant feature removal, researchers often resort to feature selection methods to remove irrelevant features. 
While simple statistical methods such as logistic regression1, and the Pearson correlation test2 are capable of 
discovering direct feature-target relationships based on univariate associations, people usually turn to more 
sophisticated feature selection methods to explore complex relationships in attempts to build robust models3-9.  

Feature selection aims to identify a parsimonious feature subset that maximizes the prediction power.  Features are 
to be removed as long as model performance does not begin to degrade. Therefore, feature selection methods have 
inherent limitations and may be prone to losing relevant features. Considered as a dual problem of feature selection, 
irrelevant feature removal (IFR) emphasizes the removal of only those features that are irrelevant to the target while 
retaining all the relevant features. This difference is evident in how they treat redundant features.  Typically, 
redundant features are removed by feature selection methods since they do not further contribute to prediction 
power. Such features are retained by IFR methods as long as they are associated with the target.  

We propose a novel partitioning based adaptive method that we call PAIFE for irrelevant feature removal. PAIFE 
performs global and local evaluations of a feature’s relevancy to the target by using the entire dataset as well as the 
partitioned subsets. Such a method is extremely effective in identifying features whose relationships with the target 
are conditional on certain other features. In contrast, most existing methods only evaluate the overall relationships 
between features and the target, and thus may often fail in discovering the conditionally relevant features. 

For determining feature-target relationships, there is no method that works the best for all the datasets of various 
sample sizes, feature types and value distributions.  As a data-driven approach, PAIFE adaptively employs the most 
appropriate evaluation method, statistical test and the parameter instantiation that are automatically adjusted by the 
characteristics of different datasets.  
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To our best knowledge, PAIFE is the first fully automated software tool for irrelevant feature removal. PAIFE uses 
multiple, complementary strategies such as such as coarse-to-fine level evaluations, overlapping subsets with sliding 
windows, and multiple adaptive significance thresholds via artificial features to ensure that relevant features are not 
removed. As shown in our experiments, PAIFE consistently produced robust results for both synthetic and real 
datasets. PAIFE’s adaptive, yet conservative nature make it an ideal candidate as a third-party data pre-processing 
tool for dimensionality reduction over genomic and proteomic datasets containing large numbers of features but 
relatively smaller numbers of examples for model building. 

The remainder of this paper is organized as follows. We first describe the framework of our method and algorithmic 
details. We then present the experimental results of applying PAIFE to multiple synthetic datasets and twelve 
published genomic and proteomic datasets. Finally, we conclude the paper and discuss future work. 

Framework 

By partitioning a feature space and adaptively assessing feature-target relevancies in those subspaces, PAIFE can 
reliably identify subtle relationships, which otherwise are extremely difficult to detect by most feature selection 
methods in the presence of large numbers of features but with much fewer samples. As illustrated in Figure 1, there 
are two phases for irrelevant feature removal. Phase 1 is pre-screening, wherein we identify features which have 
direct relationships with the target that are manifested over the whole dataset.  A simple univariate statistical test 
would be sufficient to detect these relationships. We then in phase 2 repeatedly partition the dataset into (often 
overlapping) subsets according to those relevant features detected by pre-screening and further identify relevant 
features over these partitioned subsets. 

In the following subsections, we will first give definitions on feature-target relationships, followed by discussions on 
partitioning and conditional relationship, and how we incorporate them as the key components into our framework 
of PAIFE. We then discuss how data characteristics, such as sample size, number of features, and the number of 
multiple tests for feature-target relevancy may influence detection resolution, which is the weakest statistically 
significant feature-target relationship that can be found by this method. We finally describe a strategy for obtaining 
multiple adaptive significance thresholds in order to intelligently identify relevant features above random noise 
levels.  

Feature-target relationships 

A feature is said to be relevant to the target if there is a significant association between this feature and the target. 
According to their relationships with the target, we categorize features into the following three distinct groups: 

Figure 1. Component diagram of PAIFE.  
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Unconditionally Relevant Features: features relevant to the target over the whole dataset; 
Conditionally Relevant Features: features relevant to the target but conditional on certain other features; 
Unconditionally Irrelevant Features: features not conditionally or unconditionally relevant to the target. 

