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Abstract

With the availability of high-density genotype information, principal components analysis (PCA) is now routinely used to
detect and quantify the genetic structure of populations in both population genetics and genetic epidemiology. An
important issue is how to make appropriate and correct inferences about population relationships from the results of PCA,
especially when admixed individuals are included in the analysis. We extend our recently developed theoretical formulation
of PCA to allow for admixed populations. Because the sampled individuals are treated as features, our generalized
formulation of PCA directly relates the pattern of the scatter plot of the top eigenvectors to the admixture proportions and
parameters reflecting the population relationships, and thus can provide valuable guidance on how to properly interpret
the results of PCA in practice. Using our formulation, we theoretically justify the diagnostic of two-way admixture. More
importantly, our theoretical investigations based on the proposed formulation yield a diagnostic of multi-way admixture.
For instance, we found that admixed individuals with three parental populations are distributed inside the triangle formed
by their parental populations and divide the triangle into three smaller triangles whose areas have the same proportions in
the big triangle as the corresponding admixture proportions. We tested and illustrated these findings using simulated data
and data from HapMap III and the Human Genome Diversity Project.
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Introduction

The recent development of high-density single-nucleotide

polymorphism (SNP) genotyping assays has made it possible to

characterize patterns of genetic variation within and among

human populations, providing unprecedented opportunities to

understand the evolutionary history and migration patterns of

humans. For genetic epidemiologists, it is critical to quantify

population structure and admixture to enable careful study design

and correction for population stratification. Principal components

analysis (PCA) is widely used to quantify patterns of population

structure [1–8]. The Eigenstrat method, as implemented in the

program SmartPCA [1,2], is now routinely used to detect and

correct for population stratification in genome-wide association

studies (GWAS). In conventional PCA, in which the markers are

treated as features, sampled individuals are projected into a

subspace spanned by the top principal components (PCs). Because

the top PCs reflect variations due to population structure in the

sample, individuals from the same population are found to form a

cluster in this subspace. Therefore, the pattern of the scatter plot of

the top PCs (PC-plot) is used to infer population relationships or

within-population structures.

Although this relationship between the pattern of a PC-plot and

population structure can be understood intuitively, it remains a

challenging task to make appropriate and correct inferences about

population structure from PC-plots. Usually, the genetic similar-

ities or dissimilarities of populations are inferred from the

Euclidean distances between their clusters in the PC-plot. This

metric, however, is not always reliable. For example, the PC-plot

pattern is strongly influenced by the relative sample size of the

populations. Admixture induces further complications in analyzing

population structures from PCA results. For simulated data, it is

found that admixed individuals are dispersed along the line

segment connecting the clusters of the two parental populations in

the two-dimensional space of the first two PCs. This kind of

dispersion along a line has been used as a diagnostic of admixture

[1]. The relative distances of an individual from the centroids of

the clusters of the parental populations have been used to estimate

the admixture proportions of the individual [9,10]. However, this

kind of dispersion may be difficult to distinguish from scattering

due to sampling fluctuations or within-population variations. More

importantly, it is not clear how three-way or multi-way admixture

manifests itself in the PC-plot pattern, and how the admixture

proportions can be inferred.

In a recent publication [6], we developed a theoretical

formulation of PCA in which sampled individuals from different

populations are treated as features and the markers as samples or

realizations. Because each individual is represented by a fixed

position of the eigenvectors of the variance-covariance matrix, the

pattern of the plot of the top eigenvectors reflects the population

structure, just as does the PC-plot in conventional PCA. Because

individuals from different populations as features are predeter-

mined, we were able to build a theoretical framework where

parameters reflecting the population properties and relationships

can be defined a priori. This is why we were able to directly relate

the population parameters to the theoretical pattern of the

eigenvector-plot, without having to deal with sampling fluctuations

or within-population variations. Using this formulation, we were

able to predict the pattern of eigenvector-plot from known

population structures and thus appropriately infer population

structures from the results of PCA [6]. We also used our
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formulation to quantitatively determine how the sample sizes

influence the pattern of the eigenvector-plot. Specifically, we

showed that there exists an asymptotically stable pattern of the

eigenvector-plot when the overall sample size becomes large.

