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Abstract
For more than a decade, Wnt signaling pathways have been the focus of intense research activity
in bone biology laboratories because of their importance in skeletal development, bone mass
maintenance, and therapeutic potential for regenerative medicine. It is evident that even subtle
alterations in the intensity, amplitude, location, and duration of Wnt signaling pathways affects
skeletal development, as well as bone remodeling, regeneration, and repair during a lifespan. Here
we review recent advances and discrepancies in how Wnt/Lrp5 signaling regulates osteoblasts and
osteocytes, introduce new players in Wnt signaling pathways that have important roles in bone
development, discuss emerging areas such as the role of Wnt signaling in osteoclastogenesis, and
summarize progress made in translating basic studies to clinical therapeutics and diagnostics
centered around inhibiting Wnt pathway antagonists, such as sclerostin, Dkk1 and Sfrp1.
Emphasis is placed on the plethora of genetic studies in mouse models and genome wide
association studies that reveal the requirement for and crucial roles of Wnt pathway components
during skeletal development and disease.
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1. Introduction
Wnts are a large family of 19 secreted glycoproteins that trigger multiple signaling cascades
essential for embryonic development and tissue regeneration. Proteins involved in the
amplification and transduction of Wnt signals are often altered in cancer or lineage
progenitor cells, leading to abnormal cell cycle control and/or altered cell fate decisions
(MacDonald et al., 2009; Polakis, 2000). Mutations in several Wnt pathway components
also contribute to human skeletal dysplasias. Most notably, mutations in the Wnt co-receptor
LRP5 cause low or high bone mass depending on the nature of the alteration (Boyden et al.,
2002; Gong et al., 2001; Little et al., 2002) and inactivation of the secreted Wnt antagonist
Sclerostin produces high bone mass, sclerosteosis and van Buchem's disease (Balemans et
al., 2001; Brunkow et al., 2001). A loss-of-function mutation in LRP6, another Wnt co-
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receptor, is linked to an inherited disorder characterized by osteoporosis, coronary artery
disease, and metabolic syndrome (Mani et al., 2007). Less well known is that inactivating
mutations in WTX, an intracellular regulator of β-catenin stability, cause osteopathia striata
with cranial sclerosis (OCTS) (Jenkins et al., 2009) and FZD9, a Wnt co-receptor, is deleted
in patients with Williams–Beuren syndrome, which is partially characterized by low bone
density (Francke, 1999). During the last several years, polymorphisms in these and many
more Wnt pathway components were linked to altered bone mineral density in genome wide
association studies (Kiel et al., 2007b; Riancho et al., 2011; Rivadeneira et al., 2009; Sims et
al., 2008; van Meurs et al., 2008). Thus, it has become clear that even subtle alterations in
the intensity, amplitude, and duration of Wnt signaling pathways affects skeletal formation
during development, as well as bone remodeling, regeneration, and repair during a lifespan.
In this review, we provide an update to a 2004 review on Wnt signaling in osteoblasts and
bone disease published in this journal (Westendorf et al., 2004). Emphasis is placed on new
data from murine genetic studies assessing the requirement for and roles of Wnt pathway
components during skeletal development and disease. These observations are discussed in
context with current knowledge of molecular and physiological regulation of bone mass.
Progress in translating these discoveries to treatments for altered bone mass conditions is
also summarized.

1.1. Wnt signaling pathways
1.1.1. Wnt–β-catenin signaling—Wnts trigger several signaling cascades. The best
known is the Wnt/β-catenin pathway (commonly called the canonical pathway), which
features the stabilization and nuclear translocation of β-catenin as easily measurable
outcomes. In the absence of Wnts, β-catenin associates with cadherins at the plasma
membrane. Any excess β-catenin is quickly sequestered by a protein complex containing
Axin1/2, Apc, casein kinase (Ck)1, glycogen synthase kinase (Gsk)3β, and Wtx and
degraded by ubiquitin-mediated proteolysis (Fig. 1) (For more details see (Westendorf et al.,
2004)). When certain Wnts (e.g., Wnt3a) are present, they crosslink cell surface molecules,
Lrp5/6 and a Frizzled (Fzd), which mobilizes Gsk3β and Ck1 to the membrane where they
phosphorylate serines on Lrp5/6, promote the formation of a signalosome, and recruit
Disheveled (Dvl), Axin1/2, and caveolin (Bilic et al., 2007; MacDonald et al., 2009; Niehrs
and Shen, 2010; Zeng et al., 2005). This releases β-catenin from the destruction complex,
increases its levels, and allows it to enter the nucleus where it can displace co-repressors
from transcription factors (e.g., Lef1, Tcf7) and regulate gene expression. Nuclear
localization of β-catenin is often used as a metric of enhanced Wnt signaling. Expression
levels of target genes (e.g., Axin2, Lef1) are also commonly measured to study Wnt
signaling. Although β-catenin is activated by Wnts, it is important to remember that it is also
mobilized by other signals (e.g., Igf and Akt activation) and is not exclusive to the canonical
Wnt signaling cascade. This point is especially important in bone, as β-catenin deletion
triggers bone loss via different mechanisms than Lrp5 inactivation (subsequent sections).

The Wnt/β-catenin pathway stimulates cell proliferation and survival. Enhanced stimulation
of the pathway is a feature of many cancers (Polakis, 2000). Under normal physiological
settings, multiple proteins keep this cascade in check. In addition to intracellular inhibitors
(Axin2), the canonical pathway is neutralized by extracellular factors (Fig. 1). Secreted
frizzled related proteins (Sfrps) and Wnt inhibitory factors (Wifs) directly bind Wnts and
prevent their interactions with receptors. Other secreted proteins including Dickkopfs (Dkk),
Sclerostin (Scl), and Sostdc1 (Wise) bind to Lrp5/6 receptors, inducing receptor
internalization and/or reducing their availability to Wnts. Thirdly, some Wnts (e.g., Wnt5a)
trigger alternative signaling pathways by co-opting receptor components and thus competing
with Wnts (e.g., Wnt3a) that induce β-catenin stabilization. For example, Wnt5a induces the
formation of a complex consisting of Lrp5/6, Ror1/2, and Fzd2 (Sato et al., 2010).
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1.1.2. Non-β-catenin Wnt signaling pathways—In some contexts, Wnts neither
stabilize β-catenin nor interact with Lrp5/6. Rather, through Fzds and Dvl, Wnts can trigger
alternative intracellular events (Fig. 1 and reviewed by (Gao and Chen, 2010)). Non-β-
catenin cascades include the planar cell polarity (PCP) pathway, trimeric G-protein coupled
receptor pathways including calcium ion (Ca2+) signaling, Rho family GTPase pathways,
and the Jnk pathways. Dvl has multiple conserved domains that allow it to interact with
many binding partners, which determines which downstream pathways are engaged (Gao
and Chen, 2010). Furthermore, membrane-spanning receptors such Ror2 and Ryk can
activate Dvl-independent signaling (Angers and Moon, 2009).

1.1.2.1. Planar cell polarity (PCP) pathway: The most extensively studied non-β-catenin
Wnt signaling pathways is the PCP pathway, which enables cells to orient relative to an axis
along the plane of a tissue (Henderson and Chaudhry, 2011). PCP signaling governs cell
movement in the embryo via convergent extension (Sokol, 1996) and determines cell fates,
enabling the creation of asymmetric and highly aligned structures such as hair follicles as
well as orchestrating the polarized beating of motile cilia in numerous tissues (Devenport
and Fuchs, 2008; Jones et al., 2008). The establishment of polarity in the plane of the
epithelium provides directional information during development. Wnt binding to Fzd leads
to Dvl-driven sorting of cellular components to either the proximal or distal regions of the
cell and orients it within the tissue (Veeman et al., 2003). Thus far, little is known about
PCP activation during bone remodeling.

1.1.2.2. Wnt and Rho/Rac GTPases: Dvl activation of the Rho GTPase family member
Rac1 leads to Jnk activation and stimulation of the transcription factors c-Jun and ATF2 (Li
et al., 1999; Ohkawara and Niehrs, 2011; Sato et al., 2010). Wnt3a causes chondrocyte de-
differentiation by activating c-Jun/AP-1 and suppressing Sox-9 expression, supporting a role
for a non-β-catenin/Wnt3a pathway in bone development (Hwang et al., 2005). Wnt binding
to Fzd can also promote Dvl interactions with the adaptor protein disheveled-associated
activator of morphogenesis (Daam)1, which activates the Rho guanine nuclear exchange
factor WGEF (Wu and Herman, 2006). WGEF induces RhoA/ROCK pathway activation,
which promotes cytoskeletal reorganization to control cell shape and adhesion (Gao and
Chen, 2010). Dvl/Daam1 interactions can also cause cytoskeletal reorganization by
influencing Profilin independent of RhoA activation (Gao and Chen, 2010).

1.1.2.3. Wnt and G-protein coupled receptor signaling: Evidence is mounting that Wnt
activates trimeric G-protein signaling to control a number of downstream signaling
pathways. G proteins are required for Wnt activity, but whether there are direct interactions
between Fzd and G proteins remain unresolved (Katanaev and Tomlinson, 2006; Katanaev
et al., 2005; Liu et al., 1999, 2005; Purvanov et al., 2010). Physical interactions between Fzd
and G proteins were observed under physiological conditions (Koval and Katanaev, 2011).
Thus, Wnt3a stimulated Gαs and Gαi/o, but not Gαq11 association with Fzd receptors in brain
tissue. Wnt/Fzd induced cAMP accumulation and PKA activation though Gαs protein
(Witze et al., 2008). In contrast, Gαi/o stimulated phospholipase C, intracellular Ca+2 release
and direct PKC activation. G protein signaling, specifically, Gαq11 activation, was also
required for nuclear localization of β-catenin following Wnt3a treatment (Tu et al., 2007).
The βγ subunits of the trimeric G protein complex interact with Dvl in vertebrate cells. Fzd7
and G protein βγ subunits are required for Wnt11 to stimulate axis organization, indicating
the βγ subunits as well as the α subunit are involved in non-β-catenin G protein-mediated
signaling (Angers et al., 2006; Penzo-Mendez et al., 2003).
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1.2. Osteoblast and osteoclast lineages: differentiation, maturation and coupling
Osteoblasts, osteocytes, and osteoclasts directly regulate bone mass. Osteoblasts originate
from mesenchymal progenitor cells and are responsible for producing proteins, such as type
1 collagen, that form a mineralizable matrix. Runx2, Sp7 (osterix), Wnts, Lrp5, and β-
catenin are among the crucial factors required for their specification from mesenchymal
precursors and osteo-chondoprogenitors. Wnts and β-catenin subsequently contribute to
proliferation and survival of osteoblasts (Westendorf et al., 2004). β-catenin also regulates
the communication or coupling of osteoblasts with osteoclast precursors, which originate
from hematopoietic stem cells, by controlling expression of osteoprotegerin (Opg), a
competitive inhibitor of Rankl and Rank interaction, to affect bone resorption (Glass et al.,
2005). Osteocytes are terminally differentiated osteoblasts embedded within the mineralized
matrix that communicate changes in mechanical loading and the extracellular environment
to osteoblasts and osteoclasts on the bone surface to stimulate fracture repair and influence
bone remodeling (Bonewald, 2011).

