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Abstract

Background: The goal of the study was to demonstrate a hierarchical structure of resting state activity in the healthy brain
using a data-driven clustering algorithm.

Methodology/Principal Findings: The fuzzy-c-means clustering algorithm was applied to resting state fMRI data in cortical
and subcortical gray matter from two groups acquired separately, one of 17 healthy individuals and the second of 21
healthy individuals. Different numbers of clusters and different starting conditions were used. A cluster dispersion measure
determined the optimal numbers of clusters. An inner product metric provided a measure of similarity between different
clusters. The two cluster result found the task-negative and task-positive systems. The cluster dispersion measure was
minimized with seven and eleven clusters. Each of the clusters in the seven and eleven cluster result was associated with
either the task-negative or task-positive system. Applying the algorithm to find seven clusters recovered previously
described resting state networks, including the default mode network, frontoparietal control network, ventral and dorsal
attention networks, somatomotor, visual, and language networks. The language and ventral attention networks had
significant subcortical involvement. This parcellation was consistently found in a large majority of algorithm runs under
different conditions and was robust to different methods of initialization.

Conclusions/Significance: The clustering of resting state activity using different optimal numbers of clusters identified
resting state networks comparable to previously obtained results. This work reinforces the observation that resting state
networks are hierarchically organized.
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Introduction

The work of Biswal and colleagues [1] provided the first

demonstration of synchrony between right and left sensorimotor

areas. Since then, intrinsic activity has been studied and other

resting state networks (RSNs) have been described, including the

default mode network (DMN) [2,3], a collection of spatially

distinct regions that are active at rest and deactivated by tasks.

Various other RSNs, or regions of the brain disparate in space but

synchronous in time, have been described [4–6]. These include the

visual network (VIS) [4,5], the ventral attention network (VAN)

[7,8], and the frontoparietal control (FPC) network [9–11]. Many

of these RSNs have been confirmed using a variety of methods

[4,5,7,8,10–13].

A large scale view of the organization of resting state activity

was offered by Fox et al. [14], who described two anticorrelated

systems in the brain. This finding was supported by a k-means

clustering analysis by Golland et al. [15], who also demonstrated

two large systems, one primarily involving the DMN, and the

other centered on the somatomotor network (SMN).

Although some of these RSNs are well defined, further work is

needed to determine the relationships of these networks to each

other and to the brain as a whole. Subcortical structures also need

to be explored in this context. In a recent study using ICA followed

by hierarchical clustering, Doucet et al. [12] found two competing

systems. Three modules comprised the task-negative system and

two modules comprised the task-positive system. Using a graph

theoretic approach, Power et al. [10] found the task negative

system to be comprised of the DMN, whereas the task positive

system was comprised of the DAN, the FPC network, and the

cingulo-opercular network.

In addition to insights on the physiology of the normal brain, a

better understanding of the relationships between RSNs and the

larger scale organization of the brain could contribute to increased

knowledge about various neurological and psychiatric diseases.

Resting state fMRI has already provided insights on several

diseases [16,17]. The DMN has been implicated in many studies,

showing disruptions in functional connectivity in patients with

Alzheimer’s disease [18,19], schizophrenia [20], and depression

[21]. However, further work is needed to explore other possible

resting state biomarkers of these diseases. An effective and

objective method for analyzing resting state data will also facilitate

the use of this information in the clinical setting.

In the present study, we apply a clustering algorithm to explore

the hierarchical organization of resting state activity in cortical and

subcortical gray matter. The fuzzy-c-means algorithm [22] is an
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extension of the k-means algorithm that allows for a weighted

classification of each voxel to each cluster, rather than all or none

membership. This data driven algorithm has the advantage of

requiring little a priori information. Using a cluster dispersion

measure, we find optimal numbers of clusters and relate these

results to the two large scale anticorrelated systems.

Results

Two Clusters
The two cluster case is of interest in the context of prior studies

that identified task-negative and task-positive systems [12,14,15].

The result of clustering the data with two clusters is shown in

Figure 1. The first cluster included the DMN, as well as areas of

the FPC and LAN networks, including the caudate. In contrast,

the second cluster included somatomotor, visual areas, and dorsal

attention areas. The centroids (Equation 2) of these two clusters

were temporally anti-correlated with an inner product of 20.93.

Optimal Numbers of Clusters
To determine the optimal numbers of clusters, the clustering

algorithm was run for 2–20 clusters. Based on the cluster

dispersion metric (Equation 4), 7, 11, and 17 clusters were local

minima (Figure 2).