Unconditionally relevant features can be identified by a univariate test over a whole dataset. In contrast, 
conditionally relevant features can only be detected over certain subsets wherein such relationships manifest 
themselves conditional on certain other features. Features not in the first two categories fall into the category of 
unconditionally irrelevant features. With PAIFE, our goal is to remove the unconditionally irrelevant features to 
reduce the complexity of high-dimensional biomedical datasets. 

 

Figure 2. An example of feature-target relationships. (a) Visualization of sample data of features x, y and the target 
T. Horizontal and vertical axes represent features x and y, respectively. The green and red colors represent the 
binary classes of the target feature, T. (b) Illustration of how PAIFE works step-by-step to identify x, y’s relevancies 
to the target T.  

Partitioning and conditional relationship 

Conditional relationship refers to a concept in probability theory. In particular, two random variables X and Y are 
conditionally independent given a third random variable Z if the conditional probability distribution for X given Y 
and Z is the same as that given Z alone. That is, Prob (X = x | Y = y, Z = z) = Prob (X = x | Z = z) for any x, y, z with 
Prob (Z = z) > 0.  

Conditional relationships are very subtle and usually extremely hard to identify. Partitioning, by dividing a domain 
space into a finite number of small regions, facilitates the discovery of conditional relationships since we can 
evaluate feature-target relationships over the partitioned subsets. Figure 2 depicts an example. Although feature x 
does not appear to be strongly related with the target T, by partitioning the dataset according to another feature y, 
PAIFE can identify a particular subset (between the dashed blue lines in Figure 2a) wherein a strong association 
between x and T exists. Figure 2b illustrates the step-by-step processes and results of PAIFE in identifying x and y’s 
relationships with T.  However, when considering several thousands of features in real datasets, it is not a trivial task 
to effectively identify those subsets wherein meaningful feature-target associations manifest. As explained in detail 
later in this paper, we design PAIFE to adaptively partition a dataset and further dynamically evaluate feature-target 
relationships over the partitioned subsets. 

While discretization methods, such as Multi-Interval Discretization10, can also be used for partitioning, they 
typically partition data using very coarse granularity with less control. Instead, we favor uniformly partitioning data 
into smaller subsets. This strategy is simple, easier to manipulate and provides control over granularity, while being  
computational efficient.  We also adopt a coarse-to-fine strategy, starting by interrogating feature-target 
relationships from big and often overlapping (coarser level) subsets, and only resort to smaller (finer level) subsets 
when previous evaluations at the coarser level fail to reveal any significant relevancy. 

Adaptive significance thresholds via artificial features 

To identify the conditional relationship between a particular feature and the target, we evaluate the relevancy of this 
feature to the target conditional on each of the other features. This implies that the association between one feature 
and the target will be tested over the partitioned subsets based on each of the other features. Since there are many 

(b) (a) 

Pre-screener: detects unconditionally relevant features 
p-value (x,T) = 0.143 
p-value (y,T) = 0.03 √ 
ASTE: estimates significance thresholds 
coarse-to-fine  → 
τ1:3 = (0.0053, 0.0039, 0.0034) 
CRFD: identifies conditionally relevant features 
p-valuebest,3 (x,T|y∈[0.5,0.75)) = 0.0019 
p-valuebest,3 (x,T| y∈[0.5,0.75)) < τ3 √ 
Decision: feature x is relevant to T, conditional on 
feature y∈[0.5,0.75). 
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features and various ways of partitioning the whole dataset, we typically have to conduct thousands of tests for 
conditional feature-target relationships. In the presence of multiple tests, the chance of making incorrect claims of a 
significant (p-value ≤ 0.05) feature-target relationship is higher. Therefore, we need to define an appropriate 
significance threshold to avoid an inappropriately high prevalence of chance findings. The detection resolution of 
our method is the weakest association that can be found to be statistically significant. Larger samples and fewer 
multiple tests typically improve the detection resolution. Due to the fact that most genomic and proteomic datasets 
have thousands or more features but only a couple of hundred or fewer samples, there is often not enough power to 
detect the feature-target relationship conditional on two or more other features in those datasets.   