In this paper, we extend our theoretical formulation to allow for

admixture. Our generalized formulation enables us to derive a set

of reduced eigenequations that depends on the admixture

proportions of admixed populations as well as the variance-

covariance parameters of the parental populations and other

populations. As in [6], an asymptotic form of the eigenequation

can be derived from our formulation as the overall sample size

becomes large, and it can be used to predict the influence on the

pattern of the eigenvector-plot of the population parameters,

admixture proportions, and the relative sample sizes of the

populations. Specifically, using the generalized formulation, we

first theoretically justify the diagnostic of admixture, namely a

dispersion along the line connecting the two parental populations.

We find that this diagnostic can be generalized to the case of three

parental populations: admixed individuals are distributed inside

the triangle formed by their parental populations and divide the

triangle into three smaller triangles whose areas have the same

proportions in the big triangle as the corresponding mixing

proportions. We also extend this diagnostic to the case of an

arbitrary number of parental populations. We demonstrate our

theoretical findings using simulated data and data from HapMap

III and the Human Genome Diversity Project (HGDP).

Results

General Framework
We first briefly outline the theoretical formulation of PCA

developed in our previous publication [6]. The genotype data of

individuals from K populations with sample sizes Nk

(k~1,2, . . . ,K ) are modeled by a random vector

~CCT~ ~CC1T ,~CC2T , � � � ,~CCKT
h i

, where ~CCkT~ Ck
1 ,Ck

2 , � � � ,Ck
Nk

h i
and

Ck
m is the count of the variant allele for individual m from

population k for a random marker. The randomness of each

component comes from two sources: (i) the marker is randomly

chosen, and hence the allele frequency is random, and (ii) the

genotype, or the allele count (0,1, or 2), is determined randomly

conditional on the allele frequency. In [6], we derived the

following reduced eigenequation

{
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where s’kl (k,l~1,2, � � � ,K ) are the elements of the variance-

covariance matrix, V ’, of the mean-adjusted allele counts:

C�i ~Ci{
1

N

XN

j~1

Cj : ð2Þ

Population structure is characterized by the K{1 non-trivial

eigenvectors obtained by solving Equation (1). Each of the

coordinates of these K{1 eigenvectors, xk (k~1,2, . . . ,K ),

represents a population (k) in the eigenvector-plot. In real data

analysis, xk will be the centroid of the cluster formed by all

individuals from population k. The pattern of the eigenvector-plot

is determined by the variance-covariance parameters defined by

s2
k~VAR(Ck

i ) (the variance), skk~COV (Ck
i ,Ck

j ) (the within-

population covariance), and slk~COV (Cl
i ,C

k
j ) (the between-

population covariance). The relationships between the ss and the

s’s are given in [6] (Equations (19–23)). These parameters,

reflecting the population relationship, are related to the variance-

covariance parameters

VF ~

S2
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of the random vector ~PPT~(p1,p2, � � � ,pK ) of the K allele

frequencies, by

s2
k ~ 2S2

k z 2pk(1 { pk) ð4Þ

skk ~ 4S2
k ð5Þ

slk~4Slk, ð6Þ

where pk is the mean of pk, for l,k~1,2, . . . ,K and l=k.

In [6], the asymptotic form of the reduced eigenequation, in the

limit of N??, is given as follows:

N
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n1ŝs12 {
P
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..

. ..
.

� � � ..
.
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where nk~Nk=N is the relative sample size of population k, and

Principal Components Analysis of Admixture

PLoS ONE | www.plosone.org 2 July 2012 | Volume 7 | Issue 7 | e40115



ŝskk’~skk’z
XK

m,l~1

nmnlsml{
XK

m~1

nm(skmzsk’m) ð8Þ

for k,k’~1,2, � � � ,K and k=k’.

Modeling Admixture
To incorporate admixture into our theoretical formulation of

PCA, we need to generalize Equations (4), (5), and (6) to the case

where one or more populations are an admixture of some other

populations. We begin with the case of two-way admixture.