Wnts and Wnt pathway components are essential for many stages of osteoblast lineage
development and maturation. Knowledge in this area has advanced in the last decade due to
the availability and utilization of genetic approaches that test the requirement or role for
certain molecules in bone development, biology, and disease. These models include germ-
line knockout (KO), conditional knockout (CKO) or knock-in (CKI), and transgenic (Tg)
expression. Table 1 summarizes bone phenotypes that result when Wnt pathway components
are genetically altered in osteoblast lineage cells or the germline. Table 2 lists bone
phenotypes of mice where β-catenin levels are altered in osteoclast lineage cells and their
precursors. The CKO, CKI, and Tg strategies allow for tissue-specific and/or inducible
expression. Several promoters drive expression of Cre recombinase (for CKO or CKI
strategies) or transgenes in osteoblast and osteoclast lineage cells at different stages of
maturation (Fig. 2) (Van Koevering and Williams, 2008). In the following sections, we
review studies that utilized these technologies to advance our understanding of Wnt
pathways in bone biology and disease.

2. Wnts and Wntless
2.1. Wnts

Wnts are secreted, cysteine-rich glycoproteins involved in controlling cell proliferation, cell-
fate specification, gene expression, and cell survival. Cells recognize Wnts with 10 Frizzled
receptors (Fzd) and Lrp molecules (Lrp5/6 and potentially Lrp4). The large number of
ligands and receptors creates great combinatorial diversity and contributes to widely variable
cellular responses depending on the molecules present. Wnts were historically classified as
either “canonical” or “non-canonical” based on their ability to activate β-catenin; however,
in reality the distinction is not so clear because some Wnts stimulate both pathways
depending on the cellular context. Understanding how Wnt molecules contribute to
osteoblast function and overall bone homeostasis is crucial in developing treatments for the
clinical intervention for various bone diseases, such as osteoporosis.

Expression analyses of the Wnt family members in various osteoblastic models provide
insight into the possible function and physiological source of each Wnt. Witte and
colleagues profiled all 19 Wnts during mouse limb development and cartilage differentiation
(Witte et al., 2009). Each Wnt displayed a unique expression pattern and localization.
Interestingly Wnt1, Wnt3a, Wnt8a, and Wnt8b were not detected at any developmental
timepoint. Mak and colleagues found that expression levels of Wnt2, Wnt2b, Wnt4, Wnt5a,
Wnt10b, and Wnt11 were higher in mature murine osteoblasts compared to their progenitors
(Mak et al., 2009). These studies provide an important spatial and temporal context to begin
to understand how the Wnt ligands affect bone biology.
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Many Wnt ligands affect various aspects of bone biology in vitro, but their true importance
in bone physiology will ultimately come from experimental observations in vivo. Currently
available Wnt mouse models suggest that Wnt3a, Wnt5a, and Wnt10b are capable of
regulating osteoblast function (Baksh et al., 2007; Boland et al., 2004; Etheridge et al., 2004;
Hu et al., 2005), whereas Wnt14 contributes to endochondral bone formation (Day et al.,
2005).

2.1.1. Wnt3a—Germline deletion of Wnt3a causes early embryonic lethality; however,
heterozygotic Wnt3a males display bone loss, with decreases in bone mineral density and
trabecular number (Takada et al., 2007). Recombinant Wnt3a is commercially available and
is used in numerous in vitro assays to stimulate canonical Wnt signaling in osteoblasts
where it induces cell proliferation and survival (Almeida et al., 2005). Wnt3a also induces
the proliferation of mesenchymal precursor cells (Boland et al., 2004).

2.1.2. Wnt5a—Wnt5a heterozygote males also display bone loss, with decreases in bone
mineral density and trabecular number and increases in adipocyte number (Takada et al.,
2007). Recombinant Wnt5a is also commercially available and is often used to stimulate
non-canonical (or non-β-catenin) signaling pathways. However, care needs to be used in
interpreting results with rWnt5a as it activates or represses β-catenin/Tcf signaling
depending on the receptor context (Mikels and Nusse, 2006). Thus, Wnt5a stabilizes β-
catenin in the presence of Fzd4 but inhibits β-catenin if it binds to Ror2.

2.1.3. Wnt10b—Wnt10b levels are directly correlated with bone mineral density and
indirectly related to marrow adiposity. Thus, transgenic overexpression of Wnt10b in either
mature osteoblasts or marrow adipocytes increases bone formation (Bennett et al., 2005,
2007). Wnt10b also inhibits fat accumulation in genetically predisposed mouse models of
obesity (Wright et al., 2007) and is important for the maintenance of mesenchymal
progenitor cells (Stevens et al., 2010). The maintenance of a progenitor pool of
preosteoblastic cells in the bone marrow possibly may be through activation of auxiliary
pathways, such as Notch (Modder et al., 2011). The capability of Wnt10b to control
osteoblastic lineage allocation could offer novel therapeutic interventions to osteoporotic-
and/or obesity-related diseases.

2.1.4. Wnt14—Wnt14 is expressed in the tissue surrounding mesenchymal condensations
and differentiating osteoblasts (Guo et al., 2004; Kato et al., 2002). It activates β-catenin and
induces Lef1 expression (Day et al., 2005). High Wnt14 expression blocked endochondral
bone formation; however, lower transgene levels promoted chondrocyte maturation and
enhanced endochondral bone formation (Day et al., 2005). These data demonstrate that
Wnt14 can contribute to bone formation.

2.2. Wntless (Wls, Evi, Gpr177)
The ability of Wnts to activate signaling cascades in either an autocrine or paracrine fashion
requires that they be secreted from cells. Wntless (Wls) is a seven-pass transmembrane
protein responsible for the processing and secretion of all Wnts (Banziger et al., 2006;
Bartscherer et al., 2006; Goodman et al., 2006). Wls is expressed ubiquitously in human
cells and rodent tissues (Jin et al., 2010; Yu et al., 2010), suggesting that Wnts are important
in virtually all cell types, both developmentally and postnatally. Germline deletion of Wls
causes embryonic lethality and Wnt protein accumulation in the Golgi (Fu et al., 2009).
Conditional Wls knockouts with the Wnt1-Cre mouse strain caused craniofacial defects as
well as defective anterior–posterior axis formation (Carpenter et al., 2010; Fu et al., 2011).
Interestingly, the Wls gene itself is activated by β-catenin and Lef1/Tcf-dependent
transcription, which then assists the cellular trafficking of Wnt proteins in a positive
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feedback mechanism (Fu et al., 2009). Several genome-wide association studies identified
WLS as a gene linked to altered bone mineral density (Hsu et al., 2010; Kumar et al., 2011;
Rivadeneira et al., 2009; Styrkarsdottir et al., 2010).

2.3. R-spondins
R-spondins (Rspo1–4) are secreted factors that synergize with Wnts (e.g., Wnt1, 3a and 7a,
11) to promote β-catenin stabilization (Kim et al., 2006). In this regard, Rspo2 and Rspo3
are more potent that Rspo1, whereas Rspo4 is a relatively weak activator (Kim et al., 2008).
R-spondins interfere with Dkk1 binding to Krm2/Lrp6, thereby preventing Lrp6
internalization (Binnerts et al., 2007; Kim et al., 2008). R-spondins also bind to the leucine-
rich repeat containing G protein-coupled receptor (Lgr)-4 and -5 with high affinity and
enhance Lrp6 phosphorylation (Carmon et al., 2011; de Lau et al., 2011). Lgr4-null mice
exhibit delayed osteoblast differentiation and mineralization during embryogenesis (Luo et
al., 2009). Virtually all indices of bone formation were suppressed in both trabecular and
cortical bone with concomitant downregulation of osteocalcin, bone siaoloprotein, and
collagen transcripts in these animals.

R-spondins are required for development and reproduction (Aoki et al., 2007; Bell et al.,
2008; Blaydon et al., 2006; Ishii et al., 2008; Parma et al., 2006), but little is known about
their individual roles in skeletal development. Rspo2 is necessary for hind limb
development, ossification of the most distal phalanges, and proper fibular growth (Nam et
al., 2007). All four R-spondins appear to share similar mechanisms of action; therefore, it is
possible that functional redundancy between R-spondins may account for the lack of a
significant bone phenotype. Compound R-spondin mouse models may be needed to uncover
the importance of Rspo function in bone during postnatal life.

A few studies examined the role of R-spondins in osteoblastic cell culture systems. In
C2C12 and primary mouse calvarial cells, Rspo1 synergized with Wnt3a to induce
osteoblast differentiation and Opg expression (Lu et al., 2008), suggesting suppression of
osteoclastogenesis through upregulation of Opg may contribute to overall bone anabolism.
Furthermore, in MC3T3-E1 mouse preosteoblasts, Wnt11 promoted osteoblast
differentiation and mineralization through Rspo2 (Friedman et al., 2009). Together, these
data identify R-spondins and Lgr4/5 as modulators of Wnt signaling. In accordance, Rspo1
protected arthritic mice from cartilage and bone damage in vivo (Kronke et al., 2010). Thus,
R-spondins may represent a novel class of therapeutic agents to combat specific bone and
cartilage diseases, although more research into the mechanism of R-spondins in bone and in
vivo is necessary before any conclusions into the efficacy of these potential treatments can
be drawn.

3. Wnt receptors
3.1. LDL receptor-related proteins

Low-density lipoprotein receptor-related proteins (Lrp) are evolutionarily conserved plasma
membrane receptors with a variety of functions including lipid metabolism, cargo transport,
and cellular signaling. Lrp5/6 are low affinity co-receptors for Wnts and high affinity
receptors for soluble Wnt antagonists: Scl, Sost-dc1, and Dkk1. Lrp4 is also emerging as a
regulator of bone mass density.

3.1.1. Lrp5—Lrp5 is one of the most interesting molecules in bone biology at the present
time. Its story is one of remarkable achievements in translational research and like all
intriguing tales is not without controversy. LRP5 was first implicated in bone biology by
researchers interested in the genetic cause for osteoporosis pseudoglioma (OPPG) syndrome,
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a juvenile-onset autosomal recessive disease of low bone mass (Gong et al., 2001), and by
physicians caring for patients with remarkably high bone mass (HBM) who appeared
resistant to high impact fractures (such as from an automobile accident) and who anecdotally
had trouble staying afloat while swimming (Boyden et al., 2002; Little et al., 2002).
Molecular determinants for both of these conditions were mapped to the same region of
chromosome 11, which was later identified as the LRP5 locus (Boyden et al., 2002; Gong et
al., 1996; Little et al., 2002). Following the identification of mutations in LRP5 coding
regions that led to loss-of-function (in OPPG patients) or gain-of-function (in HBM
individuals), the conditions were reproduced in animal models. Thus, germline deletion of
Lrp5 in all mouse tissues recapitulated the low bone density in OPPG patients (Fujino et al.,
2003; Kato et al., 2002), while transgenic overexpression of LRP5-G171V (a gain-of-
function mutation) with a relatively osteoblast-specific rat collagen 1 promoter produced
high bone mass with increased mechanical strength (Akhter et al., 2004; Babij et al., 2003).
Subsequent experiments indicated that Lrp5 was required for efficient Wnt signaling and β-
catenin activation in osteoblasts, while the Lrp5 gain-of-function mutations prevented Lrp5
internalization and binding to other ligands such as Dkk1 and Scl (Boyden et al., 2002;
Ellies et al., 2006; Zhang et al., 2004). The Lrp5 research path subsequently merged with
several others focused on Dkk1 and Scl and has led to promising new anabolic therapies for
low bone mass in less than two decades, making it an exciting example of translational
research at its best.

