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Introduction
Our most cherished sense, vision, begins
with the process of phototransduction, a
process performed by the highly special-
ized photoreceptor cells of the retina: the
rods and cones (Rodieck, 1998). Rod pho-
toreceptor cells are needed for night vi-
sion, as they are able to respond to very
few photons, while cones are active under
bright light conditions and are responsi-
ble for color vision. Many people are born
with impaired vision, and many others ex-
perience loss of vision later in life. For ex-
ample, age-related macular degeneration
(AMD) occurs in �5% of people 80 years
old in the U.S. (Rudnicka et al., 2012),
while mutations in �200 genes can lead to
loss of vision in younger individuals (Ret-
Net; www.sph.uth.tmc.edu/Retnet). This
review is focused on emerging strategies
that employ gene therapy to combat vi-
sion loss, primarily due to mutations that
affect photoreceptor cells. Exciting early
results from the use of Adeno-associated
virus (AAV) vectors in humans to combat
Leber’s congenital amaurosis (LCA)
(Bainbridge et al., 2008; Maguire et al.,
2008), a relatively rare form of congenital

blindness, has inspired several groups to
employ AAV in a number of ways to com-
bat other genetic diseases. Here, the ef-
forts aimed toward one particular disease,
retinitis pigmentosa (RP) (Hartong et al.,
2006), will be covered, as there are excel-
lent animal models (Rivas and Vecino,
2009; Fletcher et al., 2011) and it offers
some straightforward possibilities to save
photoreceptor function and/or photore-
ceptor cells themselves. Ironically, one of
the possibilities is to use optogenetics, rather
than gene replacement or knock-down, for
restoration of vision (Busskamp and Roska,
2011). It is hoped that we can apply the les-
sons learned from RP to other diseases that
also result in loss of photoreceptor cells, in-
cluding AMD.

Individuals with RP are typically born
night-blind, due to rod dysfunction, but
initially have full-field, high-acuity color
vision. This is in keeping with the expres-
sion of many RP disease genes only in rods
(www.sph.uth.tmc.edu/Retnet). For rea-
sons that are still unclear (see Overview of
therapeutic approaches to RP, below),
loss of color vision then follows, and can
occur as early as 5 years of age, or much
later, in the fifth or sixth decade of life
(Hartong et al., 2006; Berson, 2008). The
progression of cone dysfunction and
death eventually leads to total loss of vi-
sion, with the final loss in the center, due
to loss of macular vision. The macula
comprises only cones in its very center,
and is the area of our highest acuity color
vision. Invasion of retinal pigmented epi-
thelial cells into the retina leads to the oc-
currence of black clumps within the
retina, and hence the name of the disease.
Attenuated retinal blood vessels and optic
disc pallor are other hallmarks of the dis-

ease (Milam et al., 1998; Berson, 2008).
There is no cure for RP, but there are sev-
eral lines of therapeutic approaches that
hold promise, including gene therapy.

Overview of therapeutic approaches
to RP
Since many RP genes are expressed only in
rods, one line of genetic therapy is to pro-
vide rods with a wild-type allele of a reces-
sive disease gene, or to provide for an
allele-specific loss of function (RNAi or
ribozyme) in the case of a dominant dis-
ease gene. Vectors expressing such genes
or knock-down cassettes have been devel-
oped and tested in animal models (LaVail
et al., 2000; Schlichtenbrede et al., 2003;
Pang et al., 2008; Chadderton et al., 2009;
Raz-Prag et al., 2009; Palfi et al., 2010; Zou
et al., 2011). While this approach may be
successful for individual disease genes,
and is a good one to establish the use of
gene therapy vectors for ocular diseases, it
likely will not be possible to extend such a
targeted approach to all disease genes. The
cost of clinical trials for gene therapy is
quite high, and the number of individuals
who can be treated for any individual dis-
ease gene is small. A more cost-effective
strategy would be to develop therapies
that can be used for people who have any
of a larger number of disease genes. A ge-
neric way to prolong rod survival, even
without rescuing their function, should
prohibit the onset of cone death, which
follows rod death. Similarly, gene therapy
directly targeting cones to promote their
function/survival should enable the treat-
ment of individuals with many different
disease genes.