Suppose that there are five distinct populations: P1, P2, P3, P4,

and P5. P3 and P4 are admixtures of P1 and P2 with proportions

a:(1{a) and b:(1{b), respectively. In Text S1, we show that the

allele frequencies of the admixed populations, P3 and P4, can be

expressed as

p3~p1azp2(1{a) ð9Þ

p4~p1bzp2(1{b), ð10Þ

and we derive the following expressions for the variance-

covariance parameters of ~CC in terms of the expressions for the

allele frequencies

s2
3~2a2S2

1z2(1{a)2S2
2z4a(1{a)S12

z2½ap1z(1{a)p2�½1{ap1z(1{a)p2�

s33~4a2S2
1z4(1{a)2S2

2z8a(1{a)S12

s13~4aS2
1z4(1{a)S12

s23~4(1{a)S2
2z4aS12 ð11Þ

s35~4aS15z4(1{a)S25

s34~4abS2
1z4(1{a)(1{b)S2

2z4(azb{2ab)S12,

and similar expressions for population P4 with a replaced by b.

These listed parameters represent the variance in an admixed

population (s2
3), covariance within an admixed population (s33),

covariance between an admixed individual and the parental

population (s13 and s23), covariance between an admixed

individual and an individual unrelated with admixture (s35), and

covariance between an admixed individuals with different

proportions (s34). Other expressions for populations unrelated to

admixture remain the same as in Equations (4), (5), and (6).

These expressions (11) can be generalized to the case with more

than two parental populations. Suppose that there are six distinct

populations, P1, P2, P3, P4, P5, and P6, among which P4 and P5

are admixed populations of P1, P2, and P3 with proportions

a1:a2:(1{a1{a2) and b1:b2:(1{b1{b2), respectively. We have

the following expressions (Text S1):

s2
4~2a2

1S
2
1z2a2

2S
2
2z2(1{a1{a2)2S2

3z4a1a2S12

z4a1(1{a1{a2)S13z4a2(1{a1{a2)S23z2p4(1{p4)

s44~4a2
1S

2
1z4a2

2S
2
2z4(1{a1{a2)2S2

3

z8a1a2s12z8a1(1{a1{a2)S13z8a2(1{a1{a2)S23

s14~4a1S
2
1z4a2S12z4(1{a1{a2)S13

s24~4a2S
2
2z4a1S12z4(1{a1{a2)S23 ð12Þ
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3z4a1S13z4a2S23

s45~4a1b1S
2
1z4a2b2S

2
2z4(1{a1{a2)(1{b1{b2)S3

3

z4(a1b2za2b1)S12 z4(a1zb1{2a1b1{a1b2{a2b1)S13

z4(a2zb2{2a2b2{a1b2{a2b1)S23

s46~4a1S15z4a2S26z4(1{a1{a2)S36:

For the other admixed population, P5, we have similar

expressions, except that the as are replaced by the corresponding

bs. Details of the derivation of these expression are given in Text

S1.

Two-way Admixture
As shown in Text S2, a closed-form of solution can be obtained

in the case of K~3 for both the reduced eigenequation (1) and its

asymptotic form (7). Specifically, the two non-zero eigenvalues for

Equation (7) are determined by

l�

N

� �2

z
l�

N

� �
(n1zn2)ŝs12z(n1zn3)ŝs13z(n2zn3)ŝs23½ �z

n1ŝs12ŝs13zn2ŝs12ŝs23zn3ŝs13ŝs23½ �~0: ð13Þ

Now suppose that population P3 is an admixed population of

the other two populations, P1 and P2, with admixture proportions

a : (1{a). It can be shown, from Equations (11) and (8),

ŝs12~{4½n1zan3�½n2z(1{a)n3� S2
1zS2

2{2S12

� �
ŝs13~4½n2z(1{a)n3�½an2{(1{a)n1� S2

1zS2
2{2S12

� �
ŝs23~{4½n1zan3�½an2{(1{a)n1� S2

1zS2
2{2S12

� �
:

ð14Þ
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These expressions lead to an important sum-rule

n1ŝs12ŝs13zn2ŝs12ŝs23zn3ŝs13ŝs23~0: ð15Þ

Using this sum-rule, we can see that the only non-zero

eigenvalue is

l�1~{N½(n1zn2)ŝs12z(n1zn3)ŝs13z(n2zn3)ŝs23� ð16Þ

and the corresponding eigenvector is

~ee1~

x1

x2

x3

0
B@

1
CA~

{½n2z(1{a)n3�
n1zan3½ �
{½an2{(1{a)n1�

0
B@

1
CA: ð17Þ

We therefore have

x3{x1

x2{x1
~1{a ð18Þ

x2{x3

x2{x1
~a, ð19Þ

which is the well-known relationship between the pattern of the

eigenvector-plot and the admixture proportion. In Text S3, we

show that the same conclusion, especially Equations (18) and (19),

for calculating the admixture proportion from the coordinates of

the eigenvector are still valid when the number of admixed

individuals is not large. Therefore, this method of estimating

admixture proportion can be applied to the individual level if there

are sufficient samples from the parental populations.