Seven Clusters
Surface maps of the seven clusters that were found using the

clustering algorithm and random initialization are shown in

Figure 3. Axial slices at the levels of subcortical gray matter are

shown in Figure 4. They were identifiable as DMN, FPC, LAN,

VAN, SMN, VIS, and DAN based on visual similarity with past

studies. The FPC network also included the caudate (Figure 4B).

In addition to Broca’s and Wernicke’s areas, the LAN network

involved inferior temporal areas and bilateral caudate (Figure 3C

and Figure 4C). The VAN involved of the basal ganglia and

thalamus (Figure 4D). In addition to the pre- and post-central gyri

and the supplementary motor area (SMA), the SMN also included

the insular cortex and areas of the thalamus, including the ventral

lateral posterior nuclei and anterior pulvinar nuclei (Figure 3E and

Figure 4E). The VIS network also involved the caudate (Figure 4F).

The temporal similarity measures (Equation 6) between

centroids obtained by the seven cluster result are shown in

Figure 5A. The DMN was positively correlated with the FPC

network (0.70) and the LAN network (0.37). The DMN was most

anticorrelated with the SMN (20.82) but also anticorrelated with

the VAN (20.20), the VIS network (20.60), and the DAN

(20.74).

Figure 6A shows the voxelwise degree of uncertainty (Equation

7) for the seven cluster result. Higher values indicate greater

shared membership. When compared to the seven cluster result

using the spatial similarity measure, the networks most related to

the uncertainty map were the LAN network (0.17), the FPC

network (0.12), and the VAN (0.10).

The data were also clustered into seven clusters using non-

random initialization (see Methods). The resulting seven weight

vectors were identical to those found with random initialization,

yielding spatial similarity measures of 1.0 in all cases. 100 runs of

the algorithm using random initialization also yielded consistent

results. For each of the seven clusters, the spatial similarity

measure was 1.0 for 95 of 100 runs. The percentages of runs that

had a spatial similarity measure of greater than 0.90 were: 100%

for DMN, 99% for FPC, 100% for LAN, 95% for VAN, 98% for

SMN, 95% for VIS, and 95% for DAN.

The average data of the group of 21 subjects were also clustered

into seven clusters using random initialization. The spatial and

temporal similarity measures between this group and the group of

17 subjects are shown in Table 1.

Eleven and 17 Cluster Results
The eleven cluster result subdivided some of the seven RSNs

(Figure 7). Split RSNs were named using the RSN acronym with a

1 or 2 added. DMN, VIS, and DAN were preserved with spatial

similarity measures of 0.93, 0.96, and 0.90, respectively. Each of

the remaining four RSNs was subdivided into two clusters. The

two divisions of the FPC network (FPC1 and FPC2) are shown in

Figure 7B. The LAN network was also divided into two

components (LAN1 and LAN2), with one consisting primarily of

Broca’s and Wernicke’s areas (Figure 8A) and the other

component including the caudate and regions of the inferior

temporal lobe (Figure 8B). The VAN was also divided into two

components (VAN1 and VAN2), the first containing mainly

Figure 1. The two cluster result found the A) task-negative and
B) task-positive systems.
doi:10.1371/journal.pone.0040370.g001

Figure 2. The cluster dispersion metric (Equation 4) for
different numbers of clusters. Cluster dispersion was minimized
for seven, eleven, and seventeen clusters.
doi:10.1371/journal.pone.0040370.g002
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cortical areas (Figure 8C), and the second predominated by the

basal ganglia and thalamus (Figure 8D). The first division of the

SMN (SMN1) included the pre- and post-central gyri, SMA,

posterior insular cortex, and part of the superior temporal gyrus.

The second division of the SMN (SMN2) included anterior insular

cortex and the pre-SMA (Figure 7B).

The average data of the group of 21 subjects were also clustered

into eleven clusters using random initialization. The spatial

(Equation 5) and temporal similarity measures (Equation 6)

between this group and the group of 17 subjects are shown in

Table 1. The spatial similarity between the results of the first and

second group was the least for FPC2.

The temporal similarities (Equation 6) between the centroids of

the eleven cluster result are shown in Figure 5B. The DMN was

again positively correlated with the two divisions of the FPC

network (0.79 and 0.82). LAN1 was more correlated with the

DMN (0.72) compared to LAN2 (0.094). The VIS network, the

DAN, and both divisions of the SMN were anticorrelated to the

DMN. The two divisions of the VAN were most weakly

anticorrelated with the DMN (20.24 and 20.15).