We take a data-driven strategy to adaptively set up multiple significance thresholds. As previously mentioned, we 
evaluate feature-target relationships through multiple coarse-to-fine levels. We dynamically estimate an appropriate 
significance threshold at each coarse-to-fine level. In order to do so, we introduce a set of randomly generated 
features, which we call artificial features, similar to a concept in Tuv et al9. After pre-screening, we randomly 
generate a number of artificial features of the same sample size as the real features. After partitioning datasets 
according to those relevant features discovered during pre-screening, we test all the artificial features on their 
relevancies to the target over the corresponding partitioned subsets and record the lowest p-value of each artificial 
feature at each coarse-to-fine level and sort the corresponding p-values recorded for all the artificial features. We 
pick the 5th percentile of p-values at each coarse-to-fine level as the significance threshold that we will later use to 
identify from the set of real features the ones relevant to the target. 

Method 

In this section, we describe the algorithmic and implementation details of PAIFE.  PAIFE can process categorical, 
discrete and continuous data. In dealing with continuous data, it is important to scale data feature-wise to transform 
values of all the features into the same range to avoid dominance of those with larger numeric ranges. We apply a 
simple one-dimensional linear scaling method to scale the value of each feature. In particular, let fmax and fmin be the 
maximum and minimum values of feature f in a dataset. Then 

fs = (fo – fmin) / (fmax – fmin) 
where fo and fs are the feature values before and after scaling, respectively. We use this scaling to map the values of 
each feature onto the range of [0, 1]. 

As a pre-screening process, we first identify features that are unconditionally relevant to the target by a univariate 
test over the whole dataset. Then according to these identified relevant features, we partition the dataset into subsets 
and evaluate other features’ relationships with the target over the partitioned subsets at each coarse-to-fine level. 
Figure 3 gives the pseudocode of algorithm PAIFE and the flowcharts of the PAIFE components: ASTE and CRFD. 

Pre-screening 

The goal of pre-screening is to discover all the features that are unconditionally relevant to the target typically by a 
univariate test, such as the chi-square test at a significance level of α = 0.05. We first divide the values of each 
feature into disjoint, equal-sized bins. We then discretize that feature by categorizing the feature values into the 
corresponding bins. After discretization, we apply the chi-square test on each feature-target contingency table. We 
retain all the significant features as unconditionally relevant features. At this screening stage, we chose not to apply 
any multiple test adjustment. Because first, there are much fewer tests involved here than in the process of 
evaluating conditional relationships over the partitioned datasets, the possibility of false positives is relatively low. 
Secondly, a larger pool of unconditionally relevant features can help capture the conditionally relevant features since 
more features serve as the features to be conditioned upon for partitioning. This is well in accordance with our 
overall conservative IFR strategy of minimizing the loss of potentially relevant features. 

Univariate tests for conditional feature-target relationships 

When we assess conditional feature-target relationships over the partitioned subsets, the sample size of a subset can 
be much smaller than that of the whole dataset. It is important to utilize appropriate univariate statistical tests to 
address the sample size issue for assessing the conditional feature-target relationships. We incorporated two 
statistical tests, namely Fisher’s exact test11 and the chi-square test12.  Since Fisher’s exact test and the chi-square 
test are for categorical data, continuous data have to be pre-discretized for either of the tests to be applied. 

Chi-square test is the most commonly used test for association between categorical variables in a form of 
contingency table. It has computational advantages in dealing with large and less extremely distributed datasets. 
However, if the counts in some cells are too small or there is a zero count, large sample approximation of chi-square 
distribution is no longer appropriate and the test result tends to be significant when there is no real association. 
Fisher’s exact test is always valid no matter how small the sample size is, but its calculation can be time-consuming. 
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During pre-screening, we apply the chi-square test since a whole dataset typically meets the sample size requirement 
imposed by chi-square test. During subsequent evaluations over partitioned subsets, we dynamically check the 
counts for all the cells in the corresponding contingency table. If all the cells have 5 or more samples, then we run 
the chi-square test; otherwise, we run Fisher’s exact test to evaluate the feature-target relationship. 

Figure 3. The algorithm of PAIFE. (a) Pseudocode; (b) the flowchart of Subroutine ASTE; (c) the flowchart of Subroutine 
CRFD. 

