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Abstract  

Alzheimer’s and Parkinson’s diseases (AD and PD) are two common neurodegenerative diseases primarily affecting 

memory and motor functions, respectively. In this study, we integrated data from various sources, and took a 

systems-biology approach to compare and contrast the molecular and network based dysregulation associated with 

AD and PD and we integrated these data with known pathways of drug treatment. First, we identified genes that 

exhibit consistent prior evidence of association with each disease. Then, we extracted disease-specific sub-networks 

from a human interactome database using associated genes as seeds. To rank the sub-networks we used existing 

gene expression data from cases and controls. Comparison of resulting disease-associated genes and networks 

revealed significant overlap between AD and PD. In addition, the identified sub-networks correlated with known 

drug interdiction pathways, and suggested new potential targets for intervention. 

 

Introduction 

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are caused by progressive degeneration and/or death of 

nerve cells. In AD, the patient’s memory and ability to think and carry out tasks is slowly destroyed; while PD 

mainly affects the patient's physical abilities: patients lose body control and have difficulty with movement and 

coordination
1,2

. Both diseases are strongly linked with the process of aging
3,4

. For most patients with AD and PD, 

symptoms first appear after age 60. Since the average age of the population is increasing, the numbers of AD and 

PD patients are expected to grow rapidly: e.g., it is estimated that 5.4 million Americans have AD in 2010 and this 

number will increase to 11-16 million in 2050
5
.  

To date, FDA has approved several drugs to slow the progression of AD and PD. Most drugs attempt to prevent the 

breakdown of critical chemicals whose levels are decreased in patients, e.g., cholinesterase inhibitors for AD 

patients slow the metabolic breakdown of acetylcholine that is involved in nerve cell communication; carbidopa for 

PD delays the conversion of levodopa. However, almost all of the currently available drugs are effective for short 

periods (a few months to a few years). For both diseases, in order to develop more efficient treatments and drugs, it 

is important to investigate and understand the molecular mechanisms and molecular networks that are altered in the 

development and progression of diseases. 

A large number of studies, including recent genome-wide associate studies (GWAS)
6-11

, traditional association, 

linkage, and gene expression studies, have been conducted to identify genes associated with AD and PD incidence 

and progression. Consequently, hundreds of potentially associated genes have been identified. A few of these genes 

have very strong connections with disease. In particular, APOE is linked to approximately 50% of AD patients
12

, 

and alpha-synuclein is associated with PD in members of a large Italian family
13

. However, for both diseases, the 

majority of the hundreds of identified genes are likely to individually have both small and potentially complex 

effects on the development and progression of disease
14,15

. To uncover the underlying molecular mechanisms in 
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these two diseases, comprehensive analysis of identified genes and their interactions within a network framework 

might provide many important insights beyond the traditional single-gene or single-marker analyses
16,17

. 

Network and pathway analysis are relatively new approaches to the study and identification of dysregulated 

components in diseases
18

. The underlying principle is that human diseases are caused by perturbations of the 

complex networks/pathways that link molecular components (such as genes and proteins) in a human cell. Pathways 

emphasize what is known and relatively well understood, thus the results can be easily integrated into familiar 

biological frameworks. On the other hand, current knowledge of pathways is incomplete, and network analysis 

explores new connections, and connects what are often perceived as distinct pathways. Network analysis has been 

employed to detect the networks associated with many complex diseases, such as cancer
19,20

, schizophrenia
16

 and 

addiction
21

. Recently, we have used integrated genome wide mRNA expression with protein-protein interaction 

(PPI) networks to detect sub-networks that are dysregulated in colon cancer and sleep disorders
22,23

. The aim of such 

studies is to identify the functionally related genes that exhibit coordinate differential expression between healthy 

and diseased patients. Due to the computational complexity of examining the actions of multiple genes 

simultaneously, such studies are currently focused on small subnetworks as markers of disease. However, multiple 

studies have demonstrated that the results are biologically meaningful and can provide testable hypothesis for further 

validation
19,22,23

. The framework of PPI permits scoring of multiple gene combinations within a highly functional 

context, while the reduced search space limits multiple testing corrections. These PPI sub-networks can reveal 

critical nodes and edges reflecting both biomarkers of disease, e.g. molecular beacons of the condition, as well as 

pinpoint critical nodes for potential functional intervention, e.g. important drug targets. We wished to test these 

properties of molecular network assessment in the context of known information on AD and PD, including the 

known biomarkers and known targets of drug treatment.  