Figure 6B shows the degree of uncertainty (Equation 7) for the

eleven cluster result. When compared to the eleven cluster result

using the spatial similarity measure, the uncertainty map was most

similar to FPC2 (0.39). It was also similar to VAN1 (0.29), and less

similar to LAN1 (0.08), LAN2 (0.06), and FPC1 (0.01).

The seventeen cluster result subdivided the RSNs further

(Figure S1). As compared to the 7 cluster result the DMN, VIS

network, DAN, and VAN were split into two components, and the

FPC network, LAN network, and SMN, were split into three.

Notably, the VIS network split into foveal and peripheral divisions.

However, compared to the eleven cluster result, the subdivisions in

the seventeen cluster result were less spatially distinct from each

other, especially the first two subdivisions of FPC and LAN

networks and the second two subdivisions of SMN.

Comparison of the Two Cluster Result with the Seven
and Eleven Cluster Results

To demonstrate a hierarchical relationship between the

different numbers of clusters, the two cluster result was

compared to the seven and eleven cluster results. When the

seven clusters were compared with the two cluster result using

the spatial similarity measure (Equation 5) (Figure 9A), the

DMN, FPC and LAN networks had positive inner products

with the task-negative system and negative inner products with

the extrinsic system. The VAN, SMN, VIS network, and DAN

had positive inner products with the task-positive system and

negative inner products with the task-negative system. The

clusters with the smallest inner product magnitudes were the

LAN network (0.14 with the task-negative system, 20.14 with

the task-positive system) and the VAN (0.12 with the task-

positive system, 20.12 with the task-negative system).

The same pattern of positive and negative inner products was

seen when the temporal similarity measure (Equation 6) was

used to compare the two and seven cluster centroids (Figure 9B).

The LAN network and VAN again had the smallest magni-

tudes. The LAN network centroid was temporally correlated

with the task-negative system (0.29) and anticorrelated with the

task-positive system (20.34). The VAN centroid was temporally

correlated with the task-positive system (0.30) and weakly

anticorrelated with the task-negative system (20.051). This

separation is also emphasized in Figure 5 by the thick black

separating lines.

The eleven cluster result was also compared with the two

cluster result (Figure 9C and Figure 9D). In both the spatial

(Equation 5) and temporal (Equation 6) comparisons, the DMN,

FPC1 and FPC2, and LAN1 and LAN2 were positively

correlated with the task-negative system and negatively correlated

with the task-positive system. VAN1 and VAN2, SMN1 and

SMN2, VIS, and DAN were positively correlated with the task-

Figure 3. The seven cluster result. A) DMN, B) FPC network, C) LAN network, D) VAN, E) SMN, F) VIS network, and G) DAN. The right hemisphere is
displayed for the VAN because it was right lateralized.
doi:10.1371/journal.pone.0040370.g003
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positive system and negatively correlated with the task-negative

system. Among the task-negative components, LAN2 had the

smallest positive inner product with the task-negative system

(0.0035 spatially and 0.042 temporally). In contrast, LAN1 had

higher inner products with the task-negative system (0.35

spatially and 0.70 temporally). Among the task-positive clusters,

VAN1 and VAN2 had the smallest positive inner products with

the task-positive system (VAN1 0.082 spatially and 0.26

temporally, VAN2 0.080 spatially and 0.24 temporally).

Figure 4. Subcortical involvement of the seven cluster result. Axial slices are shown in radiologic convention. A) DMN, B) FPC network, C) LAN
network, D) VAN, E) SMN, F) VIS network, and G) DAN.
doi:10.1371/journal.pone.0040370.g004

Figure 5. Temporal inner products (Equation 6) between centroids from the A) seven cluster result and B) eleven cluster result.
doi:10.1371/journal.pone.0040370.g005
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Relationships between Cluster Results between Two and
Seven

An additional feature of our analysis is the availability of data on

the transition between the two and seven cluster results.

Accordingly, details of the transition between two and seven,

accompanied by the improvement in the cluster dispersion

measure (Figure 2) can identify features of the hierarchical

transition. We provide this information for the interested reader

in Tables S1 and S2.

Discussion

Hierarchical Organization of RSNs
We demonstrated a hierarchical organization of RSNs by

identifying optimal numbers of clusters and relating the seven and

eleven cluster result to the two cluster result. Our two cluster result

represents a large scale division of resting state activity that also

accommodates the finer divisions at the levels of seven and eleven

clusters. The two cluster result identified the task-negative system,

which in past studies has been shown to include the DMN, and the

task-positive system, which has been shown to include the SMN

and the DAN [12,14,15]. By spatially and temporally comparing

the seven cluster result to the two cluster result, we demonstrated

that the DMN, FPC network, and LAN network are components

of the task-negative system, whereas the VAN, SMN, VIS

network, and DAN are components of the task-positive system.