The Lrp5 story is not yet complete though because the physiological mechanisms by which
Lrp5 alterations regulate bone mass are not fully understood. Given that Lrp5 is expressed in
osteoblast-lineage cells, it is possible that Lrp5 mutations directly alter the activities of
bone-forming cells. However, the genetic mutations in the aforementioned patients and the
Lrp5-deficient animal models are present in all cells and tissues, thus leaving the possibility
that Lrp5 alterations indirectly affect bone formation. To determine if Lrp5 directly regulates
osteoblast-lineage cells, two groups made Lrp5 CKO mice as well as Lrp5 conditional
knock-in (CKI) mice containing a HBM gain-of-function mutation (e.g., G171V or A214V).
Crossing these mice with ones expressing Cre under the control of various tissue-restricted
promoters produced confounding results. In the first study, neither conditional deletion of
Lrp5 in osteoblast progenitors (with Dermo1-Cre) or mature osteoblasts (with 2.3Col1a1-
Cre), nor conditional knock-in of the Lrp5-G171V cDNA into mature osteoblasts
(2.3Col1a1-Cre) affected vertebral bone volume density, osteoblast number, or bone
formation rates as measured by static and dynamic histomorphometry (Yadav et al., 2008,
2010). Rather Lrp5 activity was inversely associated with serotonin synthesis in intestinal
stem cells of the duodenum (Villin-Cre), which signaled back to osteoblasts to influence
bone formation and regulate bone mass in an endocrine/hormonal fashion (Yadav et al.,
2008). Elevated levels of circulating serotonin were also observed in OPPG patients (Yadav
et al., 2010), whereas patients with high bone mass due to a gain-of-function LRP5 mutation
had lower than normal serotonin plasma levels (Frost et al., 2010).

Using different animals strains, microcomputed tomography and DEXA scanning, another
study showed that conditional Lrp5 deletion in pre-osteocytes and osteocytes (with Dmp1-
Cre) reduced trabecular bone density in the distal femurs and L5 vertebra, and weakened
cortical bone strength. However Lrp5 deletion in the intestinal stem cells (with a different
villin promoter, Vil1-Cre) had no effect on bone mass (Cui et al., 2011). Accordingly,
conditional expression of HBM alleles G171V or A214V (created by knocking in mutated
exons 3 and 4 only, in contrast to the cDNA used in the other study (Yadav et al., 2008)) in
osteocytes (with Dmp1-Cre) or the limb bud mesenchyme (with Prx1-Cre) increased bone
mass and strength (Cui et al., 2011). No significant changes in serotonin levels were
detected as a result of altering Lrp5 activity (Cui et al., 2011).

Monroe et al. Page 7

Gene. Author manuscript; available in PMC 2013 January 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



These seemingly contradictory results could be attributed to differences in the genetic
constructs, mouse models, methods used to measure bone density, bones tested, mouse
environments, and/or serotonin assay techniques. These possibilities are relatively easy to
address and doing so may in fact reveal important insights into fundamental cellular and
endocrine mechanisms of bone formation. Lrp5 is necessary for bone formation after
loading (Akhter et al., 2004; Saxon et al., 2011) and PTH-induced high bone mass (O'Brien
et al., 2008); results that best align with the need for Lrp5 signaling in osteocytes (Cui et al.,
2011). The role of Lrp5 in less mature osteoblasts, which arise from multiple sources (e.g.,
pericytes, bone marrow derived mesenchymal progenitor cells, neural crest cells) could be
less important if related Wnt/Dkk1/Scl (co-) receptors (e.g., Lrp6) or alternative growth and
differentiation pathways compensate for altered Lrp5 activity. Thus, exactly how Lrp5
regulates bone mass is still unclear, but both direct regulation of osteoblast-lineage cells and
indirect regulation via endocrine or paracrine signaling are viable options.

Beyond the existing controversy with the animal models, there is accumulating evidence that
LRP5 polymorphisms affect bone mass and fracture risk in human populations (Kiel et al.,
2007a, 2007b; Koay et al., 2004; Mizuguchi et al., 2004; Riancho et al., 2011; Rivadeneira
et al., 2009; Sims et al., 2008; Urano et al., 2004; van Meurs et al., 2006, 2008). Several of
these LRP5 variants alter canonical Wnt signaling (Kiel et al., 2007b), and a recent study
showed that a lumbar spine bone mineral density-associated polymorphism, rs312009,
affects Runx2 binding to the LRP5 promoter and alters gene transcription (Agueda et al.,
2011).

3.1.2. Lrp6—Lrp6 is more than 70% identical to Lrp5 at the amino acid level and has many
similar properties as it binds to Wnts, Scl, and Dkks. An inherited autosomal dominant
LRP6 mutation that impairs Wnt signaling was found in a family with osteoporosis,
coronary artery disease, and metabolic syndrome (Mani et al., 2007). Polymorphisms in
LRP6 are associated with low bone mineral density and fracture risk in humans (Riancho et
al., 2011; Sims et al., 2008; van Meurs et al., 2006, 2008). Lrp6 appears to have an earlier
and perhaps broader role in development than Lrp5 as Lrp6 KO mice are not viable and
show defective limb development (Pinson et al., 2000). However, Lrp6 heterozygous (+/–)
mice have reduced total and trabecular bone mineral density (Holmen et al., 2004).
Compound Lrp5–/–:Lrp6+/– mice have even lower bone mineral density than either the
single or double heterozygotes as measured by DEXA; indicating that Lrp6 and Lrp5
genetically interact in skeletal development and have at least partially redundant functions in
postnatal mice (Holmen et al., 2004). Mice carrying an Lrp6 hypomorphic mutation,
ringelschwanz (rs), that prevents it from being chaperoned to the cell surface also have
reduced bone mineral density (Kubota et al., 2008). Osteoblast number and mineralization
were not impaired in these animals, but Rankl expression was elevated on osteoblasts and
correlated with increased bone resorption. Lrp6 CKO mice have not yet been reported but
are essential to determining its roles in osteoblast-lineage cells and perhaps unraveling clues
to Lrp5's distinct functions.

Interesting biochemical studies revealed that Lrp6 contributes to optimal PTH signaling in
osteoblasts. In response to PTH stimulation, Lrp6 binds the PTH receptor, PTHR1, and is
phosphorylated by PKA (Wan et al., 2008, 2011). This recruits Axin, stabilizes β-catenin,
and increases Tcf/Lef1-dependent gene transcription. The effects of PTH in Lrp6-
insufficient animals were not determined; however, Lrp6 siRNAs efficiently blocked PTH
stimulation of Tcf/Lef1 activity in rat osteosarcoma cells (Wan et al., 2008). Lrp5 was not
tested in these assays because PTH stimulated bone formation in Lrp5-deficient mice to the
same extent as it did in wildtype mice (Iwaniec et al., 2007; Sawakami et al., 2006);
however, later studies showed that Lrp5 is necessary for increased bone formation, but not
bone remodeling, in mice expressing a constitutively active (ca) PTHR1 in osteocytes
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(O'Brien et al., 2008). Decreased Scl expression in the caPTHR1 transgenic animals
appeared to be was responsible for the anabolic effects in osteocytes. The specific roles of
Lrp5 and Lrp6 in PTH responsiveness will certainly become clearer in the near future as
tissue-specific Lrp6 CKO mice are studied.

3.1.3. Lrp4—Lrp4 (also known as Megf7) is an emerging regulator of bone mass. Lrp4-
deficient mice have polysyndactyly due to defective limb development in the apical
ectodermal ridge (AER) as early as embryonic day 9 (Johnson et al., 2005; Simon-Chazottes
et al., 2006; Weatherbee et al., 2006). Mice containing a Lrp4 hypomorphic mutation,
Lrp4ECD, exhibit impaired skeletal growth, reduced trabecular bone volume, and increased
bone turnover (Choi et al., 2009). Lrp4 antagonizes canonical Wnt signaling and modulates
several important development signaling pathways involving Wnts, Bmps, Fgfs, and Shh in
skeletal and tooth development (Johnson et al., 2005). Lrp4 is expressed on human and rat
osteoblasts and osteocytes (Leupin et al., 2011). It directly binds to Wnt antagonists,
including Scl (Leupin et al., 2011) and Sost-dc1 (also called Wise) (Ohazama et al., 2008).
Lrp4 suppression by RNA interference allowed for osteoblast mineralization in vitro, even
in the presence of Scl (Leupin et al., 2011).

LRP4 appears to control bone density in humans as well. Like its cousins LRP5 and LRP6,
LRP4 polymorphisms are associated with altered bone mineral density and lower fracture
incidence in genome-wide association studies (Kumar et al., 2011; Rivadeneira et al., 2009;
Styrkarsdottir et al., 2009). In addition, two mutations (R1170W and W1186S) in the
extracellular region of LRP4 were found in patients exhibiting bone overgrowth (Leupin et
al., 2011). These amino acid substitutions impaired LRP4 association with Scl, an inhibitor
of bone formation.

3.2. Frizzleds
Fzds are highly versatile seven-pass membrane proteins that contribute to activation of both
β-catenin and non-β-catenin signaling pathways by virtue of their interactions with Dvl and
the existence of potential phosphorylation sites for cAMP-dependent PKA, PKC, and Ck2 in
their intracellular domains. There is a paucity of information about the roles of specific Fzds
in bone biology; however, data from Fzd9-deficient mice demonstrate that it contributes to
optimal bone formation.

3.2.1. Fzd9—Patients with Williams–Beuren syndrome have low bone density and
hemizygous deletion of a region on chromosome 7 that includes FZD9 (Francke, 1999).
Fzd9 KO and heterozygote mice have reduced bone mineral density and low bone formation
rates (Albers et al., 2011). β-catenin was not affected by Fzd9-deficiency, but Stat1 levels
were reduced. This led to the reduction of interferon-stimulated genes, including Isg15,
which encodes an ubiquitin-like molecule. Interestingly Isg15-deficient mice also have low
bone density. Isg15 overexpression restored the ability of Fzd9-deficient osteoblasts to
mineralize their extracellular matrix in vitro. Fzd9 expression was upregulated during
osteoblast maturation. Thus, Fzd9 is a crucial regulator of late stages of bone mineralization.

4. Wnt antagonists
4.1. Secreted Wnt antagonists: Dkks, Sfrps, Wif1, Sost, and Sost-dc1

Secreted Wnt antagonists generally utilize two distinct mechanisms to inhibit Wnt signaling.
Sfrps, Cerberus and Wif1 bind to Wnts and/or Fzds to directly interfere with association of
the ligand with its receptor (Fig. 1). In contrast, Dkk, Sost and Sost-dc1 (Wise) bind to the
Lrp5/6 co-receptor and inhibit Wnts from associating with the Fzd/Lrp receptor complex.
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Existing data suggest that some of these inhibitors are viable targets for new anabolic
therapeutics.

4.1.1. Dickkopfs (Dkk)—The Dickkopf factors (Dkk1–4) have differing expression
patterns during embryonic and postnatal development (Nie et al., 2005; Witte et al., 2009).
Dkks bind and sequester the Lrp5/6 and Krm1/2 membrane complex to inhibit Wnt activity.
Recent studies highlight the importance of Dkk1, Dkk2, and Dkk3 in osteoblastic function.