Although AD and PD have their own unique neuropathological features; many patients with one disease later 

develop symptoms of the other
24-28

. This observation suggests the presence of common genetic variants that 

predispose individuals to both diseases and/or age related similarities in disease progression. Furthermore, beyond 

common genetic variants, perturbation of common pathways or network connections may also be shared in AD and 

PD. Studies show that the cerebral accumulation of beta-amyloid is associated with AD while alpha-synuclein is 

linked with PD
29,30

. Using a transgenic mouse model and NMR spectroscopy, a recent study has suggested an 

interaction between beta-amyloid and alpha-synuclein
31-33

 providing a potential molecular connection between AD 

and PD. Motivated by these observations, we conducted a systematic comparative analysis to investigate the 

molecular mechanisms and relationship of AD and PD, by taking advantage of the large amount of available 

molecular data for both diseases. We identified genes and networks strongly associated with AD and PD, and 

comparative analysis showed that AD and PD have strong connections and shared components at both molecular 

and network levels. 

Methods and materials 

To comprehensively investigate the molecular mechanisms of AD and PD, analyses at three levels were performed: 

(i) genes associated with AD and PD, (ii) networks connecting genes associated with AD and PD, and (iii) sub-

networks dysregulated in AD and PD at the level of mRNA expression. This section describes the construction of 

genes and networks associated with each disease, and the detection of dysregulated sub-networks. 

Construction of gene sets associated with diseases: Genes associated with AD and PD (termed as AD genes and 

PD genes, respectively) were extracted from public databases constructed using literature searches
10

. For the purpose 

of comparison, gene sets related with three other common mental disorders (autism, multiple sclerosis (MS) and 

schizophrenia) were also generated using a similar approach. To extract associated genes with strong evidence, we 

only considered associations that are reported in at least four publications whenever possible. In the case of autism, 

only genes present in both databases were extracted. The data sources are summarized in Table 1, along with the 

number of extracted disease-associated genes for each disease.  

The five resulting gene sets were then compared. In order to assess the significance of the overlap between the gene 

sets of each disease pair, we used a hypergeometric model. Namely, let N denote the total number of genes in the 

human genome (estimated to be around 21,000 at the time of this study). Let m and n respectively denote the 

number of genes associated with each disease (selected as described in the previous paragraph). If the number of 

genes that are common to both of these sets is k, then we computed the p-value of this overlap as follows: 
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To identify the pathways and enriched functional categories of genes shared between AD and PD, the commercial 

software Ingenuity Pathway Analysis (IPA, http://www.ingenuity.com/) was used. 

Table 1. Data source and number of genes used in this study 

Disease Database Website #  genes Date of download 

AD ALZgene www.alzgene.org 193 Sept. 20, 2010 

PD PDgene www.pdgene.org 268 Sept. 19, 2010 

MS MSgene www.msgene.org 186 Sept. 21, 2010 

SZ SZGene www.szgene.org 155 Sept. 21, 2010 

Autism AutDB 

Autism Genetic Database 

www.mindspec.org 

wren.bcf.ku.edu 

131 Sept. 21, 2010 

AD: Alzheimer’s disease; PD: Parkinson’s diseases; MS: multiple sclerosis; SZ: schizophrenia. 

 

Construction of gene networks associated with diseases: Pathway analysis provides useful information on known 

biological processes common to diseases; however, it is limited in extracting novel information. PPI networks are 

useful in this respect, since they provide a comprehensive map of functional relationships among products of genes 

in the human genome. For this reason, we also mapped AD genes and PD genes to the human interactome, extracted 

the networks associated with AD and PD, and investigated the relationship of two diseases at the network level. We 

acknowledge that this approach may neglect important interactions; as such databases are currently incomplete. 