These relationships also held when comparing the eleven cluster

result with the task-negative and task-positive systems.

We also showed that this pattern exists among the seven and

eleven cluster centroids. As an example, the DMN centroid was

positively correlated to those of the FPC and LAN networks but

negatively correlated to those of the VAN, SMN, VIS network,

and DAN.

The hierarchical organization found by our method differed in

some respects from that found by Doucet et al. [12]. For example,

we found four components of the task-positive system and found

the VAN to be more closely related with the task-positive system.

However, Doucet et al. did find that the module containing

‘‘salience’’ areas was positively correlated with their somatosenso-

ry-attentional module from the task-positive system [12].

Our inclusion of the FPC network in the task-negative system

also contrasted with Power et al. [10] who found it to be part of the

task-positive system, along with the DAN and the cingulo-

opercular control network. Notably, the cingulo-opercular net-

work in [10] is contained within our larger VAN network. In our

analysis, the centroids of the FPC clusters in both the seven and

eleven cluster results were highly correlated with the DMN

centroids. The positive relationship between the FPC network and

the DMN is supported by task based fMRI studies which found

that autobiographical planning as opposed to visuospatial planning

[23] or rest or movie watching as opposed to finger tapping [24]

were associated with positive correlations between the DMN and

the FPC network.

The ability to assign a voxel to more than one network

illuminates other findings of interest, such as the distribution of the

DAN, FPC, and the DMN in the superior and inferior parietal

lobule [11], and the importance of the anterior insula with

involvement of the three control networks, VAN, FPC, and DAN

[10,13]. The area of the anterior insula has been shown to be a

common area of activation in many fMRI experiments [25]. In

such areas that are involved in various RSNs, effective connectivity

could be a useful technique in better understanding the role of the

region or direction of information flow under different conditions.

In accordance with functional connectivity studies, this method

has also demonstrated the existence of modularity [26] and

hierarchically organized information processing [27].

Dynamic Relationships of RSNs
An important result of our analysis is the relative separation

between networks that are strongly associated with one or the two

large systems (eg., DMN and DAN) and networks that are more

neutral. In both the seven and eleven cluster results, the LAN

network and the VAN were least correlated with the task-positive

and task-negative systems. Furthermore, the areas of uncertainty

in the seven cluster result were similar to the LAN network, FPC

network, and the VAN, and the areas of uncertainty in the eleven

cluster result were most similar to FPC2.

In principle, our results can be related to the functional role that

different networks play in cognition. It is well established that

RSNs are related to structural connectivity but this relation is far

Figure 6. The degree of uncertainty (Equation 7) as shown by
the geometric mean of weights for each voxel in the A) seven
cluster result and B) eleven cluster result.
doi:10.1371/journal.pone.0040370.g006

Table 1. Similarity measures for clustering results of the second study group compared to the first.

#clusters Similarity DMN FPC LAN VAN SMN VIS DAN

Seven Spatial 0.92 0.78 0.83 0.84 0.87 0.84 0.83

Temporal 1.00 0.96 0.96 0.96 0.99 0.97 0.99

Eleven Spatial 0.80 0.62 0.39 0.81 0.85 0.42 0.94 0.88 0.90 0.89 0.76

Temporal 0.99 0.95 0.49 0.94 0.97 0.39 1.00 0.99 1.00 0.99 0.97

doi:10.1371/journal.pone.0040370.t001
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from one-to-one. For example, regions of cortex like MT that have

bidirectional anatomic connections to both visual and parietal

cortex tend to cohere much more strongly with parietal than visual

regions [28]. This indicates gating of anatomical connectivity by

functional factors. Similarly, the strength of functional connectivity

is not predictive of the presence of direct anatomical connections

[29]. Finally, as demonstrated by recent MEG studies, RSNs have

dynamic structures on time scales that are too rapid for anatomical

connections [30,31].

One interpretation of functional connectivity is that it reflects

the history of task co-activation of specific sets of brain regions,

i.e., essentially a Hebbian construct, as well as genetic factors

[32]. This view is supported by developmental [33] and

learning studies [34,35]. According to the view that networks

that statistically fire together will functionally wire together,

networks that maintain a strong coherence in the resting state

will also be coherent during common patterns of task activation.

This is certainly true for the networks most strongly associated

with the two main systems. The SMN, VIS network, and DAN

tend to be positively activated during goal-driven tasks in the

environment (e.g., sensorimotor, attention, decision tasks), while

the DMN is strongly de-activated by the same tasks [36,37].