(a) 

Notation: 
 n: sample size of a dataset; 
F: the set of all features;  
U: the set of unconditionally relevant features; 
C:  the set of conditionally relevant features;   
R: the set of all relevant features; 
A: the set of artificial features;  
E(f, T): a contingency table of feature f and target T; 
Test (E(f, T)): statistical test (chi-square test or Fisher’s exact test) ; 
τ : adaptive significance (p-value) thresholds;   
p: p-value associated with chi-square test or Fisher’s exact test; 
α: significance level used in pre-screening (αdefault = 0.05). 
 
INPUT: scaled dataset D; Target T  
OUTPUT: the set of relevant features R 
 
ALGORITHM: 
1. U ← Pre-screener (D; T; F; α) 
2.   τ ← ASTE (D; T; U) 
3.   C ← CRFD (D; T; F; U; τ) 
4.   R ← U + C 
 
SUBROUTINES: 
Subroutine U ← Pre-screener (D; T; F; α) // Prescreening 
U ← {} 
FOR each feature f ∈ F 
    Construct a contingency table E(f,T) 
    p  ← Test (E(f,T)) 
    IF p  ≤  α THEN   U ← U + f  ENDIF 
ENDFOR 
Subroutine τ ← ASTE (D; T; U) 
// estimating adaptive significance thresholds 
Partition each feature r ∈ U to generate subsets 
A ← Generate artificial features of n samples 
FOR each coarse-to-fine level i 
  FOR each artificial feature j ∈ A 

pi,j ← Min(p-values associated with 2x2 contingency tables E(j,T)  
     over all the partitioned subsets) 

  ENDFOR 
  τi ← 5th percentile of pi,j at level i 
ENDFOR 
Subroutine C ← CRFD (D; T; F; U; τ) 
// detector for conditionally relevant features 
C ← {} 
FOR each feature f ∈ F-U at each coarse-to-fine level i 

  FOR each partitioned subset based on each feature r ∈ U 
    FOR each cutoff point of feature f 
      Construct a 2x2 contingency table E(f,T) 
      p ← Test (E(f,T)) 
     IF p  ≤  τi THEN 
      C ← C + f 
      Break and process next feature f ∈ F-U 
    ENDIF 
ENDFOR (all three) 
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Figure 4. Illustration of three-level coarse-to-fine partitioning strategy. As PAIFE moves from the coarsest (top) 
level to the finest level (bottom).The sliding window (green) size w decreases while the step size s remains the same. 

Evaluating feature-target relationships over partitioned subsets 

We partition the datasets according to each relevant feature identified during the pre-screening phase. We adopt a 
sliding window strategy to construct the subsets at each coarse-to-fine level (Figure 4). There are two parameters 
being involved in constructing sliding windows, one is sliding window size w; the other is step size s (s≤w), which 
corresponds to the window size at the finest level. Together s and w are sufficient in determining the size and 
overlap of the sliding windows. Assuming all the features have been scaled onto a range of [0,1], we typically set 
s=0.25 at each of the coarse-to-fine level while w=0.25 at the finest level and increases by 0.25 when we go one 
level coarser.   

For each partitioned subset, we adaptively apply either the chi-square test or Fisher’s exact test to identify the 
conditionally relevant features that are not detected in the pre-screening process. Let f be a feature under evaluation. 
We construct multiple 2-by-2 contingency tables of f and T using different cutoff points for f. In practice, we 
construct three 2-by-2 contingency tables using cutoff points 0.25, 0.50 and 0.75, respectively.  We then run 
appropriate univariate tests on these contingency tables and compare returned p-values with the adaptive 
significance threshold at the same coarse-to-fine level to determine the feature’s association with the target. 

Experiments 

We evaluated PAIFE's performance over both synthetic and real biomedical datasets. We conducted three 
experiments against synthetic datasets. Experiment 1 compared PAIFE with three state-of-the-art feature selection 
methods in terms of absolute detection cost γA (being defined later). Experiments 2 and 3 evaluated PAIFE's 
performances with respect to changes in numbers of features and samples. We also included real-world genomic and 
proteomic datasets to evaluate PAIFE. We evaluated how effective PAIFE was in removing irrelevant features and 
how the removal of those features improved the prediction model performances. 