As rods malfunction and die, there is a
loss of cone function, followed by cone
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death. Several models for cone death in
RP have been proposed (for review, see
Punzo et al., 2011). Rods may supply a
needed factor or factors for cone survival
(Léveillard et al., 2004). This sets up a pos-
sible therapy, i.e., delivery of a growth fac-
tor, which is an approach currently in
clinical trials (Sieving et al., 2006). An-
other class of models concerns toxicity
due to rod death (Ripps, 2002). The re-
lease of a toxic factor by dying rods might
kill the nearby cones. We believe that the
kinetics of rod and cone death make this
latter model unlikely (Punzo et al., 2009).
If dying rods released a toxin, one would
predict that there would be a close tempo-
ral and spatial association between rod
and cone death. However, cone death of-
ten does not occur until many months af-
ter rod death (Carter-Dawson et al., 1978;
Milam et al., 1998; Berson, 2008; Lin et al.,
2009; Punzo et al., 2009). Another model
holds that there is an increase in oxidative
damage to cones once the rods have died
(Yu et al., 2004; Shen et al., 2005;
Komeima et al., 2006). This model also
suggests a therapy, that is, delivery of an-
tioxidants or genes encoding antioxida-
tion enzymes. Finally, we recently
proposed that the cones have a nutrient
shortage and/or imbalance in metabolism
due to a change in retinal architecture,
brought on by the loss of the rods (Punzo
et al., 2009, 2011).

Current strategies that might be more
generic in their application, and use gene
therapy, are considered in more detail in the
following sections. Other approaches, such
as engraftment of retinal neurons derived
from stem cells (Comyn et al., 2010;
Bermingham-McDonogh and Reh, 2011;
Rowland et al., 2012) and implantation of
prosthetic devices (Chader et al., 2009),
are also being developed, but are beyond
the scope of this paper. It is likely that
some very effective therapies will be com-
binatorial, such as engineering engrafted
photoreceptor cells to secrete growth fac-
tors. An example of a combinatorial strat-
egy, one which combines sophisticated
electronic devices with AAV-mediated
delivery of a light-sensitive protein, will be
described further in the last few sections.

Treatment with growth factors
An attractive model for cone death posits
that there is loss of a trophic factor for
cones that is made by rods (Mohand-Said
et al., 1998, 2000; Léveillard and Sahel,
2010). Sahel and colleagues (Fintz et al.,
2003; Léveillard et al., 2004) discovered a
candidate for such a factor, RdCVF [rod-
derived cone viability factor; also named

nucleoredoxin 1 (Nxn1)]. Characteriza-
tion of a recent mouse knock-out for this
gene showed that cones in the mutant
are more susceptible to oxidative dam-
age (Cronin et al., 2010). Interestingly,
this gene has a domain with homology
to thioredoxin, which has a role in es-
tablishing the redox state of cells
through a thiol-oxydoreductase activity.
However, a short isoform of RdCVF,
which does not have the thiol-
oxydoreductase activity, is nonetheless
able to promote cone survival (Léveillard
et al., 2004). RdCVF protein has been in-
jected into the eye of an RP rat model
where it has shown survival-promoting
activity for cones, along with preservation
of cone activity (Yang et al., 2009). How-
ever, the protein is difficult to purify, and
frequent delivery of any protein is prob-
lematic. Currently, an AAV vector is being
developed to bypass the problem of pro-
tein purification and delivery (J. Sahel,
personal communication).