More neutral networks such as the VAN tend to have variable

relationships with other networks during task-activation studies.

For instance, the VAN is independent from the DAN that is

specifically recruited during the allocation of spatial attention;

the VAN is also relatively suppressed, as compared to the DAN,

during tasks that require perceptual filtering; finally, the VAN is

co-activated with the DAN during target detection. Corbetta et

al have argued that the VAN functions to reset or switch off

other networks at the end of a cognitive task [38]. Hence it

would be expected that the VAN is less consistently coherent

Figure 7. Some RSNs from the A) seven cluster result were subdivided in the B) eleven cluster result. The right hemisphere is displayed
for the VAN and its subdivisions because they were right lateralized.
doi:10.1371/journal.pone.0040370.g007
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with other networks at rest. A similar argument could be

applied to other networks, such as the LAN or FPC networks,

that may have ‘‘control’’ functions, hence dynamically change

from moment-to-moment.

Subcortical Involvement in RSNs
One significant difference in our analysis compared to past

studies [10,13,39] is the inclusion of subcortical structures.

Subcortical involvement was seen in many RSNs but was most

prominent in the language and ventral attention networks.

Language Network
The LAN network found using our method was slightly left

lateralized and included regions beyond the traditional language

areas. In our eleven network result, the LAN network was roughly

divided into a lateral and medial cluster. The lateral language

cluster consisted of bilateral cortical regions that incorporated

Wernicke’s and Broca’s areas on the left. The medial cluster

included the caudate, mesial frontal lobe, and inferior temporal

lobe. While the lateral cluster would be fully expected given the

long history of lesional and task-based imaging [40,41], the medial

cluster is also consistent with previous literature. Surgical or

ischemic injuries of both the left lateral caudate and the medial

frontal lobe have been associated with transient aphasias [42,43].

Aphasia has also been linked to lesions in the basal ganglia [44].

Taken together, these findings suggest that the LAN network is

indeed broadly distributed across a multitude of cortical and

subcortical systems.

The LAN network was also related to the DMN. There was

some spatial overlap between the LAN network and the DMN in

temporal areas. This may be attributable to the ability of our

clustering method to assign a voxel to more than one cluster. In

the eleven cluster result, one of the language cluster centroids was

also highly correlated to the DMN. In support of this finding, a

task based fMRI study showed that areas of the DMN, including

the anterior and posterior cingulate, precuneus, and medial frontal

cortex, were modulated by auditory or audiovisual narratives in

conjunction with superior temporal cortex [45].

Ventral Attention
The cortical portion of the VAN network was very similar to

that found in [13]. The VAN found by our method was slightly

right lateralized and also had significant subcortical involvement.

In support of this finding, in the parcellation by Doucet et al. [12],

the module containing cortical structures belonging to the

‘‘salience’’ network also contained a RSN including basal ganglia.

The eleven cluster result divided the VAN into two clusters, one of

which was comprised mostly of subcortical structures. Strong

subcortical connections have previously been seen in a description

of the ‘‘salience’’ network [8] and a task based study of attentional

networks [46].

Subcortical Involvement in Other RSNs
The SMN also had thalamic involvement of the ventral lateral

posterior nuclei and the anterior pulvinar nuclei. Connections

between the ventral lateral posterior nuclei and motor and

premotor areas have been shown [47,48]. The anterior pulvinar

nuclei have also been functionally linked to somatosensory areas

[47,48]. The FPC and VIS networks both had caudate involve-

ment. In a study of cortical-subcortical connections, the caudate

was found to be most strongly correlated with prefrontal cortex but

also weakly correlated with parietal and occipital cortices [47].

Optimal Numbers of Clusters
Seven [13,39] and seventeen clusters [13] were also found to

be optimal in other studies. Our seven cluster result was very

similar to that of Yeo et al. [13] but differed in that one of our

clusters corresponded to language areas. In contrast, Yeo et al.

found a limbic system in their seven network parcellation. This

difference may be attributable to the inclusion of subcortical

structures in our analysis. The DMN was consistent with past

studies done using a variety of methods [2,5,10,13,39,49]. As

seen in other work, our VIS network spanned much of occipital

cortex [6,10,13]. The DAN found in our study had more

frontal involvement but included similar areas as compared to

past studies [7,10,13]. The FPC network found in the seven

cluster result was also in agreement with past reports [10,11,13].