However, we had two guiding principles in the study. First, we wished to use only well curated interactions with few 

false positives. Second, we wanted the interaction set used to be "open source" so the results could be replicated by 

other groups. Thus, to fulfill both these criteria, we constructed networks using the human interactome downloaded 

from Human Protein Reference Database (HPRD)
34

. The human interactome downloaded from the HPRD server 

(www.hprd.org, version 9.0, downloaded in September 2010) had 9,453 protein-coding genes (genes and their 

encoded protein are used interchangeably in this paper) and 36,867 interactions among these gene products. We 

applied the Steiner tree algorithm
35

 to identify sub-networks that could connect AD genes (or PD genes) effectively 

while minimizing the number of non-AD (or non-PD) genes added to construct the sub-network. In particular, 151 

out of 193 AD genes and 181 out of 268 PD genes were present in the HPRD network, thus with the choice of 

HPRD our gene set included over 70% of the originally identified genes. These genes were used as “seeds” to 

construct each disease specific network using Steiner tree algorithm
35

. Steiner tree algorithm generated a sub-

network by two steps: a) all seed genes are connected by adding a minimal number of non-seed genes; b), the 

network is simplified with the shortest paths between seed genes. This algorithm has been widely applied for the 

generation of various networks
16,36,37

. Once the Steiner tree algorithm was applied to each gene set, the resulting 

networks were considered as AD network and PD network respectively
35

. Finally, networks were visualized and 

analyzed using the Cytoscape
38,39

 software. 

Sub-network detection using Sub-network Analysis and Scoring System (SASSy): The AD and PD networks 

were further used to identify dysregulated sub-networks in diseases by integrating network data with mRNA 

expression data. The aim of this procedure was to find sub-networks in which genes exhibit coordinate differential 

expression in the disease. Here, coordinate differential expression was assessed in terms of the ability of a group of 

genes in discriminating the samples from disease patients and healthy individuals when their expression profiles 

were considered together. For this purpose, we used two previous published mRNA expression data for AD and 

PD
40,41

. We scored sub-networks using a sub-network scoring method developed by Chuang et al
19

 and searched for 

high scoring sub-networks using a search algorithm (SASSy) developed by our group
22,23

. The principle and 

procedure implemented by SASSy is summarized as follows: Given a small sub-network, the “sub-network activity” 

for that sub-network in each sample is computed by aggregating the mRNA expression of the genes in the sub-

network in that sample. Subsequently, the mutual information (MI) between phenotype (disease or control) and sub-

network activity is computed as a measure of the capability of “sub-network activity” for that sub-network to 

discriminate the two groups. MI measures the reduction of uncertainty in phenotype upon observation of the sub-
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network activity (aggregate mRNA-level expression) of the genes in the sub-network. To this end, a high MI score 

for a sub-network is an indicator of the coordinate mRNA-level dysregulation of the genes in the sub-network. 

SASSy exhaustively searches for sub-networks (composed of up to 5 genes) of the AD (PD) network to identify sets 

of genes with high MI, which is guaranteed to find all sub-networks with a maximum MI, as opposed to a heuristic 

algorithm
19

. Since, in this study, the networks were restricted to the neighborhood of genes associated with each 

disease, such an exhaustive search was feasible. Limiting the size of the sub-network to five is in fact arbitrary, and 

is defined only to limit the computational search time.  

Results and discussion 

Comparison of AD genes and PD genes: The 193 AD genes were compared with 268 PD genes to investigate the 

relationship between AD and PD. The results showed that 52 genes were shared in these two gene sets, and this 

overlap was highly significant by hypergeometric test (p-value < 10
-10

), indicating a strong connection between AD 

and PD at the molecular level. Functional analyses of the 52 overlapping genes using IPA indicated that the top 

functions associated with these genes are "death of normal cell and neurons" (p-value < 10
-7

 ) and "nervous system 

development and function" (p-value < 10
-8

). 