Other growth factors have been tested
by injection of the factors themselves into
genetic models or into retinas where pho-
toreceptor cells have been acutely dam-
aged by light (LaVail et al., 1998). BDNF,
CNTF, bFGF, and PEDF have activity
when delivered to the subretinal space.
CNTF is the factor that is furthest along
(Wen et al., 2012), as it is now in clinical
trials for RP (Sieving et al., 2006; Raz-Prag
et al., 2009; Talcott et al., 2011) and AMD
(K. Zhang et al., 2011). It also shows
survival-promoting activity for retinal
ganglion cells, the cell type affected in
glaucoma (Hellström and Harvey, 2011).
CNTF is being delivered by encapsulated
cells that secrete the factor (Tao, 2006).
The semipermeable membrane contain-
ing the cells is inserted into the ciliary
margin, where it does not interfere with
vision. This arrangement allows for the
possibility of removal should any untow-
ard effects develop.

Treatment with antioxidants
As mentioned above, oxidative stress has
been suggested as one of the causes of
cone dysfunction and death in RP (Yu et
al., 2004; Shen et al., 2005; Komeima et al.,
2006). As the rods die in RP, the flow of
oxygen from the choroidal circulation
does not abate, and thus each cone is ex-
posed to increasing amounts of oxygen
(Yu et al., 2000, 2004). Studies of the levels
of oxidized proteins, nucleic acids, and
lipids have shown that oxidative damage
increases during the course of RP (Shen et
al., 2005; Komeima et al., 2006). Oxidative
stress is likely not only correlated with

photoreceptor degeneration in RP, but
contributes to it. Cone death was slowed
in several mouse models of RP that were
treated with exogenous antioxidants
(Komeima et al., 2006, 2007). AAV deliv-
ery of endogenous antioxidant enzymes,
including superoxide dismutase and glu-
tathione peroxidase, in some RP mouse
models decreased oxidative damage and
prolonged cone survival (Lu et al., 2009;
Usui et al., 2009). Also in keeping with the
beneficial effects of antioxidant enzymes,
a recent study showed that low-dose irra-
diation prolonged photoreceptor survival
(Otani et al., 2012). The gene encoding the
antioxidation enzyme, peroxiredoxin 2,
was upregulated by this treatment, and its
activity was required for the survival-
promoting effect. Gene therapy directed
to the photoreceptor cells will solve one
problem posed by the delivery of chemical
antioxidants through, e.g., the diet. The
blood–retinal barrier, and the soluble na-
ture of many of these compounds, does
not enable a high, steady-state level of the
antioxidants in the retina. Moreover, ROS
are important signaling molecules and a
wholesale decrease in ROS might not be
without side effects, particularly with ex-
posure of the entire body to these chemi-
cals (Finkel, 2003). Viral gene delivery,
ideally coupled with a cone-specific pro-
moter, might provide a more effective ap-
proach, one that might be especially
beneficial if the promoter was also regu-
lated by the oxidation level of the tissue.
Such vectors are being developed for use
in other diseases and could be adapted for
use in RP (Qi et al., 2007; Koilkonda et al.,
2010).

Optogenetics
Seven transmembrane proteins that can
capture the energy of light are ancient
proteins that have evolved into many dif-
ferent forms. Some of these proteins are
ion channels, some are ion pumps, and
some are able to initiate a signal transduc-
tion cascade that can lead to changes in
membrane polarization (Bamann et al.,
2010; F. Zhang et al., 2011). Our own op-
sin proteins partner with a chromophore,
11-cis-retinal, to give our photoreceptor
cells light sensitivity. Following a success-
ful isomerization reaction, there is a series
of signal transduction events that amplify
this initial signal to the point where neu-
rotransmitter release is altered. Rods and
cones transduce the light signal so as to
hyperpolarize, and thus reduce their rate
of release of glutamate. An archaebacte-
rium, Natronomonas pharaonis, uses its
light-sensitive protein, halorhodopsin
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(NpHR), in a similar manner, as it too
hyperpolarizes in response to light. In this
case, the protein is a chloride pump, and
thus does not need the elaborate signal
transduction cascade used by photoreceptor
cells. Another light-sensitive channel, chan-
nel rhodopsin2 (ChR2), from Chlamy-
domonas rheinhardtii, is a light-activated ion
channel that triggers depolarization by the

passage of sodium and other positively
charged ions. When expressed in a neuron,
this channel mimics neuronal activation.
The utility of ChR2 for light activation of
neurons has been exploited for many ba-
sic science applications (Kolstad et al.,
2010; Fenno et al., 2011) and, more re-
cently, is being considered for clinical
applications.