In the eleven cluster result, FPC2 had less visual resemblance to

Figure 8. In the eleven cluster solution, the LAN network and VAN were divided into approximately cortical and subcortical
clusters. Axial slices are shown in radiological convention of A) LAN1, B) LAN2, C) VAN1, D) VAN2.
doi:10.1371/journal.pone.0040370.g008
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the FPC network of past studies. However, Figure 6 illustrates

that the areas with the highest degree of shared membership

between different clusters visually resemble areas belonging to

the FPC network, particularly FPC2. The FPC2 clusters of the

two study groups were spatially least similar in the eleven cluster

result. Furthermore, although this cluster was named FPC2

because it was most similar to the FPC network from the seven

cluster result, the inner product value was lowest among all the

eleven clusters, thus indicating that it may not be a division of

the FPC network. Further work is needed to determine the

functional significance of this cluster.

We found that eleven clusters also minimized cluster dispersion.

Although this number has not been described previously, the

eleven cluster result related to the task-negative and task-positive

systems with the same pattern of positive and negative correlations

as the seven cluster result. In the eleven cluster result, the FPC

network, LAN network, VAN, and SMN were divided into two

components each. The functional significance of the division of the

FPC network into two components requires further investigation.

The LAN network and the VAN were each approximately divided

into cortical and subcortical clusters.

The division of our SMN in the eleven cluster result contrasts

with the dorsal-ventral division in the 17 network parcellation

by Yeo et al. [13]. However, our SMN contained more of the

insular cortex compared to the seven network parcellation by

Yeo et al. [13]. The anterior-posterior division of insular cortex

seen in our division of the SMN has also been seen in other

resting state [50,51] and diffusion studies [52]. The SMA and

pre-SMA division has also been seen by others [52–54]. In our

division of the SMN, the posterior insula was clustered with

primary somatosensory areas and the SMA and the anterior

insula was clustered with the pre-SMA. In resting state studies,

the posterior insula was associated with sensorimotor cortex and

the posterior cingulate [50] and the SMA was associated with

primary motor cortex, somatosensory cortex, premotor areas,

and the middle cingulate cortex [55]. Furthermore, the anterior

insula was associated with middle and inferior temporal cortex

and anterior cingulate was thought to be involved with limbic

function [50], and the pre-SMA was associated with prefrontal

cortex, inferior frontal gyrus, angular gyrus, and anterior

cingulate cortex and thought to be involved with cognitive

functions [55].

Application of the Fuzzy-c-means Clustering Algorithm
to Find RSNs

In the current study, we also demonstrated the usefulness of the

fuzzy-c-means clustering algorithm in exploring resting state

activity. In our analysis, the fuzzy-c-means algorithm was able to

consistently find seven RSNs in the averaged data of 17 and 21

healthy individuals. Many runs of the algorithm with random

initialization provided consistent results, and non-random initial-

ization using a priori knowledge about the networks yielded

identical results.

A variety of methods have been used to study resting state

BOLD activity, including seed-based methods [3,7,11], inde-

pendent components analysis [4–6,12,49], graph methods [10],

and effective connectivity [26,27]. The k-means clustering

algorithm [15], and the expectation-maximization clustering

algorithm [13] have also been used. Although several alternative

methods exist for the analysis of resting state BOLD data, the

fuzzy-c-means clustering algorithm contrasts with these methods

in several ways. In comparison to seed-based methods, which

require a priori selection of regions of interest, the fuzzy-c-means

clustering algorithm is data driven and allows one to consider

all of the data simultaneously without prior information. Graph

methods are also applied on a set of predefined regions of

interest. In contrast, independent components analysis is also

data driven but requires judgment from the user concerning

which components belong to RSNs and which are non-

Figure 9. The relationships between the seven and eleven
cluster results and the task-negative (TN) and task-positive
(TP) systems from the two cluster result. The A) spatial (Equation
5) and B) temporal (Equation 6) inner products between the two cluster
and seven cluster results. The C) spatial (Equation 5) and D) temporal
(Equation 6) inner products between the two cluster and eleven cluster
results.
doi:10.1371/journal.pone.0040370.g009
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physiological, introducing a possible source of subjectivity. The

fuzzy-c-means clustering algorithm is designed to find exactly

the number of pre-set clusters. Although we have shown that

the fuzzy-c-means algorithm is robust when analyzing a group

average, further work needs to be done to evaluate its

performance with noisier individual data. Most similar is the

method used by Yeo et al. [13], but an apparent advantage of

the fuzzy-c-means algorithm is that it is simpler to implement.

Finally, an advantage that is particularly relevant to resting state

data is that it allows for the weighted assignment of each voxel

to more than one cluster. This greater flexibility may be more

physiologically accurate as it is able to represent areas of shared

functionality in the brain.