4.1.1.1. Dkk1: Dkk1 is a well-characterized secreted Wnt inhibitor that is active in many
tissues (reviewed in (Pinzone et al., 2009)). Several lines of clinical evidence indicate that
DKK1 regulates bone mass in humans. The first is that the gain-of-function mutations in
LRP5 responsible high bone mass inhibit the ability of LRP5 to bind DKK1 (Ai et al., 2005;
Boyden et al., 2002). Second, high DKK1 production by malignant plasma cells leads to
osteolytic bone lesions in patients with multiple myeloma and blocks osteoblast
differentiation (Tian et al., 2003). Data from various animal models confirm that Dkk1
suppresses Wnt signaling and inhibits bone formation. Dkk1–/– mice die shortly after birth
with severe developmental abnormalities (del Barco Barrantes et al., 2003), but Dkk1+/–

mice have increased bone formation and bone mass without a compensatory change in bone
resorption (Morvan et al., 2006). Conversely, transgenic overexpression of Dkk1 using the
rat collagen1α1 promoter specific to osteoblasts significantly decreased osteoblast number,
bone formation rate, and serum osteocalcin levels (Fleming et al., 2008; Guo et al., 2010; Li
et al., 2006; Yao et al., 2011). Finally, mice harboring the hypomorphic Dkk1d

(doubleridge) allele, which display forelimb postaxial polysyndactyly, are informative
models to study Dkk1 activity in bones (MacDonald et al., 2004). The trabecular and
cortical bone density parameters of hypomorphic progeny of Dkk1+/– and Dkk1+/d mice are
inversely proportional to the level of Dkk1 expression. (Macdonald et al., 2007). These
studies demonstrate that Dkk1 is a negative regulator of bone in vivo.

In recent years, significant interest in DKK1 suppression as a treatment modality for various
bone diseases has led to the development of an array of DKK1-neutralizing antibodies. In
several murine multiple myeloma models, DKK1 antibodies significantly increased
osteoblast numbers, serum osteocalcin levels, and trabecular bone volume (Diarra et al.,
2007; Fulciniti et al., 2009; Heath et al., 2009). A Dkk1 antibody also increased bone
formation at endosteal bone surfaces in a mouse model of ovariectomy-induced osteopenia
(Glantschnig et al., 2011). Dkk1 is expressed in most tissues, thus using Dkk1 antibodies to
treat a chronic and systemic disease like osteoporosis may produce unwanted effects.
However, local delivery of Dkk1-neutralizing antibodies may be a treatment option for
fractures non-union because Dkk1 inhibits fracture repair (Chen et al., 2007). Indeed, in a
murine fracture repair model, anti-Dkk1 antibodies increased the callus area, bone mineral
content/density, and biomechanical properties of the injured bone (Komatsu et al., 2010).
Collectively, these reports suggest that Wnt pathway activation through suppression of Dkk1
may offer therapeutic treatments for select bone diseases and orthopedic conditions.

4.1.1.2. Dkk2: The molecular functions of Dkk2 vary with cellular context. Like Dkk1,
Dkk2 effectively blocks Wnt1-dependent activation of Lef1/Tcf target genes and inhibits
both the Wnt and osteogenic differentiation pathways in osteoarthritic osteoblasts (Chan et
al., 2011b). However, Dkk2 also activates β-catenin in Xenopus embryos (Wu et al., 2000).
These opposing effects may be modulated by Krm2, which converts Dkk2 from an agonist
to an antagonist of Lrp6 (Mao and Niehrs, 2003). Dkk2-null mice are osteopenic with
suppressed bone formation parameters (Li et al., 2002). Osteoblast cultures derived from
bone marrow and calvaria of Dkk2–/– mice mineralize at a slower rate than wildtype cells.
These data suggest that Dkk2 stimulates bone formation at least in early development, in
stark contrast to the bone inhibitory functions of Dkk1. Interestingly, Wnt7b may facilitate
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Dkk2 induction of osteogenesis. Dkk2 inhibited bone formation in the absence of Wnt7b,
but induced terminal osteoblast differentiation in the presence of high Wnt7b levels (Li et
al., 2005a). Thus, the effects of Dkk2 on osteoblasts is critically dependent on cellular
context, particularly Krm2 and Wnt7b levels.

4.1.1.3. Dkk3: Little information exists regarding Dkk3's activity in bone, but it was
temporally co-expressed with osteogenic genes in Bmp2-producing C3H10T1/2
mesenchymal progenitor cells implanted into mice (Aslan et al., 2006). The Dkk3-
expressing cell implants had decreased bone quality as measured by μCT and
bioluminescence imaging. Further investigation is required to fully determine Dkk3's role in
bone formation.

4.1.2. Secreted frizzled-related proteins (Sfrps)—Sfrp1-5 are secreted, cysteine-rich
glycoproteins that share high homology to the Fzd receptors. Sfrps antagonize Wnts though
direct binding, thereby preventing their functional association with Fzds on the cell surface
(Kawano and Kypta, 2003). Several Sfrps are expressed in skeletal tissue and cells of the
osteoblastic lineage. They have varying effects on bone development and osteoblast
function.

4.1.2.1. Sfrp1: Sfrp1 action in bone has been extensively explored. Targeted disruption of
Sfrp1 increased trabecular but not cortical bone mineral density to a similar extent as PTH
(Bodine et al., 2004, 2007), whereas transgenic Sfrp1 overexpression decreased bone density
and attenuated the bone anabolic effects of PTH (Yao et al., 2010). Sfrp1 expression is
increased by dexamethasone and may be involved in glucocorticoid-induced osteoporosis
(Wang et al., 2005). Mechanistically, Sfrp1 appears to affect cell viability and maturation as
its deletion reduced osteoblast and osteocyte apoptosis in vivo, and cell proliferation and
differentiation in vitro (Bodine et al., 2004). In an immortalized human osteoblast cell line,
Sfrp1 potently suppressed Wnt signaling (Bodine et al., 2005). Similarly, Sfrp1 significantly
increased osteoblast apoptosis with concomitant decreases in bone mineral density,
trabecular bone volume, and cortical bone area in rat femurs (Wang et al., 2005). Sfrp1 also
binds Rankl and blocks osteoblast-induced osteoclastogenesis (Hausler et al., 2004).
Collectively, these data clearly demonstrate that Sfrp1 inhibits osteoblast viability and
coupling to osteoclasts.

As with other secreted Wnt inhibitors, there is significant interest in isolating Sfrp1
antagonists to treat low bone mass conditions. A high throughput screen of potential small
molecule inhibitors revealed a class of piperidinyl diphenylsulfonyl sulfonamide compounds
that bind Sfrp1 and inhibit its activity (Bodine et al., 2009; Moore et al., 2010). These
compounds blocked Sfrp1-mediated apoptosis of preosteoblasts and stimulated bone
formation in vitro (Moore et al., 2009); however, the effectiveness of these compounds in
vivo has not been reported. In a rodent model of periodontal bone loss, Sfrp1 polyclonal
antibodies suppressed bone resorption and decreased pathogen-induced inflammation (Li
and Amar, 2007). Like Dkk1 antagonists, Sfrp1-based therapeutics might be best suited for
such localized conditions because of its broad expression pattern in multiple tissues.

4.1.2.2. Sfrp4: Sfrp4 is expressed in human mesenchymal stem cells and in areas of bone
formation at E15.5 in the developing mouse limb (Etheridge et al., 2004; Witte et al., 2009).
Transgenic overexpression of Sfrp4 using the osteoblast-directed rat 2.3 kb Col1a1 promoter
suppressed osteoblast proliferation and decreased bone formation (Nakanishi et al., 2008).
Moreover, transgenic mice overex-pressing Sfrp4 under the control of serum amyloid P
promoter, which drives postnatal secretion of Sfrp1 from the liver and into serum, exhibited
low bone mass (Cho et al., 2010). Recombinant Sfrp4 also inhibited osteoblast proliferation
and partially suppressed the activity of Wnt3a in vitro (Nakanishi et al., 2006). Collectively,
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these data demonstrate that Sfrp4 negatively regulates bone formation and decreases bone
mineral density through the inhibition of Wnt signaling.

SFRP4 polymorphisms were associated with altered hip and spine bone mineral density in
numerous populations (Cho et al., 2009; Karasik et al., 2003; Styrkarsdottir et al., 2008).
Furthermore, the Sfrp4 locus was associated with lower bone mineral density in the
senescence-accelerated mouse P6 (Nakanishi et al., 2006).

4.1.3. Wnt inhibitory factor (Wif)-1—Wif1 is a secreted factor that inhibits Wnt
signaling through direct interaction with Wnts (e.g., Wnt-3a, -4, -5a, -7a, -9a, -11)
(Malinauskas et al., 2011; Surmann-Schmitt et al., 2009). Wif1 is expressed during Bmp2-
induced osteoblast differentiation of C2C12 and MC3T3-E1 cells. Moreover, WIF1 was
elevated in calvarial sutures of craniosynostosis patients (Coussens et al., 2007). These
results suggest that Wif1 may be part of a negative feedback loop that controls osteoblast
differentiation and maturation (Vaes et al., 2005). Wif1 KO mice have a normal skeleton but
are more sensitive to radiation-induced osteosarcomas (Kansara et al., 2009). Similarly,
mice with osteoblast-specific Wif1 overexpression display no overt bone phenotype, but
have disrupted stem cell quiescence leading to a loss of self-renewal potential, suggesting an
important role for Sfrp4 in regeneration of the progenitor cell niche (Schaniel et al., 2011).

4.1.4. Sclerostin/SOST—Inactivating mutations in the SOST gene, which encodes the
protein Sclerostin (Scl), cause two rare bone sclerosing disorders, sclerosteosis and van
Buchem disease. These diseases are characterized by endosteal hyperostosis, progressive
generalized osteosclerosis, and high bone mass associated with increased osteoblastic
activity and elevated bone formation markers (Wergedal et al., 2003). The mutations
introduce premature transcriptional stop codons, interfere with splicing, or delete regulatory
elements in SOST, thereby preventing osteocytes from secreting sufficient levels of fully
functional Scl (Balemans et al., 2001, 2002; Brunkow et al., 2001; Staehling-Hampton et al.,
2002). As is often true in medicine, identification of the genetic and molecular origin of
these rare diseases has revealed an important mechanism in normal physiological processes
and unleashed a flurry of activity to translate the information into therapy for more common
disorders.

Unlike Dkks, Sfrps, and Wise, Scl is produced primarily by bone cells and is abundant in the
osteocytic canalicular system (van Bezooijen et al., 2004; Winkler et al., 2003) but has also
been detected in cementocytes in teeth, mineralized hypertrophic chondrocytes in the growth
plate, and osteoarthritic cartilage (Chan et al., 2011a; van Bezooijen et al., 2009). Scl binds
Lrp5/6 and inhibits their association with Fzd and Wnts (Li et al., 2005b; Semenov et al.,
2005). Scl inhibits proliferation and differentiation and stimulates apoptosis of osteogenic
cultures (Sutherland et al., 2004; van Bezooijen et al., 2004; Winkler et al., 2003). In support
of the Wnt inhibitory function of Scl in vivo, canonical Wnt signaling, bone density, and
bone mechanical strength are elevated in Sost knockout mice (Krause et al., 2010; Li et al.,
2008); whereas transgenic overexpression of Sost induced osteopenia (Loots et al., 2005;
Winkler et al., 2003). Collectively, these data clearly demonstrate that Scl is an important
negative regulator of bone formation.