The optogenetic approaches target sev-
eral different cell types within the retina: the
photoreceptor cells (Busskamp et al., 2010),
the bipolar interneurons (Lagali et al., 2008;
Doroudchi et al., 2011), and the ganglion
cells (Bi et al., 2006; Lin et al., 2008; Ivanova
and Pan, 2009; Zhang et al., 2009; Ivanova et
al., 2010) (Table 1, Fig. 1). The retina has
evolved a complex set of circuits (Gollisch
and Meister, 2010) involving �60 cell
types (Masland, 2001). It is not a camera,
nor is it a simple filter that passes on fairly
raw information to the brain. The infor-
mation transformations performed by the
local retinal circuits are still being discov-
ered, as are the patterns of connections
within these circuits. The type of informa-
tion that is transmitted is highly processed
to extract features of value to the organ-
ism. For example, there are multiple cir-
cuits that signal the direction of motion,
or predict the path of an object in motion,
or signal that an object is approaching. All
of these circuits work with the initial sig-
nals emanating from photoreceptor cells.
These signals are passed through bipolar
interneurons, then onto the output cells,
the ganglion cells, with inhibition along
the way from horizontal cells and the
many types of amacrine cells. Thus, when
considering how to use optogenetics to
preserve as much vision as possible, it is
best to initiate the signal in photoreceptor
cells, so as to use all of the downstream
processing. In RP, histological character-
izations suggested that the inner retinal
cells survived for quite some time, even
after photoreceptor death (Santos et al.,
1997; Mazzoni et al., 2008; Sekirnjak et al.,
2009). It was not known, however, if the

Figure 1. Targeted cell types and types of genes to be delivered using gene therapy for RP. A, The cell types of the normal
retina, with the associated support cells, the retinal pigmented epithelium (RPE) cells. Note that there are many more rods than
cones in the photoreceptor layer, approximately 20:1, in both the mouse and the extramacular region of the human retina. In
addition, note that the retinal pigmented epithelium processes surround the rod and cone outer segments, providing various
types of support functions. The outer segments are membrane-rich and are the location of the phototransduction process. B, The
rods typically die first in RP, with a concomitant collapse of the outer segment layer, and a loss of the normal association between
the retinal pigmented epithelium processes and the remaining outer segments. Cones exhibit a dramatic change in morphology,
modeled here after observations in mice (Lin et al., 2009). The cell types that are being targeted for gene therapy using AAV
vectors are shown. For a description of the types of genes being delivered, see Table 1 and the text. HC, horizontal cell; BP, bipolar
cells; AC, amacrine cells; MG, Mueller glia; RGC, retinal ganglion cells; ON BP, bipolar cells that hyperpolarize in response to
glutamate when light is on. Drawing by Santiago Rompani and C. Cepko.

Table 1. Optogenetic genes delivered to the retina

Gene Species (genotype) Route Transduced cells Promoter Assay Reference

ChR2-GFP Marmoset (WT)** V RGC and AII AC CAG, CMV Physiology Ivanova, 2010
ChR2-GFP Mice (WT) V CAG Physiology Ivanova, 2009
ChR2-GFP Mice (rd1) V RGCs, some ACs, HCs, few BP CAG Physiology, VEP Bi, 2006

Mice (WT)
Rats (WT)

ChR2-GFP Mice (rd1) V RGCs, some ACs, HCs, few BP and PRs CMV Physiology Zhang, 2009
Mice (WT)