Synthetic data 

In each synthetic dataset, the target of interest was a binary variable T, 50% of samples were assigned to class 0 
(T=0) and 50% to class 1 (T=1). We also generated various numbers of unconditionally and conditionally relevant 
features as well as random features as noise. All the features have continuous values ranging from 0 to 1, but the 
distribution of a particular feature depends on its relationship with the target. We numerically characterized a 
feature’s relevancy to the target by its classification accuracy v (0<v<1) corresponding to a particular dataset/subset.  

Experiment 1. We set to compare PAIFE with some state-of-the-art feature selection/ranking methods in 
discovering relevant features while removing irrelevant ones. We generated a dataset including 1,000 samples of 
200 features. Among all the features, 50 of them were set to be relevant to T; while the rest features were generated 
from a uniform distribution UNIF[0, 1], representing the noise. Among the relevant features, 10 of them were 
unconditionally relevant to T with v∈[0.6, 0.7]. Let set A include these 10 features and set B include the remaining 
40 features that were relevant to T conditional on a feature from set A. We populated each feature x∈A as illustrated 
in Table 1. Specifically, we randomly chose 1,000v samples as the correctly classified cases based on feature x. If a 
correctly classified case was indeed in class 0 (T=0), we drew a value for x from UNIF[0, 0.5] and drew a value 
from UNIF(0.5, 1] if T=1. For the misclassified cases, we generated the feature values from UNIF(0.5,1] for 
samples in class 0 and UNIF[0,0.5] for those in class 1, respectively. 
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Table 1. Illustration of feature value distribution based on classification accuracy ν. 

 True Class Status 
Class 0 (T=0) Class 1(T=1) 

Correct classification UNIF[0, 0.5] UNIF(0.5, 1] 
Incorrect classification UNIF(0.5, 1] UNIF[0, 0.5] 

To populate values for a feature in set B, suppose that feature z∈B is associated with T conditional on feature y∈A, 
we randomly chose a subset with η ≤ y ≤ η + ξ, where y’s starting value η is drawn from UNIF[0, 1-0.25] and the 
subset range ξ = Max{0.25, UNIF[0,(1-η)/2]}. In other words, the range of y for the samples in this subset is from η 
to η+ξ with minimum range size of 0.25. We then generated the values of feature z for the samples in this subset in a 
way illustrated in Table 1, with classification accuracy v∈[0.8, 0.95]. The z values for the samples outside this 
subset were generated from UNIF[0,1]. 

 

We ran PAIFE at three coarse-to-fine levels with sliding window sizes of 0.25, 0.5, and 0.75, respectively. We 
generated 200 artificial features to adaptively estimate the significance threshold for each level of partitioning. 
PAIFE ranked all the features by their lowest p-values among all the tests. For comparison, we also ran three feature 
selection methods, namely SVM-RFE8, RELIEF4 and InfoGain13, all implemented in WEKA machine learning 
toolkit14, with 10-fold cross validation.  All three methods returned average relevancy ranks for all the features. 
We defined two metrics to measure the efficacy of a method in detecting relevant features. Suppose there are m 
relevant features out of totally n features. The absolute detection cost of identifying i truly relevant features, γA(i), is 
the number of features identified by a method that includes i truly relevant features. This implies that the ith correctly 
identified relevant feature is ranked γA(i)th by the method. Similarly, the relative detection cost, γR (i/m) = γA(i)/n, 
was defined as the proportion of total features needed to be detected as relevant features in order to capture a 
proportion of truly relevant features.  
Figure 5 shows the absolute detection costs γA(i) of PAIFE and three other methods if we wish to detect different 
numbers of relevant features. We were expecting an elbow point indicating the separation between relevant and 
irrelevant features. The closer the elbow to the number of the truly relevant features, the higher detection power a 
method had. Among the four methods in comparison, all were able to identify the 10 unconditionally relevant 
features in set A. However, SVM-RFE and RELIEF completely failed in separating conditionally relevant features 
in set B from the random noise features since neither method showed any elbow at all in their γA curves. InfoGain 
indeed had the elbow point and thus, to some extent, was able to separate relevant features from noise features. 
However, it took about 115 features to identify all the 50 truly relevant ones. PAIFE clearly was the most effective 
method with an elbow at 56, which was the closest to the number (50) of truly relevant features. 
Experiment 2. We demonstrated how well PAIFE performed against datasets of small sample sizes and varying 
numbers of total features and relevant features with comparisons with SVM-RFE, RELIEF and InfoGain.  We fixed 
the sample size at 250 in all seven trials, but steadily increased the numbers of total features and relevant features up 
to totally 5,000 features and 2,000 relevant features from trial 1 through trial 7. The setup in trial 7 was close to the 
situation of real genomic datasets. We populated feature values in a way similar to experiment 1 with ν ∈[0.6, 0.7] 
for unconditionally relevant features and ν ∈[0.8, 0.95] for conditionally relevant features. We generated 500 
artificial features to adaptively estimate the significance thresholds. To define sensitivity and specificity in the 
context of identifying relevant features, we refer to test positive as the case when a feature is identified as a relevant 
feature, and test negative as the case when a feature is claimed as an irrelevant feature by PAIFE. Thus sensitivity 
and specificity can be written as: 