By virtue of its relatively exclusive expression in bone and its role in repressing bone
formation from the extracellular space, Scl is an attractive target for anabolic therapeutics.
Scl neutralizing antibodies have shown efficacy in multiple pre-clinical models (e.g.,
rodents, non-human primates) and more recently in clinical trials for osteoporosis (reviewed
in (Rachner et al., 2011)). For example, Scl antibodies increased bone mass and prevented
bone loss associated with estrogen deficiency in ovariectomized rats (Li et al., 2009). In
phase-2 clinical studies, a fully humanized Scl neutralizing antibody increased bone
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formation parameters in post-menopausal osteoporotic women (Padhi et al., 2011). These
studies and others indicate that Scl inhibitors may provide skeletal benefits for patients with
osteoporosis and other diseases of low bone mass. Scl antibodies may also improve
outcomes of orthopedic stabilization and fixation procedures that are complicated by low
bone volumes.

Scl has quickly emerged as an important modulator of anabolic signaling pathways in bone,
particularly PTH stimulation and mechanical loading. Intermittent PTH stimulates bone
formation; however, the molecular mechanisms underlying this response are not fully
understood (reviewed in (Kramer et al., 2010b)). PTH suppresses Scl expression both in
vitro and in vivo (Bellido et al., 2005; Keller and Kneissel, 2005) by inhibiting myocyte
enhancer factor 2, which normally activates Sost transcription through a specific enhancer
element (Leupin et al., 2007). PTH-dependent bone anabolism is suppressed in mice where
Sost is overexpressed, indicating that Scl levels can modulate PTH-induced bone formation
(Kramer et al., 2010c; O'Brien et al., 2008). Scl expression is also suppressed in osteocytes
by mechanical loading in vivo (Robling et al., 2006). This may contribute to high Wnt/β-
catenin signaling that occurs after mechanical loading (Robinson et al., 2006).

4.1.5. Sost-dc1 (Ectodin, Wise, Usag1)—Sost-dc1 (sclerostin domain containing 1) is
a secreted factor that belongs to the Dan/Cerberus family of proteins. It binds to Bmps to
neutralize their activity (Itasaki et al., 2003; Kassai et al., 2005; Laurikkala et al., 2003;
Yanagita et al., 2004). It also blocks Wnt1, Wnt3a, and Wnt10b activities in various cellular
models (Beaudoin et al., 2005; Blish et al., 2008; Lintern et al., 2009). Sost-dc1 inhibits Wnt
activity by binding Lrp6 (Itasaki et al., 2003; Lintern et al., 2009) and possibly Lrp4
(Ohazama et al., 2010). Sost-dc1-deficient mice have extra teeth due to excessive Bmp
signaling and reduced apoptosis of developing odontogenic mesenchymal cells (Ahn et al.,
2010; Kassai et al., 2005; Munne et al., 2009; Murashima-Suginami et al., 2008). The bone
phenotype of the Sost-dc1-null models has not been characterized; however, several lines of
evidence suggest a role in the skeleton. SOST-DC1 polymorphisms were associated with
attainment and maintenance of peak bone mass in Chinese women (He et al., 2011).
Furthermore, Wnt10b suppressed SOST-DC1 expression in a human osteosarcoma cell
model (Modder et al., 2011). Since osteoblast function is critically dependent on both Bmp
and Wnt signals, a potential role of Sost-dc1 in osteoblasts is intriguing, although further
research is needed to clarify its role in bone.

4.2. Transmembrane modulators of Wnt signaling
Several transmembrane proteins modulate Wnt signaling pathways by binding to Wnts or
the secreted antagonists discussed above. These molecules include Kremen (Krm) 1, Krm 2,
and the receptor tyrosine kinases, Ror2 and Ryk.

4.2.1. Kremen1/2—Krm1 and Krm2 are single-pass transmembrane co-receptors for
Dkk1. Krms and Dkk1 form a ternary complex with Lrp6, which is rapidly endocytosed
within 5 min to reduce Wnt/β-catenin signaling (Mao et al., 2002). Krms are expressed in
developing limb buds. Double mutant Krm1–/–:Krm2–/– mice have elevated Wnt signaling,
expanded AERs and ectopic postaxial forelimb digits (Ellwanger et al., 2008). Ectopic
growth of digits is enhanced in triple mutant Krm1–/–:Krm2–/–:Dkk1+/– mice, demonstrating
a genetic interaction between Krms and Dkk1 in limb development. Double mutant
Krm1–/–:Krm2–/– mice had increased bone volume and bone formation rates at 12 weeks of
age (Ellwanger et al., 2008). Single mutant Krm1–/– and Krm2–/– mice had normal bone
volume and bone formation rates at this age, but the Krm2–/– mice developed high bone
mass associated with increased bone formation 12 weeks later, at 24 weeks of age (Schulze
et al., 2010). Transgenic expression of Krm2 in mature osteoblasts under control of the
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2.3Col1a1 promoter suppressed osteoblast maturation and Opg production (Schulze et al.,
2010). Cortical strength was reduced and osteoclast activity was elevated. Krm2 is
predominantly expressed in bones of 6 week-old mice, whereas as Krm1 is expressed in
bone as well as other tissues (Schulze et al., 2010). These data suggest that Krm2 is a
potential bone-specific target for future for anabolic agents.

4.2.2. Ror2—The Ror family of membrane-spanning tyrosine kinases bind certain Wnts
either alone or as Fzd co-receptors to activate non-β-catenin signaling in mammalian tissues
(Grumolato et al., 2010; Minami et al., 2010). Wnt5a, for example, induces the formation of
a complex consisting of Lrp5/6, Ror1/2, and Fzd2 (Sato et al., 2010). Via Ror2, Wnt5a
blocks Wnt3a-mediated β-catenin activation (Mikels and Nusse, 2006). ROR2 mutations are
linked to several skeletal disorders (e.g., dominant brachydactyly type B and recessive
Robinow syndrome), further supporting a role for this pathway in endochondral bone
formation (Afzal et al., 2000; Angers and Moon, 2009; DeChiara et al., 2000; Oldridge et
al., 2000).

4.2.3. Ryk—Ryk is an atypical tyrosine kinase receptor that is predicted to lack intrinsic
enzymatic activity, but may associate with Src kinases (Hovens et al., 1992; Wouda et al.,
2008). Ryk's fly homolog, Drl, binds Wnt5a in the absence of Fzd or Dvl to regulate growth
cone guidance (Bonkowsky et al., 1999). In HEK293T cells, RYK can be co-
immunoprecipated with Wnt1, Wnt3a, Fzd and Dvl, and is required for Wnt-mediated β-
catenin activation (Lu et al., 2004). Ryk activities in bone cells have not been reported.

5. β-catenin and associated intracellular proteins
5.1. Ctnnb1 (β-catenin)

β-catenin is a cytoplasmic and nuclear protein encoded by the Ctnnb1 gene. It is a key link
in numerous signaling cascades, including the “canonical Wnt pathway”, is essential for
embryonic development, and is hyperactivated by mutations in many cancers. Wnt ligation
of Lrp5/6 and Frizzled receptors inactivates the β-catenin destruction complex consisting of
Apc, Axin, Ck1, Gsk3, Wtx, and the E2 ubiquitin ligase, βTrCP. As β-catenin accumulates,
some is transported to the nucleus where it interacts with Lef1/Tcf transcription factors to
regulate numerous genes, including Axin2, which in turn can provide feedback inhibition
(Jho et al., 2002). β-catenin proteolysis is triggered by phosphorylation of several serine
residues in its N-terminus by Ck1 and Gsk3β. Deletion of exon 3 in Ctnnb1, removes these
residues and produces a stable protein that acts as a gain-of-function mutation (Harada et al.,
1999). Over the last decade, numerous genetic studies were performed using mice in which
exon 3 (to activate β-catenin) or exons 6–10 (to eliminate β-catenin) of Ctnnb1 is flanked by
loxP sequences to dissect β-catenin's role(s) in skeletal development through gain- and loss-
of function, respectively.

β-catenin is essential for controlling mesenchymal cell fate decisions and linking bone
formation to bone resorption. Ctnnb1-deletion in mesenchymal progenitors (as early as
E9.5) caused severe defects in skeletal formation, characterized by reduced mineralization,
defective osteoblastogenesis, and ectopic chondrogenesis (Brault et al., 2001; Day et al.,
2005; Hill et al., 2005; Hu et al., 2005; Rodda and McMahon, 2006). Targeted Ctnnb1-
deletion in committed osteoblast-lineage cells at a later stage in development (E14.5) also
reduced bone mass, but surprisingly osteoblast numbers and bone formation rates were
normal (Glass et al., 2005; Holmen et al., 2005; Kramer et al., 2010a). These Ctnnb1-
deficient osteoblasts and osteocytes produced less Opg, which allowed for more interactions
between Rankl-positive osteoblasts and Rank-expressing osteoclasts and promoted bone
resorption.
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Increasing β-catenin activities through deletion of exon 3 produced nearly opposite
phenotypes as the knockout mutations and early lethality. Thus, Ctnnb1 gain-of-function
mutations in mature osteoblasts and osteocytes caused premature and excessive ossification
by reducing osteoclast numbers without changing osteoblast numbers (Glass et al., 2005;
Rodda and McMahon, 2006). In animals where β-catenin was activated in premature limb
bud and craniofacial mesenchyme (with Prx1-Cre), appendicular and skull bone elements
were absent, suggesting that β-catenin stabilization negatively impacts this early stage of
differentiation (Hill et al., 2005).

Because of the different phenotypes of the Ctnnb1 and Lrp5-deficient mice, it is crucial to
discuss β-catenin's roles outside of the Wnt signaling pathway. Notably, β-catenin associates
with cadherins to regulate epithelial cell growth, cell adhesions and migration. N-cadherin
overexpression inhibits osteoblast proliferation and survival by blocking Wnt3a, PI3K/Akt
and Erk signaling (Hay et al., 2009). β-catenin also links the membrane to the
actincytoskeleton, which may transmit signals responsible for contact-mediated inhibition of
cell growth, or in the case of bone homeostasis, signals from mechanical strains. Several
reports demonstrated that mechanical loading activated a Lef/Tcf reporter and promoted
nuclear β-catenin localization in primary calvarial cells (Armstrong et al., 2007; Hens et al.,
2005). In murine calvarial osteoblasts, mechanical loading by biaxial strain increased
nuclear β-catenin levels through the activation of Akt and consequent inactivation of Gsk3β
(Case et al., 2008). Gsk3β inhibition by mechanical strain stimulated Nfatc1 as well as β-
catenin signaling to induce osteogenesis and inhibit adipo-genesis of multipotent
mesenchymal cells (Sen et al., 2008). In osteocytes, the mechanosensory cells of bone, fluid
flow sheer stress indirectly stabilized and stimulated nuclear translocation of β-catenin
through prostaglandin E2 (PGE2) and EP2/4 synthesis, PI3K/Akt and cAMP/PKA signaling,
and Gsk3β inactivation to protect osteocytes from glucocorticoid apoptosis and stimulate
gap junctions (Bonewald and Johnson, 2008; Kamel et al., 2010; Kitase et al., 2010; Xia et
al., 2010). Together these data indicate that mechanical strain activates multiple pathways,
many of which converge on β-catenin to control cell fate and promote bone formation.