ChR2-GFP Mice (rd1) SR* ON BP GRM6 Physiology, Optomotor Lagali, 2008
ChR2-GFP Mice (rd1) SR ON BP GRM6 Physiology, Water maze Doroudchi, 2011

Mice (rd16)
Melanopsin Mice (rd1) V RGCs CMV Light avoidance Lin, 2009
NpHR-YFP Mice (Cnga3�/�; Rho�/�) SR Cones Cone opsin or cone arrestin Physiology, Optomotor Busskamp, 2010

NpHR-mCherry
Mice (rd1)

V RGCs, some ACs, HCs, few BP and PRs CMV Physiology Zhang, 2009Mice (WT)
Mice (rd1)

ChR2, Channel rhodopsin 2; GFP, green fluorescent protein; NpHR, halorhodopsin; YFP, yellow fluorescent protein; WT, wild type; rd1, retinal degeneration 1, with a mutation in the phosphdiesterase beta gene; rd16, retinal degeneration
16, with a mutation in centrosomal protein 290; Cnga3, cyclic nucleotide gated channel alpha 3; rho, rhodopsin gene; V, vitreal injection; SR, subretinal injection; HC, horizontal cells; BP, bipolar cells; AC, amacrine cells; AII AC, AII amacrine
cells; RGC, retinal ganglion cells; ON BP, bipolar cells that hyperpolarize in response to glutamate signaling when light is on; PRs, photoreceptor cells, CMV and CAG are broadly active promoters; VEP, visually evoked potentials measured from
the visual cortex; GRM6, metabotropic glutamate receptor 6, expressed only in ON BP cells.

*Electroporation was used, in all other cases delivery was via AAV.

**Up to 18 months, the longest time assayed.
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circuits were still functional, particularly
as changes in the processes of inner retinal
cells had been noted (Marc et al., 2003).
The studies using AAV to deliver optoge-
netic proteins to different retinal cell types
suggest that at least some of the circuits
are still functional, even after most photo-
receptor cells have died (Table 1).

Delivery of NpHR to cone
photoreceptor cells
As mentioned above, mammalian photo-
receptor cells hyperpolarize in response to
light after triggering an elaborate signal
transduction cascade. NpHR also leads to
hyperpolarization upon light stimulation
by pumping chloride. Busskamp and col-
leagues (2010) used AAV to deliver NpHR
to the cones in two RP mouse models. Vi-
rus was delivered after the point when the
cones stopped carrying out their own light
responses. The treated retinas were able to
use the remaining inner retinal circuitry
to give the mice several hallmarks of vi-
sion, including motion detection and
dark–light discrimination. Moreover,
the NpHR did not elicit an immune re-
sponse nor lead to toxicity after �1 year
in vivo. It has also been introduced into
human retinal explants, where it was
shown to permit light detection. How-
ever, for application to humans, this ap-
proach will need to be augmented to
compensate for the lower sensitivity of
NpHR. The sensitivity of the current al-
leles of NpHR is good enough to permit
vision in bright outdoor light conditions,
but it is still too low to permit useful vision
in less bright situations, such as room
light. To increase sensitivity, a specialized
set of glasses can be worn. These glasses
have an array of sensitive light detectors,
much like the detectors in a conventional
video camera. The detectors drive an array
of micro-LEDs, which then emit the
proper wavelength and intensity of light
(Grossman et al., 2010) to activate the
NpHR that has been transduced into the
cones via AAV. This work is moving for-
ward toward a Phase 1 clinical trial, and
will be using AAV with NpHR driven by a
human cone promoter (Roska et al., per-
sonal communication).