Conclusion
In the present work, we demonstrate a hierarchical organization

of resting state activity using the fuzzy-c-means clustering

algorithm. We confirm the functional division of the brain into

two large systems and further show how these systems further

subdivide in hierarchical fashion. Our analysis also shows the

importance of including subcortical structures, since they were

involved in many RSNs and comprised significant components of

the language and ventral attention networks. Finally, we demon-

strated the reliability of the fuzzy-c-means clustering algorithm as a

data driven approach for finding RSNs.

Materials and Methods

Ethics Statement
All participants gave written informed consent prior to taking

part in the study as approved by the Washington University

Institutional Review Board.

Participants
Resting state BOLD fMRI data (3T, 4 mm isotropic voxels, TE

25 ms, TR 2.16 s) were obtained in two separate populations.

Characteristics of the study populations are given in Table 2. The

subjects were instructed to remain still and maintain fixation on a

crosshair. All data were obtained for previous studies [56].

Image Processing
The BOLD fMRI data were preprocessed according to

previously published methods [56]. Preprocessing steps included

compensation of systematic, slice-dependent time shifts, elimina-

tion of odd-even slice intensity differences due to interleaved

acquisition, rigid body correction for head motion within and

across runs, and signal intensity normalization to yield a whole

brain mode value of 1000 (not counting the first four frames) [57].

Atlas registration was achieved by computing affine transforms

connecting the first frame of the fMRI run (averaged over all runs

after cross-run realignment) with the T2-weighted and T1-

weighted structural images [57]. The fMRI data were transformed

to an atlas representative template derived from 12 healthy

individuals [58] and resampled to 3 mm cubic voxels. This step

combined atlas transformation and movement correction within

and across runs.

Linear trends across runs were removed voxelwise and the data

were spatially smoothed with a 6 mm FWHM Gaussian kernel.

The data were low-pass filtered to retain frequencies less than

0.1 Hz. Six movement parameters as well as their temporal

derivatives were regressed out of the data on a voxelwise basis.

The whole brain signal was regressed out from the data [56].

Following preprocessing, frames with excessive head motion

were excluded using the DVARS method [59,60]. Frames with

DVARS greater than 0.5% were eliminated. On average, this

method eliminated 3.3% of frames from study group 1 and 3.7%

of frames from study group 2.

A mask including cortical and subcortical gray matter and

excluding white matter and CSF was created using FreeSurfer

(Boston, MA). Cortical reconstruction and volume segmentation

were performed [61], and cortical and subcortical gray matter

regions were selected. These areas were then masked with a

thresholded image of average BOLD signal intensity to exclude

areas prone to susceptibility artifacts.

Clustering Algorithm
The fuzzy-c-means clustering algorithm [22] was implemented

in Matlab (Natick, MA). Fuzzy-c-means is an iterative algorithm

that assigns to each of n points to be clustered, Xk for k = 1,…,n, a

weighted membership between zero and one to each cluster. It

requires a priori the number of clusters, c, and the initial location of

the centroid, Vi for i = 1,…,c, for each cluster. The starting

locations can be chosen randomly or with prior knowledge about

the data. The points and centroids are represented as vectors, with

each element of the vector representing a dimension of informa-

tion that can be used for clustering. For n points in the data, the

membership of each point indexed by k, to each cluster indexed by

i, is computed as:

uik~
1

Xc

j~1

dist(Xk,Vi)

dist(Xk,Vj)

� � 2
M{1

ð1Þ

where uik is the membership of point Xk to cluster i. Euclidean

distance was used as the distance metric (dist). The parameter M is

set at a value greater than 1 that optimizes the clustering [22]. A

value of 1.2 was chosen for our data because it minimized cluster

dispersion. With the new memberships of each point indexed by k

to each cluster indexed by i, the locations of the centroids are

updated as

Vi~

Pn
k~1

uM
ik Xk

Pn
k~1

uM
ik

ð2Þ

for each centroid Vi. The weighted memberships and locations of

the centroids are repeatedly updated until convergence is

achieved. As a measure of convergence, we used the Xie-Beni

Index, which is given as

Table 2. Characteristics of the study populations.

Group 1 (N = 17) Group 2 (N = 21)

Number of men 8 7

Number right handed 17 21

Average age (range) 23.1 (18–27) 27.6 (23–35)

Total scan time 28 minutes 28 minutes

doi:10.1371/journal.pone.0040370.t002
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XB~

Pc
i~1

Pn
k~1

u2
ikdist(Xk,Vi)

n min
i=j

dist(Vi,Vj)

� � ð3Þ

[62]. The algorithm was stopped when there was less than a

0.0001 change in the index over five consecutive iterations.