Figure 5. Comparison on absolute detection cost γA between PAIFE and three state-of-the-art feature selection 
methods: SVM-RFE8, RELIEF4 and InfoGain13. 
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Sensitivity (SN) =
# of true positives

# of true positives + # of false positives 

 

Speci�icity (SP) =
# of true negatives

# of true negatives +  # of false negatives 

Table 2. PAIFE performance against datasets of fixed sample size (250 samples) but different numbers of relevant 
and irrelevant features compared with SVM-RFE, RELIEF and InfoGain.  #A is the number of all features; #R is the 
number of all relevant features; #U is the number of unconditionally relevant features; #C is the number of 
conditionally relevant features; #RPAIFE is the number of features identified by PAIFE as relevant features; #TPPAIFE 
is the number of correctly identified relevant features; SN (%) represents sensitivity; SP (%) stands for specificity. 

Trial 1 2 3 4 5 6 7 
#A 250 500 1,000 2,000 3,000 4,000 5,000 
#R 100 200 400 800 1,200 1,600 2,000 
#U 50 100 200 400 600 800 1,000 
#C 50 100 200 400 600 800 1,000 
#RPAIFE 120 242 493 907 1,391 1,776 2,248 
#TPPAIFE 97 198 393 764 1,144 1,501 1,862 
PAIFE SN 97 99 98.25 95.5 95.3 93.8 93.1 

SP 84.7 85.3 83.3 88.1 86.3 88.5 87.1 
SVM-RFE SN 63.33 62.4 61.46 64.39 63.34 65.03 64.33 

SP 81.54 81.01 80.87 80.24 80.17 79.99 79.91 
RELIEF SN 62.5 62.4 60.89 63.84 62.9 64.19 63.33 

SP 80.77 81.01 80.28 79.78 79.8 79.32 78.96 
InfoGain SN 71.67 70.25 68.97 71.55 70.81 70.38 68.55 

SP 89.23 88.37 88.17 86.18 86.44 84.26 83.32 
 

As shown in Table 2, PAIFE was robust and stable through all the trials, consistently outperformed the three 
compared methods in sensitivity and specificity. Furthermore, there was no significant drop in either sensitivity or 
specificity for PAIFE when we steadily increased the number of features through trials. In particular, in trial 7 where 
there were 5,000 total features, 1,000 unconditionally relevant and 1,000 conditionally relevant features, the 
sensitivity and specificity of PAIFE were 93.1% and 87.1%, respectively.     

 
Figure 6. Relative detection cost γR conditional on two other features over datasets of different sample sizes. 