Delivery of ChR2 to ON bipolar cells
Bipolar cells and horizontal cells are the
initial synaptic partners of photoreceptor
cells. Bipolar cells can be classified as ON
or OFF. The ON bipolar cells release glu-
tamate when light is on, when their gluta-
mate signal from photoreceptor cells is
low, due to the action of a metabotropic
glutamate receptor, Grm6. A promoter

for Grm6 was used to express ChR2 either
following electroporation (Lagali et al.,
2008) or injection of an AAV vector
(Doroudchi et al., 2011) into RP mouse
models. Expression was restricted to ON
bipolar cells, which constitute �50% of
the bipolar cells in the retina. The down-
stream circuitry appeared to be functional
in that the mice exhibited light-guided be-
havior, including motion detection and
light– dark discrimination. This strategy
too is being developed for human clinical
trials, with encouraging signs in that tox-
icity studies performed in mice showed no
toxicity (Doroudchi et al., 2011).

Delivery of ChR2 to ganglion cells
Retinal prosthetics that employ a light-
sensitive chip have been implanted into
diseased eyes to bypass the need for ei-
ther photoreceptor cells or interneurons
(Chader et al., 2009). One strategy is to
stimulate the ganglion cells directly using
the electronic signals initiated by light sens-
ing by the chip. A biological approach to the
same strategy is to use a light-sensitive pro-
tein, such as ChR2 or melanopsin, expressed
in ganglion cells.

Melanopsin, a rhabdomeric type of
opsin, was discovered to be expressed in
�0.5% of retinal ganglion cells in the
mouse (Do and Yau, 2010). These cells
project to the suprachiasmatic nucleus
and are important for the photoentrain-
ment of the circadian rhythm. As many
additional projections are seen, it is
likely that they participate in other types
of information processing as well. The
majority of retinal ganglion cells involved
in vision do not express melanopsin and
they project to the lateral geniculate nu-
cleus and superior colliculus. Lin et al.
(2008) delivered melanopsin to the large
number of retinal ganglion cells that do
not normally express it. They delivered
the gene using an AAV vector injected
into the vitreous body, which borders the
ganglion cell layer. The RP mice so treated
were able to perform a visual discrimina-
tion task as well as avoid light. However,
melanopsin has slow kinetics, too slow for
such activities as motion detection. Still,
the ability to discriminate light and dark
will be welcomed by individuals who are
otherwise unable to do so.

ChR2 exhibits faster kinetics than mel-
anopsin. It too was delivered to retinal
ganglion cells using intravitreal injections
of AAV. Marmosets, rats, and mice have
been infected with AAV transducing
ChR2 (Bi et al., 2006; Ivanova and Pan,
2009; Zhang et al., 2009; Ivanova et al.,
2010). All of the groups used physiological

recordings to demonstrate responses to
the appropriate wavelengths of light. In
addition, Bi et al. (2006) could find
evoked potentials in the visual cortex of
infected wild-type and rd1 mice, demon-
strating transmission of retinal ganglion
cell signals. Zhang et al. (2009) also deliv-
ered NpHR, in some cases to the same ret-
inal ganglion cells as were transduced by
ChR2. Recording from such doubly ex-
pressing cells gave depolarization or hy-
perpolarization in response to the
wavelengths that normally activate these
two opsins.

An exciting possibility building upon
this strategy is being developed by several
groups (Nirenberg, 2010; Freeman et al.,
2011). They are delivering ChR2 to retinal
ganglion cells, also via AAV, but hope to
make the signals from these transduced
retinal ganglion cells more informative to
the brain by using the normal coding
mechanisms of retinal ganglion cells. The
patterns of action potentials from differ-
ent types of retinal ganglion cells receiving
different types of input from retinal cir-
cuits is thought to encode much of the
information distilled from the visual
scene (Jacobs et al., 2009). They plan to
use a camera that will transform the sig-
nals from a visual scene into light flashes
that will, when flashed onto the trans-
duced retinal ganglion cells, stimulate the
ganglion cells to fire in a more meaningful
way. If this can be correctly engineered
using the growing appreciation of the
rules that govern the coding of informa-
tion by retinal ganglion cells, it could be a
very exciting development for people who
have lost all of their photoreceptor cells.
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