Recently, the effects of altering β-catenin levels in osteoclast lineage cells were reported
(Wei et al., 2011). Using a variety of Cre drivers, it was determined that β-catenin regulates
osteoclastogenesis in a dosage-dependent manner (Table 2). A minimum amount of β-
catenin was required to induce the proliferation of osteoclast progenitors as complete Cttnb1
deletion caused osteopetrosis. In contrast, Cttnb1 haploinsufficiency accelerated
osteoclastogenesis and produced an osteoporotic phenotype. High levels of constitutively
active β-catenin inhibited osteoclast maturation and bone resorption to cause osteopetrosis.
Wnt3a and two Gsk3β inhibitors attenuated osteoclast differentiation (Wei et al., 2011).
Moreover, Wnt3a stabilized β-catenin in human osteoclast precursor cells from multiple
myeloma patients in vitro to suppress osteoclast differentiation (Qiang et al., 2010). Rankl
treatment suppressed β-catenin expression in osteoclasts to suppress proliferation and induce
terminal differentiation programs (Wei et al., 2011). Further analysis showed that β-catenin
promotes osteoclast precursor proliferation in response to M-CSF by inducing expression of
Gata2 and Evi1, but blocks Rankl-induced osteoclast maturation by impairing c-Jun activity.
These data suggest that therapeutic strategies designed to increase bone mass by activating
the canonical Wnt pathway may confer both anabolic and anti-resorptive effects.

Alterations in β-catenin sequence and/or activity contribute to numerous diseases in humans.
More than half of human bone and soft tissue sarcomas have excess β-catenin activity (Iwao
et al., 1999; Vijayakumar et al., 2011). Tumors have not yet been reported in mice
expressing gain-of-function β-catenin mutations; however, benign rib osteomata were found
in 80% of animals (Glass et al., 2005), suggesting that sustained β-catenin activation
combined with other genetic or epigenetic events may promote carcinogenesis. CTNNB1
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polymorphisms were linked to altered bone mineral density in some human population
studies (Rivadeneira et al., 2009), but the molecular consequences of these variants have not
been elucidated.

5.2. Adenomatous polyposis coli (Apc)
Apc is a tumor suppressor and β-catenin binding protein. Defects in APC cause familial
adenomatous polyposis, an autosomal dominant pre-malignant condition that usually
progresses to colon cancer. Apc's major function in the cell is to inhibit β-catenin activity.
Apc is a scaffold for other components of the β-catenin destruction complex in the
cytoplasm. Apc also associates with β-catenin in the nucleus where it prevents β-catenin
from associating with Lef/Tcf transcription factors (Neufeld and White, 1997; Neufeld et al.,
2000a, 2000b). Although not as thoroughly studied as β-catenin or Lrp5 at the genetic level,
the phenotypes of Apc CKO mice are consistent with its role as a negative regulator of β-
catenin activity, as well as with β-catenin being a crucial regulator of bone resorption. In
both studies, conditional deletion of Apc in either chondrocytes (with Col2a1-Cre) or
osteoblasts (with OCN-Cre) elevated β-catenin levels and produced early postnatal lethality
as all mice died within 5 weeks (Holmen et al., 2005; Miclea et al., 2009). Similar to the
Cttnb1 CKI models, Apc deletion in mature osteoblasts increased trabecular bone volumes,
but its deletion in progenitors cells caused severe delays and skeletal malformations. In the
OCN-Cre driven Apc CKO mice, no defects in osteoblast development were detected in
vitro or in vivo; however, osteoclasts were not detected in histological sections. Opg levels
were elevated in these Apc CKO mice, whereas Rankl mRNA levels were reduced in
osteoblasts. Cttnb1 CKO mice made by the same group with the same OCN-Cre driver had
nearly the opposite phenotype. Moreover, mice carrying osteoblast-specific deletions of both
Apc and Cttnb1 had phenotypes resembling the Cttnb1 CKO animals. Together, these data
support the conclusion that Apc is a negative regulator of β-catenin in skeletal progenitors
and mature osteoblasts. SNPs in APC were found associated with altered trabecular
volumetric bone mineral density in several human population studies (Miclea et al., 2010;
Yerges et al., 2009).

5.3. Axin1/2
Axin1 and Axin2 are functionally equivalent scaffolding proteins required for the assembly
of the β-catenin destruction complex that includes Gsk3β, Dvd, Apc, and Wtx (Chia and
Costantini, 2005). In the presence of Wnt ligands, Axin and other components of the
destruction complex are recruited to Lrp5/6 at the cell membrane where they facilitate
downstream β-catenin signaling (Bilic et al., 2007; MacDonald et al., 2009; Niehrs and
Shen, 2010; Zeng et al., 2005). Axin1 is widely expressed and Axin1-deficient mice do not
survive past E9.5 due to forebrain and neural tube defects (Zeng et al., 1997). In contrast,
Axin2 exhibits a more restricted expression pattern, and is upregulated by Wnt/β-catenin/
Tcf signaling. Thus, Axin2 is a negative feedback inhibitor of the Wnt/β-catenin pathway
(Jho et al., 2002). Axin2 KO mice are born with no noticeable morphologic abnormalities;
however, skull doming was evident by postnatal day 28 (Yu et al., 2005). Further analysis
revealed that nuclear β-catenin expression is elevated in cranial bones by seven days of age,
leading to increased osteoblast progenitor proliferation, increased osteoblast differentiation,
and craniosynostosis characterized by premature fusion of the frontal/metopic suture (Liu et
al., 2007a). Bone mass and strength of the axial skeleton was increased at six months of age
in Axin2 KO mice due to increased osteoblast differentiation, enhanced osteoblast function,
and decreased osteoclast formation (Yan et al., 2009). Introducing Ctnnb1-deficiency onto
the Axin2 KO background attenuated the increased osteoblast activity and craniosynostosis
phenotype in these mice (Liu et al., 2007a; Yan et al., 2009), whereas conditional activation
of β-catenin recapitulated many aspects of the Axin2 KO skeletal phenotype (Mirando et al.,
2010), confirming the role of β-catenin signaling in this model.
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Interestingly, Axin2–/– mice displayed a runted phenotype compared to wildtype littermates.
This disrupted growth was compounded in double mutant Axin2–/–:Axin1+/– mice (Dao et
al., 2010). The runted phenotype appears to be due to Axin2's role in chondrocyte
maturation. Axin2–/– mice have shorter hypertrophic zones in the growth plate and enhanced
expression of type 10 collagen, a marker of mature chondrocytes (Dao et al., 2010). Thus,
under normal circumstances Axin2 expression inhibits late chondrocyte differentiation, as it
does in osteoblasts. Because of its key role in osteoblast and chondrocyte development,
Axin2 may also contribute to musculoskeletal repair. Indeed, Axin2-deficient mice
demonstrated rapid healing in fracture models (Minear et al., 2010).

5.4. Gsk3β
Glycogen synthase kinases (Gsk) 3 alpha and beta are highly conserved and ubiquitous
serine/threonine enzymes that participate in multiple signaling pathways, including both
canonical and non-canonical Wnt signaling. It has long been known that Gsk3
phosphorylates multiple components of Wnt pathways, including β-catenin, Axin, and Apc
(reviewed previously in (Westendorf et al., 2004)). Gsk3 phosphorylation of the N-terminus
of β-catenin promotes its degradation by the 26S proteosome. Seemingly paradoxically,
Gsk3 also has a positive role in promoting Wnt signaling. In response to ligands, Gsk3 and
Axin move to the membrane where Gsk3 phosphorylates Wnt receptors, Lrp5/6 (Bilic et al.,
2007; MacDonald et al., 2009; Niehrs and Shen, 2010; Zeng et al., 2005). Lrp5/6
phosphorylation results in the formation of a large multi-protein signalosome, which
consequently sequesters Gsk3 and facilitates β-catenin accumulation and enhanced gene
transcription (reviewed by (Niehrs and Shen, 2010)).

There is much evidence that Gsk3 inhibition promotes bone formation in vivo. Gsk3β
suppression by genetic deletion or pharmacological inhibition enhances bone density. Gsk3β
KO mice do not survive embryogenesis; however, Gsk3β +/– mice have higher trabecular
bone volume density, more osteoblasts per bone surface and increased bone formation rates
(Kugimiya et al., 2007; Noh et al., 2009). The numbers of osteoclasts per bone perimeter
and eroded surface areas were also elevated, indicating that increased bone formation was
coupled to increased resorption (Kugimiya et al., 2007). Osteoblasts from Gsk3β+/– mice
had more Runx2 activity because the phosphorylation of an inhibitory residue in Runx2 was
suppressed in the absence of adequate Gsk3β levels. Interestingly, Gsk3β haploinsufficiency
or lithium chloride treatment rescued the cleidocranial dysplasia in Runx2+/– animals
(Kugimiya et al., 2007). Lithium chloride also rescued the low bone mass phenotypes of
Lrp5–/– and SAMP6 mice, and increased bone mass in wildtype mice (Clement-Lacroix et
al., 2005). Other small molecule Gsk3β inhibitors also increase bone mass in wildtype and
ovariectimized animals and improve vertebral strength (Clement-Lacroix et al., 2005;
Kulkarni et al., 2006). Reductions in bone marrow adiposity and enhancements in osteocytic
responses to mechanical strain were also observed, suggesting that Gsk3β influences
mesenchymal cell fate and osteocyte responses to loading (Case et al., 2008; Sen et al.,
2008). These positive effects on early progenitors and terminal osteocytes may be the
primary reasons why bone formation is enhanced as a result of Gsk3β inhibition, despite
increased bone resorption.

Oral lithium chloride has been a treatment option for bipolar disease for more than a half-
century. Some studies indicate that patients taking lithium have lower fracture rates and less
bone turnover than normal individuals, while other surveys did not observe any differences
(Vestergaard et al., 2005; Wilting et al., 2007). Thus, lithium and other Gsk3 inhibitors may
be safe for short-term anabolic uses in some patients; however, long-term use and
effectiveness remains to be proven.
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In summary, Gsk3 is an important contributor to bone formation in vivo and osteoblast
maturation in vitro. Existing in vivo models are insufficient to determine whether enhanced
bone formation is solely due to osteoblastic responses. Future studies in which Gsk3β is
conditionally deleted at different stages of osteoblast and osteoclast development may
unravel some of the complexities observed in vitro, with the germline knockout/
heterozygote mice, and with lithium chloride response in patients. Finally, Gsk3 proteins
participate in multiple signaling pathways besides Wnt, Lrp5/6, Ror1/2, and β-catenin. Most
notable are their roles in G protein coupled receptor, Akt, and Bmp2 signaling pathways.
Untangling these pathways will require information on molecular structures and
posttranslational modifications of relevant proteins.

5.5. Tcf7 and Lef1 transcription factors
T cell factors 7 (Tcf7) and lymphoid enhancer binding factor (Lef1) are nuclear proteins that
link Wnt signaling and β-catenin to the genome. They bind to the DNA sequence
YCTTTGWW via a C-terminal DNA binding domain and to β-catenin via N-terminal
sequences. Central regions of Tcf7s and Lef1 interact weakly with β-catenin and strongly
with co-repressors, including Hdacs and Tle proteins. Temporal and spatial expression
patterns, alternative splicing, and differential promoter usage of Lef1 and the three Tcf7
genes, Tcf7 (Tcf1), Tcf7L1 (Tcf3), and Tcf7L2 (Tcf4), affect their activities during skeletal
development (Glass et al., 2005; Waterman, 2004; Westendorf et al., 2004). In adults, their
expression is typically restricted to regenerating tissues. Thus far, no polymorphisms in
TCF7 or LEF1 have been associated with altered BMD; however, Tcf7 (Tcf1) or Lef1 KO
mice indicate that they play important roles in bone turnover.