Experiment 3. We evaluated PAIFE in identifying relevant features conditional on two other features, comparing 
with SVM_RFE, RELIEF and InfoGain, respectively. The setup of feature values was similar to that for experiment 
1. Of totally 200 features, there were 40 relevant features (20%), among which there were 20 unconditionally 
relevant features and 20 conditionally relevant features.   We partitioned the datasets with window size w=0.25 at 
the finest level and step size s=0.25. Figure 6 showed relative detection cost γR of the methods in comparison for 
identifying relevant features under different sample sizes. When sample size was not large enough (500 or lower), 
all four methods were powered to identify relevant features conditional on two other features. As with increasing 
sample size, performances of all the four methods begin to steadily improve with PAIFE consistently having the 
fastest pace, quickly converging to the lower bound of the relative detection cost γR. InfoGain came second, 
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followed by SVM-RFE and RELIEF. Against a dataset of 4000 samples, the relative detection cost γR for capturing 
all the truly relevant features was 21.5%, approaching the theoretical lower bound of 20%, which was the ratio of 
the number of all truly relevant features over the number of total features. It is necessary to have sufficient number 
of samples in order to unambiguously identify the features that are truly associated with the target. However, 
methods do vary in how they are sensitive to the sample size. As we demonstrated during this experiment, although 
performances of all four methods improved as sample sizes increased, PAIFE converged much faster and thus 
needed fewer samples to achieve a reasonably high detection power than the other three methods in comparison. 

Biomedical data 

We also evaluated PAIFE over 11 genomic and 1 proteomic datasets (Table 3). For each dataset, we ran PAIFE to 
obtain a reduced dataset that contained only the relevant features identified by PAIFE. Then we constructed the 
LIBSVM classification models15 using the original full dataset and the reduced dataset respectively to evaluate their 
classification performance based on 10-fold cross-validation performed two times. 

Table 3. PAIFE performance over genomic (1-11) and proteomic (12) datasets. 

ID Data source Features Sample size Features 
Removed (%) 

Classification Accuracy (%) 
Class 1 Class 0 Reduced data Full data 

1 Alon et al.16 6,584 40 21 70.05 95.12 95.95 
2 Beer et al.17 5,372 69 17 84.07 92.08 81.6 
3 Bhattacharjee et al.18 5,372 17 52 92.68 85.71 73.1 
4 Golub, et al.19 7,129 25 47 67.91 96.61 92.41 
5 Hedenfalk et al.20 7,464 18 18 74.81 97.5 39.58 
6 Iizuka, Oka et al.21 7,129 20 40 90.19 81.67 70 
7 Pomeroy, et al.22 7,129 21 39 93.08 76.67 60.83 
8 Rosenwald, et al.24 7,399 102 138 85.35 68.13 62.71 
9 Singh, et al.25 12,599 52 50 46.72 64.23 57.55 
10 Van’t Veer, et al.26 24,481 34 44 82.64 77.14 67.59 
11 Yeoh, et al.27 12,625 48 201 90.76 87.94 80.55 
12 Pusztai, et al.23 11,170 101 58 32.51 71.69 70.13 

As Table 3 shows, PAIFE was in general able to remove a significant number of irrelevant features. More 
importantly, classification performances based on the reduced datasets either matched or improved those based on 
the full datasets. In average, classification accuracies across 12 datasets were improved by 14.25 percentage points.  

Conclusions and future work 

In this paper, we brought to attention an important problem of irrelevant feature removal that has different 
characteristics and goals as compared to feature selection or ranking. IFR is an important problem to study in order 
to avoid the risk of accidentally removing relevant features.   

We proposed a novel, partitioning based adaptive method in PAIFE for irrelevant feature removal. As demonstrated 
in our experiments, PAIFE was robust and reliable in removing features irrelevant to the target in both synthetic and 
real biomedical datasets of various sample sizes, feature value distributions and feature-feature interactions. PAIFE 
addresses the IFR problem by adopting strategies such as coarse-to-fine level evaluations, overlapping subsets with 
sliding windows, and multiple adaptive significance thresholds via artificial features. We envision PAIFE to be used 
as an automated, data pre-processing tool for dimensionality reduction. The resulting lower-dimensional datasets 
would permit utilization of many readily available modeling tools.  

In our future work, we plan further evaluate PAIFE with other published benchmark data, especially from 
genotyping studies. We would also like to investigate the feasibility of a randomization-based evaluation strategy 
and a more intelligent partitioning scheme to improve PAIFE’s robustness and efficacy. Furthermore, we would like 
to generalize our method to consider not only feature-target, but also more general feature-feature relationships. 
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