To elucidate the gene overlap with other mental disorders, in order to see if the AD/PD association was especially 

significant, additional gene sets for autism, MS and schizophrenia were collected, and compared in pair-wise fashion 

with AD and PD and each other. The results clearly showed that the genes that are confidently indentified with PD 

and AD have the most significant overlap (Figure 1a); the p-values for pairwise overlaps for all five diseases are 

summarized in Figure 1b. The genes confidently identified as being associated with autism had very modest overlap 

with other brain diseases (no p-value < 0.01) while MS and AD (p-value < 10
-5

), schizophrenia and PD (p-value < 

10
-5

), schizophrenia and AD (p-value < 10
-4 

) had significant overlap. The results also indicated that 38 genes were 

associated with at least three diseases (genes clustered in the center of Figure 1a) and 11 out of 38 genes are 

associated with four diseases (APOE, BDNF, GSTM1, IL1A, IL1B, IL10, MTHFR, MT-ND5, PON1, PTGS2, and 

SLC6A4), with the likely conclusion that these genes probably play a significant role for the proper functioning of 

brain. Among the 38 genes, seven are mitochondrial genes (Mt-ND1, Mt-ND2, Mt-ND3, Mt-ND5, Mt-COI, Mt-L2, 

and Mt-DLOOP), consistent with the important role of mitochondria in brain function and dysfunction
42

. Five of the 

38 are interleukin or interleukin-related genes (IL1A, IL1B, IL6, IL10 and IL1rn) and it is well documented that IL1 

is associated with behavior, neuroendocrine function, and sleep
43

; and dysregulated IL6 is linked with brain 

tumors
44

.  

  a:                                                                           b: 

   

Figure 1. Disease gene network. a: Circles represent genes associated with five common mental disorders, triangles 

represent diseases, edges connecting circles and triangles represent the association between genes and diseases. 

Please note that genes located in the center of (a) are associated with at least three diseases, but are not necessarily 

associated with both AD and PD. b: Summary of p-values for overlapping of the pair-wise comparison 

 

Comparison of networks associated with AD and PD: Based on AD genes and PD genes, two networks were 

extracted from the HPRD interactome using the Steiner tree algorithm. The resulting network for AD contained 225 

genes and 387 interactions (AD network, Figure 2a). Among the initial 193 AD genes, 151 were retained in the 
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network (the remaining 42 genes were absent in HPRD); to connect these 151 genes the algorithm added 74 

additional genes. It is interesting to note that 13 out of these 74 new genes had prior evidence of association with 

AD in the database; they were not included in the AD genes as they did not satisfy the criterion of being present in at 

least four publications. The inclusion of these genes in the AD network provides further evidence for their functional 

association with other AD genes, and illustrates the power of a network-based approach. Similarly, the PD network 

had 273 genes and 502 interactions (Figure 2b), 185 PD genes were retained (the remaining 88 were absent in 

HPRD), and 5 of 88 added genes had evidence of PD association in the databases. 

  a:                                                                           b: 

    

Figure 2. Disease-specific networks extracted from HPRD using Steiner tree algorithm. a: AD network. b: PD 

network. Red nodes represent seed genes. Green nodes represent genes recruited by the algorithm. Pink nodes are 

recruited genes having evidence for the association with corresponding disease. 

 

Figure 3. Common sub-networks between AD and PD networks. Red nodes represent seed genes in the AD and PD 

network construction. Green nodes represent genes recruited by the Steiner tree algorithm. 