5.5.1. Tcf7 (Tcf1)—Tcf1–/– mice were originally described as being of normal size
(Verbeek et al., 1995; Roose et al., 1999); however, more careful analysis of the skeleton
revealed modest decreases in bone mineral density at one month of age (Glass et al., 2005).
These bone mass reductions were attributed to increased bone resorption as osteoclast
numbers and activity were elevated, Opg levels were reduced, and no changes were noted in
osteoblast numbers or function. The results were consistent with the Ctnnb1 CKO animals
reported in the same study. Mice heterozygous for Ctnnb1 and Tcf7 (Tcf1) also had reduced
bone density as a result of increased osteoclast activity, demonstrating a genetic link
between the molecules (Glass et al., 2005). Tcf7 (Tcf1), Tcf7L2 (Tcf4), and β-catenin
associated with the Opg promoter and Lef1 cooperated with β-catenin to activate Opg
promoter activity in vitro (Glass et al., 2005). Tcf1 also binds to the Runx2 promoter, which
was activated by canonical Wnt signaling (Gaur et al., 2005). Together these data
demonstrate that Tcf7 is a crucial mediator of β-catenin signaling in mature osteoblasts and
indirectly regulates osteoclast activation.

5.5.2. Lef1—Lef1-deficient mice die within a few days of birth with multi-organ defects
due to impaired epithelial and mesenchymal cell interactions (van Genderen et al., 1994).
Bone mass was not measured in these mice because of the early postnatal lethality (Noh et
al., 2009; van Genderen et al., 1994); however, young female heterozygotes in this Lef1
strain had low trabecular bone mass with reduced osteoblast activity (Noh et al., 2009). This
phenotype was temporal and normalized as the animals aged. Male Lef1+/– animals did not
have low bone mass unless the androgen receptor was inactivated (Noh et al., 2009). Thus,
Lef1 may have an age- and gender-related role in bone homeostasis. A new Lef1 KO model
in which a 5’-exon that encodes the β-catenin binding domain was targeted has a similar
gross phenotype as the original Lef1 KO mice (JJW, unpublished). Bone structures were
measurable by microcomputed tomography in a few animals of this strain that lived to three
weeks of age. These Lef1 KO mice have dramatically lower trabecular bone mass and fewer
trabeculae; however, no changes were observed in heterozygotes.
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The different bone phenotypes of the heterozygotes in the two Lef1 mutant strains of mice
may provide important information and insight into the functions of Lef1 isoforms. Lef1
contains two promoters that drive expression of a full-length protein (Lef1) and an N-
terminally truncated isoform (Lef1ΔN). The original Lef1-deficient mouse (van Genderen et
al., 1994) would eliminate both isoforms, whereas the newer Lef1-deficient mouse only
inactivates the product of the first promoter (JJW, unpublished). Lef1 overexpression
inhibited osteoblast maturation and Runx2 activity on the osteocalcin promoter in vitro
(Kahler and Westendorf, 2003; Kahler et al., 2006), but Lef1ΔN had the opposite effect
(Hoeppner et al., 2009). Lef1ΔN is present in mature osteoblasts and is induced by Bmp2,
but repressed by Wnt3a (Hoeppner et al., 2009). Despite the absence of the N-terminal high
affinity β-catenin binding domain, Lef1ΔN retains the ability to weakly interact with β-
catenin via second domain (Hoeppner et al., 2011). Thus, Lef1ΔN can facilitate β-catenin
activity, although in other scenarios it acts as a competitive inhibitor of Wnt activity
(Hovanes et al., 2001). Transgenic mice expressing Lef1ΔN in mature osteoblasts with the
2.3Col1a1 promoter have a modestly higher trabecular bone mass, increased bone formation
rates, and elevated serum osteocalcin levels (Hoeppner et al., 2011). Together these data
demonstrate that alternative isoforms of Lef1 temporally and spatially regulate osteoblast
function and trabecular bone mass. Lef1 or Tcf7 CKO mice have not yet been made but
would be useful for dissecting their specific roles in bone.

5.6. Wtx (FAM123B)
WTX (also called FAM123B, OSCS or AMER1) is a tumor suppressor encoded on the X
chromosome that contains somatic mutations in approximately 30% of Wilms tumors.
Germline loss-of-function mutations in WTX cause osteopathia striata with cranial sclerosis
(OSCS), a disorder characterized by osteosclerosis in females and high incidence of lethality
in male fetuses (Jenkins et al., 2009). WTX directly binds to β-catenin, Apc, and Axin1/2
and is a component of the β-catenin destruction complex (Major et al., 2007); thus, loss-of-
function mutations in WTX enhance β-catenin stability. Wtx is expressed in the developing
mouse skeleton and skull at E14.5 and contributes to both intramembranous and
endochondral bone formation (Jenkins et al., 2009). Germline deletion of Wtx caused
somatic overgrowth and developmental defects in mesenchymal tissues, including bone.
Wtx deficient animals died within one day of birth but had enlarged cranial vaults, bowed
long bones, and increased cortical bone mineral densities (Moisan et al., 2011).
Heterozygous animals also had higher bone mineral densities. In contrast, adipogenesis was
inhibited and Wtx-deficient mice had less white and brown fat. Targeted deletion of Wtx
with a variety of Cre lines demonstrated that Wtx is active in early mesenchymal progenitors
as conditional deletion in mice expressing Prx1- and Osx-Cre displayed bone overgrowth;
whereas deletion in committed chondrocytes (Col2a1-Cre) or osteoblasts (Ocn-Cre) did not
alter the skeleton (Moisan et al., 2011). Runx2 and Osterix levels were higher in Wtx-
deficient embryos and β-catenin activity was increased in progenitor cells. Interestingly,
older Wtx-deficient mice had persistent defects in matrix mineralization. Together these data
indicate that Wtx is a negative regulator of mesenchymal and osteoblastic progenitors, but a
positive regulator of osteoblast maturation into osteocytes. These studies did not examine
how Wtx-deletion affects osteoclastogenesis.

6. Emerging areas for Wnts in bone biology
The remarkable advancements in our understanding of the molecular underpinnings of rare
bone diseases and in how Wnts control bone formation and osteoblast proliferation,
differentiation, and survival have quickly led to the development of multiple therapies for
more common diseases of altered bone mass, such as osteoporosis (Rachner et al., 2011). To
fully understand the effects of these drugs, it will be crucial to also study how Wnts and Wnt
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antagonists affect other cells in the bone marrow and to examine their effectiveness during
aging.

6.1. Wnt signaling and osteoclasts
In contrast to the plethora of data about Wnt signaling in osteo-blast lineage cells, there is a
paucity of information about the cell autonomous influences of Wnts on osteoclasts. As has
been discussed, β-catenin indirectly regulates osteoclastogenesis by raising the Opg to Rankl
ratio in osteoblasts (Glass et al., 2005) and there is a threshold tolerance for β-catenin
expression during osteoclastogenesis (Wei et al., 2011). Other Wnt pathway components,
including Wnts, Fzds, Lrps, and Tcf family members, are also expressed in osteoclast
lineage cells (Qiang et al., 2010). Thus, Wnts/β-catenin signaling appears to reduce bone
resorption. This area is clearly in need of further investigation to fully resolve the scope of
Wnt influences on bone metabolism and to understand the effectiveness of Wnt-based
therapies on bone structure and function.

6.2. Aging
Work in non-bone cells provides evidence for beneficial effects of Wnts on aging but also
raise some concerns about therapies to promote Wnt signaling to prevent age-related bone
loss. For example, Wnt signaling is required for T cell development and protects thymic
epithelial cells against senescence (Pongracz et al., 2003; Talaber et al., 2011). Wnt/Tcf
signaling also keeps preadipocytes in an undifferentiated proliferative stage to inhibit
adipogenesis (Bilkovski et al., 2011). In contrast, Wnts are activated in several models of
accelerated aging and increase fibrosis of aged muscle progenitor cells (Brack et al., 2007;
Liu et al., 2007b). β-catenin-mediated Wnt signaling also induces mesenchymal stem cell
aging and DNA damage through the p53/p21 pathway and ROS generation, promotes
cardiovascular cell aging, and induces mitochondrial biogenesis to cause cell senescence
(Naito et al., 2010; Yoon et al., 2010; Zhang et al., 2011).

6.3. Cancer
It has been extensively documented that Wnt/β-catenin signaling effectively promotes tumor
development and progression in a number of cancers including breast, multiple myeloma,
endometrial, and lung (Polakis, 2000). Benign osteomas developed in mice expressing
constitutively active β-catenin in osteoblasts (Glass et al., 2005) and Wif1 depletion made
animals more susceptible to radiation-induced osteosarcomas (Kansara et al., 2009);
however, there is no increased incidence in cancer in families carrying LRP5 gain-of-
function mutations, nor are there any reports of increased tumors in Sost- or Dkk1-deficient
animals. Interestingly, anti-Wnt therapy is under development to as means to treat a number
of cancers. How these therapies will influence bone metabolism will need to be examined,
particularly in cancers that cause osteolysis such as multiple myeloma and breast cancer.

7. Summary and conclusions
In conclusion, much has been learned about the roles of Wnt pathway components in bone
development, remodeling, and repair during the last decade though the use of genetic animal
models. These studies were fueled by the desire to understand the molecular underpinnings
for rare bone diseases and have quickly led to the development of multiple therapies for
common diseases of altered bone mass (e.g., postmenopausal osteoporosis) and for
regenerative medicine. Despite these rapid and measurable accomplishments, much remains
to be learned about the effects of Wnts and Wnt antagonists on skeletal physiology and
regeneration. Undoubtedly, new components of Wnt pathways will be identified, receptor–
ligand specificities will be defined, and a deeper understanding of how Wnt pathways
interact with other signaling cascades in a variety of cell types will be achieved in the next
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decade. Meanwhile, clinical trials will test the effectiveness of current Wnt pathway drugs
on a variety of endocrine and orthopedic conditions and advanced genome sequencing
technologies will point us in new directions. Thus, continuing the bedside-to-bench
exchange of information that has made this story so successful and compelling.
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Abbreviations

AER apical ectodermal ridge

Apc adenomatous polyposis coli

Bmp bone morphogenic protein

Ck1 casein kinase 1

CKI conditional knock-in

CKO conditional knock-out

Ctnnb1 catenin (cadherin-associated protein), beta 1

Daam1 disheveled-associated activator of morphogenesis 1

Dkk Dickkopf

Dmp1 Dentin matrix acidic phosphoprotein 1

Dvl Disheveled

Fgf fibroblast growth factor

Fzd Frizzled

Gsk glycogen synthase kinase

GWAS genome-wide association studies

HBM high bone mass

Jnk c-Jun N-terminal kinase

KO knockout

Krm Kremen

Lef1 Lymphoid enhancer binding factor

LiCl lithium chloride

Lrg leucine-rich repeat containing G protein-coupled receptor

Lrp low-density lipoprotein receptor-related protein

Ocn Osteocalcin

Opg osteoprotegerin

OPPG osteoporosis-pseudoglioma syndrome

Osx Osterix

OSCS osteopathia striata with cranial sclerosis

PCP planar cell polarity
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PKA protein kinase A

PKC protein kinase C

PTH parathyroid hormone

Rankl receptor activator of NF-κB ligand

Scl sclerostin

Sfrp secreted Frizzled-related protein

Shh sonic hedgehog

SNP single nucleotide polymorphism

Tcf T cell factor

Tg transgenic

Wif Wnt inhibitory factor

Wise Wnt modulator in surface ectoderm

Wls Wntless

Wnt Wingless-type MMTV integration site

Wtx Wilm's tumor genes on chromosome X
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Fig. 1.
Wnt signaling pathways. The “canonical” Wnt–β-catenin signaling pathway is illustrated in
the center of the diagram. Secreted and intracellular inhibitors of β-catenin are shown on the
right side. Wnt signaling pathways that do not involve β-catenin are summarized on the left
side.
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Fig. 2.
Cell lineages involved in bone development and homeostasis. Osteoblasts and chondrocytes
are derived from mesenchymal progenitor cells, whereas osteoclasts are derived from
hematopoietic precursors. Various promoters (indicated at the top and bottom of the diagram
in gray boxes) drive transgene or Cre expression in these cells at various stages of their
maturation. Mature osteoblasts and osteocytes stimulate osteoclast maturation through
Rankl–Rank interactions, but also secrete the decoy receptor Opg to regulate the process.
Osteocytes secrete Scl to inhibit Lrp5 activities. PTH and mechanical loading suppress Scl
production by osteocytes to increase bone formation.
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Table 1

Summary of bone phenotypes in mouse models of altered Wnt signaling in osteoblast lineage cells and the
germline.