Application of the Fuzzy-c-means Algorithm to Resting
State Data

The fuzzy-c-means algorithm was applied to BOLD data

averaged over all subjects in each of the two groups. For each

subject, a gray matter mask was applied to extract the time course

of 18,611 voxels in cortical gray matter, basal ganglia, and

thalamus. The Pearson’s correlation was calculated between the

timecourses of every pair of voxels, resulting in an 18,611 by

18,611 correlation map. The average correlation maps of subjects

for each of the groups were then clustered using the fuzzy-c-means

algorithm. In this formulation, each of the n = 18,611 voxels was

represented by its correlation to all other voxels in 18,611-

dimensional space. The number of clusters, c was set between 2

and 20.

The initial points of the centroids were chosen randomly and

non-randomly. For random initialization, voxels within a ran-

domly chosen cube of 3 voxels in each dimension were averaged as

the starting location of each centroid. Since the initial locations of

the centroids can affect the clustering result, all results with

random initialization are given as the average of 20 runs of the

algorithm. When chosen non-randomly, the voxels within a 5 mm

radius sphere around regions of interest were averaged to provide

the starting location of each centroid. Using Talairach coordinates

[63], regions of interest were chosen based on past studies

implicating their involvement in one of seven resting state

networks: precuneus (0, 265, +31) for the DMN [2], right

dorsolateral prefrontal cortex (+43, +22, +34) for the FPC [11], left

superior temporal gyrus (254, 223, 203) for the language

network (LAN), right middle frontal gyrus (+24, +38, +25) for the

VAN [7], left parietal operculum (245, 230, +22) for the

somatomotor network, superior occipital gyrus (213, 293, +18)

for the visual network, and right frontal eye field (+23, 28, +55)

for the DAN [7,11].

Cluster Dispersion Measure
A cluster dispersion (CD) measure was used to evaluate the

clustering results obtained using different numbers of clusters. This

metric was calculated as.

CD~

Pc
i~1

Pn
k~1

uM
ik dist(Xk,Vi)

2
M{1

Pn
k~1

dist(Xk, �XX )
2

M{1

ð4Þ

where �XX is the average over all gray matter voxels (the

denominator is the equivalent of the numerator in the case that

all voxels belong to a single cluster). In an optimal clustering result,

members are closer to their centroids giving a smaller cluster

dispersion measure.

Spatial and Temporal Similarity for Cluster Classification
In order to objectively classify each of the clusters as one of the

resting state networks, an inner product was computed between

each cluster’s 18,611 length weight vector and a set of reference

weight vectors. This is referred to as spatial similarity. For two

weight vectors u1 and u2, spatial similarity (SS) was calculated as.

SS12~

Pn
i~1

(u1i{�uu1)(u2i{�uu2)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1 (u1i{�uu1)2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1 (u2i{�uu2)2

q ð5Þ

The seven reference weight vectors were those found using 20

runs of the algorithm with random initialization. The identities of

the reference weight vectors were determined based on visual

comparison with past studies. When new results were computed

with a number of clusters other than seven, a best match

assignment was made for each of the new clusters.

We primarily used spatial similarity in the analysis, since it best

corresponds to the visual impression of similarity. However, when

classifying a large number of clusters where each cluster included a

much smaller number of voxels, temporal similarity was used to

determine the identities of the clusters. Temporal similarity was

measured using the inner product of the time courses, or centroids,

of the compared clusters. For two centroids V1 and V2 with d

elements indexed by t, temporal similarity (TS) was calculated as.

TS12~

Pd
t~1

(V1t{ �VV1)(V2t{ �VV2)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd
t~1 (V1t{ �VV1)2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd
t~1 (V2t{ �VV2)2

q ð6Þ

Classification Uncertainty
To determine the uncertainty with which each voxel was

classified, the geometric mean of each voxel’s weights was taken,

where larger values indicated greater uncertainty and smaller

values indicated a high degree of membership to one cluster. The

classification uncertainty (CU) for a voxel i was calculated as:

CUi~

ffiffiffiffiffiffiffiffiffiffiffiffi
P
c

j~1
uij

c

r
ð7Þ

Supporting Information

Figure S1 The seventeen cluster result had two subdi-
visions of the A) DMN, D) VAN, F) VIS network, and G)
DAN. It had three subdivisions of the B) FPC network, C) LAN

network, and E) SMN.

(TIF)

Table S1 Spatial and temporal inner products between
the two cluster result and the clusters between 3 and 7.

(DOCX)

Table S2 Spatial and temporal inner products between
incremental changes in the cluster number from 2 to 7.

(DOCX)
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