 

The comparison of AD network with PD network showed another level of relationship between the two diseases: 72 

genes were shared in two networks; the network generation process added many genes that were common among the 

final disease networks. 51 out of 72 genes were clustered into a connected network, 4 genes were isolated from 
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others, and the rest of genes formed four networks with 2, 4, 5, 6 genes respectively (Figure 3). Further analysis 

indicated that 54 out of these 72 genes were seed genes. Comparing these 54 seed genes with the AD and PD genes 

showed that 44 out of 54 genes were common in two disease gene sets. Furthermore, five of the AD genes (ACHE, 

APP, ATXN1, CLU and DAPK1) were included in the PD network by the Steiner tree algorithm, and five of PD 

genes (APOB, CALR, CAV1, NOS1, and TFRC) were included in AD network. In summary, more common genes 

were found when comparing at the network level due to the interactions between AD genes with PD genes. 

Several non-seed genes were added into the disease network due to their significant positions and connection to seed 

genes (Figure 3). For example, TP53, SRC, EGFR and ZBTB16 were not seed genes, they were included in the 

network because each of them had multiple interactions with seed genes. Three studies support the link between 

TP53 and AD
45-47

, while there have no evidence for the association of SRC, EGFR and ZBTB16 with AD or PD in 

the databases. Our findings suggest that they are likely associated with common neurodegenerative diseases. 

Dysregulated sub-network detection using mRNA expression for AD and PD: Integrating network information 

with mRNA expression data can help to identify sub-networks that are the most dysregulated in disease. We expect 

these highly dysregulated sub-networks (of five genes in this analysis) and their immediate neighbors, to include 

both important biomarkers of the disease process and to identify important points for drug interventions to reverse 

the dysregulations and thus reverse the disease process. To identify highly dysregulated sub-networks, the algorithm 

SASSy has been developed and tested to identify biomarkers and therapeutic targets related to cancer and sleep 

disorders
22,23

. These results have shown that SASSy is a powerful tool to assess the coordinate dysregulation of 

multiple functionally connected genes.  

 

Figure 4. Highly significant dysregulated subnetworks detected by SASSy for (a-f) AD and (g) PD. The genes that 

were originally seeds, and thus have known significant association with disease are in red and the added nodes 

added by the Steiner Tree algorithm are in green. 

 

We applied SASSy to exhaustively search for small (up to five genes) dysregulated sub-networks in AD and PD. We 

report results here for the sub-networks that have the maximum MI in the analysis. The AD disease network was 

analyzed using mRNA expression data from hippocampal tissue (seven AD patients vs nine controls); this generated 

six sub-networks with equal MI (sub-networks a-f of Figure 4)
40

. Several genes well known to be associated with 

AD were found in these sub-networks, including APOE and APP (amyloid precursor protein). Most of the genes in 

the sub-networks were seeds from the original disease networks (colored red). This shows that the top sub-networks, 

as identified by SASSy, correctly identify known markers of disease. Several genes, like TP53 and APP, appeared 

multiple times, suggesting that they might mediate important crosstalk between different pathways. On the other 

hand, this is the first evidence for the association of AD with genes in the sub-networks such as TP53, SRC, PLCG1 

and HIF1A, NAA10, etc. For example, NAA10 (N(alpha)-acetyltransferase 10) helps modulate HIF1A (hypoxia 

inducible factor 1) acetylation, thereby promoting its degradation
48

. These novel genes are potential targets for 

further experimental investigation in AD. Furthermore, six genes (APOE, CAV1, FYN, GSK3B, NQO1 and PTS2) 

from the AD sub-networks are also PD seed genes, which provides evidence that the most significantly dysregulated 

sub-networks in AD have strong connections to PD.  

In the case of PD, one significant sub-network (network g of Figure 4) was detected to be dysregulated using mRNA 

expression data from the substantia nigra region (16 PD patients and 9 healthy controls)
41

.Four out of five genes 
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(ABCB1, CAV1, ESR1, and JUN) have strong evidence for the association with PD. This is the first evidence that 

TP53 has a significant association with PD. TP53 and CAV1 are present in dysregulated sub-networks of both AD 

and PD, which suggests another connection between AD and PD. 