Gene KO/CKO/Tg/CKI Cre line Bone phenotype(s) References

APC CKO OCN-Cre Early postnatal lethality, osteopetrosis,
increased trabecular bone density, few
osteoclasts, elevated Opg

Holmen et al.,
2005

CKO Col2a1-Cre Early postnatal lethality, reduced
mineralization at E14.5, increased
mineralization at E16.5 and in ribs

Miclea et al., 2009

Axin2 KO Germline Craniosynostosis, increased BMD Yu et al., 2005

Ctnnb1 (β-Catenin) CKO Wnt1-Cre Embryonic lethal, block in prechondrocyte
condensation and craniofacial development

Brault et al., 2001

CKO Prx1-Cre Lack of mineralization in head and distal
skeletal elements, enhanced
chondrogenesis, lower osteoblastogenesis

Hill et al., 2005

CKO Dermo1-Cre Shortened limbs, twisted body axis,
diminished intramembranous and
endochondral bone formation, ectopic
cartilage

Day et al., 2005;
Hu et al., 2005

CKO Osx1-Cre Lack of cranial ossification, increased
chondrogenesis

Rodda et al., 2005

CKO Col2a1-Cre Ectopic cartilage in long bones, normal
intramembranous bone

Day et al., 2005

CKO 2.3Col1a1-Cre Reduced bone mass, increased osteoclast
numbers, decreased Opg

Glass et al., 2005

CKO Ocn-Cre Early postnatal lethality, reduced cortical
and trabecular bone density, increased
osteoclast numbers

Holmen et al.,
2005

CKO Dmp1-Cre Premature postnatal lethality, impaired
cortical and trabecular bone mass,
increased osteoclast number and activity,
decreased Opg levels

Kramer et al.,
2010a

CKI/GOF Prx1-Cre: exon3 Early postnatal lethality, no bone formation Hill et al., 2005

CKI/GOF Osx1-Cre: exon3 Embryonic lethality, excessive premature
ossification

Rodda et al., 2005

CKI/GOF 2.3Col1a1-Cre: exon3 Premature postnatal lethality, failed tooth
eruption, increased ossification, decreased
osteoclast numbers and function, normal
osteoblast numbers, rib osteomata

Glass et al., 2005

Dkk1 Het Germline High bone mass inversely proportional to
Dkk1 concentration in hypomorphic
animals

Morvan et al.,
2006; MacDonald
et al., 2004, 2007

Tg 2.3 and 3.6Col1a1 Low bone mass, decreased osteoblast
number, reduced serum osteocalcin levels,
lower matrix mineralization

Li et al., 2006

Tg 2.3Col1a1 Osteopenia, reduced bone formation,
normal PTH responsiveness

Fleming et al.,
2008; Guo et al.,
2010; Yao et al.,
2011

Dkk1d Hypomorphic mutation Increased bone mass that is inversely
proportional to Dkk1 expression, distal
forelimb postaxial polysyndactyly

MacDonald et al.,
2007

Dkk2 KO Germline Low bone mass Li et al., 2005

Fzd9 KO Germline Osteopenia, decreased bone formation Albers et al., 2008
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Gene KO/CKO/Tg/CKI Cre line Bone phenotype(s) References

Gsk3β Het KO Germline Increased trabecular bone mass Kugimiya et al.,
2008; Noh et al.,
2009

Krm1/2 DKO Germline Increased BMD Ellwanger et al.,
2008

Krm2 KO Germline High bone mass at 24 weeks, increased
bone formation

Schulze et al.,
2010

Krm2 Tg 2.3Col1a1 Osteoporosis, decreased bone formation,
reduced cortical strength, reduced Opg
expression, and increased bone resorption

Schulze et al.,
2010

Lef1 Het KO Germline Reduced bone formation in females only Noh et al., 2009

KO Germline Reduced bone mass in all KO and Het
mice

JJW et al.,
unpublished

Lef1ΔN Tg 2.3Col1 Increased trabecular bone mass Hoeppner et al.,
2010

Lrp4 Lrp4ECD Hypomorph Reduced BMD, increased bone turnover Choi et al., 2009

Lrp5 KO Germline Decreased bone mass Fujino et al.,
2003; Kato et al.,
2002

CKO 2.3Col1-Cre Normal vertebral bone mass Yadav et al., 2008

CKO Dermo1-Cre Normal vertebral bone mass Yadav et al., 2010

CKO Dmp1-Cre Decreased trabecular bone mass and
cortical strength

Cui et al., 2011

Tg Rat 3.6Col1-HBM G171V Increased bone mass and strength Akhter et al.,
2004; Babij et al.,
2003

CKI/GOF 2.3Col1-Cre: HBM G171V
cDNA

Normal vertebral bone mass and bone
formation rates

Yadav et al., 2008

CKI/GOF Dmp1-Cre: HBM G171V or
A214V

Increased trabecular bone mass, bone
strength, and bone formation rates in distal
femur and L5

Cui et al., 2011

CKI/GOF Prx1-Cre: HBM G171V Increased bone mass in limbs, but not
vertebrae

Cui et al., 2011

CKI/GOF Villin-Cre: HBM G171V Increased vertebral bone mass and bone
formation rates

Yadav et al., 2008

CKO Villin-Cre Decreased vertebral bone mass, bone
formation rates and osteoblast numbers

Yadav et al., 2008

CKI/GOF Vil1-Cre: HBM G171V or
A214V

Normal bone mass Cui et al., 2011

CKO Vil1-Cre Normal bone mass Cui et al., 2011

Lrp6 Het KO Germline Decreased bone Holmen et al.,
2004

Rs Hypomorphic mutation Decreased bone mineral density, no chance
in osteoblast number, elevated Rankl
expression, increased bone resorption

Kubota et al.,
2009

Lrp5/6 KO/Het Germline Decreased bone Holmen et al.,
2004

Rspo2 KO Germline Decreased ossification in distal phalanges
and stunted fibula

Nam et al., 2007

Sfrp1 KO Germline Increased bone mass Bodine et al.,
2004

Tg Sfrp1 Decreased bone mass Yao et al., 2010

Sfrp4 Tg 2.3Col1a1 Low bone mass, fewer osteoblasts; LiCl
rescued these defects

Nakanishi et al.,
2008
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Gene KO/CKO/Tg/CKI Cre line Bone phenotype(s) References

Tg Serum amyloid P Decreased bone mass Cho et al., 2010

Sclerostin (Scl, Sost) KO Germline Increased bone mass Balemans et al.,
2003; Krause et
al., 2010

Tg Ocn + APO E Osteopenia Winkler et al.,
2003

Tg SOST Osteopenia Loots et al., 2005

Sostdc1 (Wise) KO Germline Supernumerary teeth, bone phenotype not
determined

Ahn etal., 2010;
Kassai et al.,
2005; Murashima-
Suginami et al.,
2008

Tcf7 (Tcf1) KO Germline Lower bone mass (modest), increased bone
resorption

Glass et al., 2005

Wif1 KO Germline Normal skeletal development, accelerated
radiation-induced osteosarcoma formation

Kansara et al.,
2009

Tg 2.3Col1a1 Normal bone, depletion of hematopoietic
stem cells

Schaniel et al.,
2011

Wls (Gpr177) CKO Wnt1-Cre Craniofacial defects, defective anterior–
posterior axis formation

Carpenter et al.,
2010; Fu et al.,
2011

Wnt3a Het KO Germline Reduced BMD Takada et al.,
2007

Wnt5a Het KO Germline Reduced BMD, increased adipogenesis Takada et al.,
2007

Wnt7b KO Germline No defects in skeletal development Rodda et al., 2005

Wnt10b KO Germline Reduced BMD, increased adipogenesis Bennett et al.,
2005, 2007;
Stevens et al.,
2010

Tg Fabp4 Increased BMD Bennett et al.,
2005

Tg Ocn Increased BMD Bennett et al.,
2007

Wnt14 Tg Col2a1 High expression blocked endochondral
bone formation, lower transgene
expression promoted chondrocyte
maturation and enhanced endochondral
bone formation

Day et al., 2005

Wtx KO Germline Sclerosis, increased osteoblastogenesis, but
delayed mineralization

Moisan et al.,
2011

CKO Prx1-Cre Bone overgrowth, reduced marrow
adiposity

CKO Osx1-Cre Increased cortical and trabecular bone
mineralization

CKO Col2a1 Normal skeleton

CKO Ocn-Cre Normal skeleton

BMD: bone mineral density; CKI: conditional knock-in; CKO: conditional knockout mouse; GOF, gain of function; HBM, high bone mass
mutations; Het: heterozygous knockout mouse; KO: global knockout; DKO: double global knockout; Opg: osteoprotegerin; Rs: ringelschwanz
hypomorphic Lrp6 mutation; Tg: transgenic.
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Table 2

Summary of bone phenotypes in mouse models of altered Wnt signaling in osteoclasts and precursors.

Gene CKO/CKI Cre line Bone phenotype(s) References

Ctnnb1 (β-Catenin) CKO PPARγ-tTA: TRE-Cre: exon6 Het mice: Osteoporosis, increased bone resorption, no
change in bone formation; KO mice: Osteopetrosis,
reduced bone resorption, reduced osteoclast precursor
proliferation, no change in bone formation

Wei et al.,
2011

CKO Tie2-Cre: exon6 Het: Osteoporosis; KO: partial embryonic lethality,
osteopetrosis

CKO Lyz-Cre: exon6 KO: Osteoporosis, increased bone resorption; Het:
intermediate bone loss

CKO Ctsk-Cre: exon 6 Ibid

CKI/GOF Tie2-Cre: exon3 Embryonic lethality

CKI/GOF PPARγ-tTA: TRE-Cre: exon3 Osteopetrosis: more immature proliferating osteoclasts
but fewer mature osteoclasts, reduced bone resorption,
no change in bone formation

CKI/GOF Lyz-Cre: exon3 Ibid

CKI/GOF Ctsk-Cre: exon 3 Ibid

BMD: bone mineral density; CKI: conditional knock-in; CKO: conditional knockout mouse; Het: heterozygous knockout mouse.
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