Comparison of disease networks with drug targets. We expect that our disease-based molecular networks are an 

informative framework for analyzing effects of AD and PD drug treatments. Also, we were interested to know if the 

dysregulated sub-networks identified by SASSy revealed any known drug targets, or were closely associated with 

known targets. AD and PD approved drugs and targets were identified by searching the IPA database (Table 2); we 

then compared the components of networks (Figure 2) with the targets of current drugs. The drugs and drug targets 

in the IPA database are shown in Table 2, the targets in bold were found in our disease-associated networks, and the 

disease networks included most of the targets. Several nodes of the disease associated networks link directly with 

more than one drug target, for example, CollagenQ (COLQ) directly links with ACHE and BCHE (targets for AD), 

these nodes are also in the common sub-networks for AD and PD (see Figure 3) while GIPC1 (PDZ domain-

containing protein GIPC1) is linked with both DRD2 and DRD3 (dopamine receptor targets for PD).  

Table 2. Current drugs for AD and PD, and their targets. 

Drug Disease Target
a
 

Levodopa/carbidopa/entacapone PD COMT, DDC 

Bromocriptine PD DRD1, DRD2 

Selegiline PD MAOB 

Pramipexole PD DRD1,DRD2,DRD3,DRD4,DRD5 

Ropinirole PD DRD1,DRD2,DRD3,DRD4,DRD5 

Amantadine PD DRD2,DRD5 

Rasagiline PD MAOB 

Donepezil AD ACHE 

Rivastigmine AD ACHE,BCHE 

Galantamine AD ACHE 

Memantine  AD 

CHRNA4,GRIN1,GRIN2A,GRIN2B, 

GRIN2C,GRIN2D, GRIN3A, 

GRIN3B, HTR3A 

a: full names of drug targets: COMT: catechol-O-methyltransferase; DDC: dopa decarboxylase; DRD: dopamine 

receptor D; MAOB: monoamine oxidase B; ACHE: acetylcholinesterase; BCHE: butyrylcholinesterase; CHRNA4: 

cholinergic receptor, nicotinic, alpha 4; GRIN: glutamate receptor, ionotropic, N-methyl D-aspartate; HTR3A: 5-

hydroxytryptamine (serotonin) receptor 3A. 

 

Although no drug target appeared in the SASSy scored sub-networks (Figure 4), as they are limited to five nodes, 

several direct interacting partners of drug targets are present in the sub-networks. For example, three nodes, SRC, 

FYN and PLCG1 of the subnetwork (a) in Figure 4 are direct partners of GRIN2B (glutamate receptor, ionotropic, 

N-methyl D-aspartate 2B), which is a target of Memantine, a treatment for AD. APP, found in a subnetwork of 4b 

and 4d, is an interacting partner of ACHE, the target of Donepezil and other agents. As SASSy was able to identify 

important nodes both dysregulated in disease and those directly connected to important drug targets, the sub-

network nodes may include other potential important new targets that could become the focus of future studies. For 

example, FYN (a proto-oncogene tyrosine-protein kinase) and SRC related kinases, seen to be highly dysregulated 

in AD, are important candidates for new drug development in cancer and neuronal diseases
49

. IGF1R, (Insulin like 

growth factor receptor 1), a dysregulated target in AD (Figure 4a), is an important target for development of 

inhibitors in cancer
50

, interestingly it is up-regulated in AD and thus these agents could be explored for their effects 

in blocking or reversing the disease. Overall, agents mediating functions of SRC, FYN, and IGF1R represent logical 

drugs for validating the molecular networks seen in this study, as well for the proteins are potential new targets for 

AD therapies. 

Conclusion 

In summary, we identified genes and sub-networks associated with AD and PD as well as sub-networks that 

connected the two diseases. These strong connections included three levels of evidence: significant overlap of AD 

and PD associated genes, large common regions among AD and PD networks, and shared nodes for highly 
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dysregulated sub-networks. In addition, the dysregulated sub-networks identified by mutual information scoring of 

PPI sub-networks with gene expression data using SASSy provided powerful identification of both known and 

potential new biomarkers for AD and PD and potential novel drug targets for AD.  
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