The fact that there is only one non-zero eigenvalue reflecting

the population structure implies that including an admixed

population in PCA does not add to the number of axes of

variation [1] if samples from the parental populations are already

included in the analysis. The other non-trivial eigenvalue is l�2~0
and the corresponding eigenvector is

~ee2~

X1

X2

X3

0
B@

1
CA~

an2n3

(1{a)n1n3

{n1n2

0
B@

1
CA, ð20Þ

where the coordinate of the admixed population X3 is outside of

the interval of the coordinates of the two parental populations,

½X1,X2�. This means that in a two-dimensional eigenvector-plot

with ~ee2 as one of the two axes, we cannot see a dispersion or

gradient of the admixed individuals along the line segment

connecting the centroids of the two parental populations. The

second largest PC (corresponding to~ee2) reflects within-population

variation. The corresponding eigenvalue, l�2, in the general case

(when N is not too large) is a small eigenvalue [6]. In Figure 1, we

show an example of two-way admixture using simulation. Along

the first eigenvector, the three admixed populations were

distributed around some points between the two parental

populations, and the ratios of the distances between the centroids

of P3, P4, and P5 and those of P1 and P2, respectively, were found

to be very close to the simulating values of the corresponding

admixture proportions: 0:501 : 0:499, 0:705 : 0:295 and

0:301 : 0:699. The centroids of all five populations were calculated

by solving the reduced eigenequation (1) with variance-covariance

parameters estimated using the method given in [6]. The

distribution of individuals along the second eigenvector reflects

within-population variations.

In order to have a two-dimensional pattern for which the

admixed population is located on the slanted line segment

connecting the centroid of the two parental populations, we need

to introduce at least one additional population into PCA. This

additional population is neither a parental population nor an

admixed one. Adding the additional population to PCA introduces

an additional dimension of variation, so that the first two PCs will

be needed to address population structures. In this case, Equations

(18) and (19) should be valid for the first two eigenvectors,

although it does not seem to be easy to show it analytically. We

demonstrated this numerically by solving Equation (1) in the case

of K~4 with P3 an admixed population of P1 and P2 (Figure S1).

In Figure 2, we show an example of two-way admixture using

simulation. P4 and P5 were two admixed populations, each with a

sample size of 10, of populations P1 and P2 with admixture

proportions 0:3 : 0:7 and 0:7 : 0:3, respectively. P3 was an

additional population. P1, P2 and P3 were simulated with

Fst~0:05, each with a sample size of 45. Here, we can see that

the samples from the two admixed populations were located

around the line segment connecting the centroids of the two

parental populations in the space spanned by the first two

eigenvectors: the distances of the centroids of P4 and P5 from the

line segment were v0:001, much smaller than the length of the

line segment (~00:2). Again, the centroids of all five populations were

calculated by solving the reduced eigenequation (1) with variance-

covariance parameters estimated using the method given in [6].

The overall or average admixture proportions of P4 and P5 were

estimated using Equations (18) and (19) as 0:705 : 0:295 and

0:305 : 0:694, respectively. Along the third eigenvector, no

population structure can be seen and only within-population

variation was addressed. We applied the model-based clustering

method, implemented in the program STRUCTURE, to P1, P2,

P4, and P5 using the first 300 ancestry-informative markers (AIMs,

see Methods), and found that the average admixture proportions

were 0:646 : 0:354 and 0:337 : 0:663 for P4 and P5, respectively.

In order to see a two-dimensional dispersion or gradient of

admixed individuals distributed along the line segment connecting

the centroids of the two parental populations, as often observed in

real data analysis [1], the admixed population cannot be

genetically homogeneous, as in the example shown in Figure 2.

In other words, the admixed individuals need to have different

admixture proportions. Figure 3 shows such an example. The

simulation was the same as that in Figure 2, except that the

individuals of P3 and P4 were simulated with admixture

proportions drawn from a beta distribution with shape parameters

(3:5,1:5). Here, we clearly see that the samples of P4 and P5 were

restricted to the line segment connecting the centroids of of P1 and

P2: the distances of the centroids of P4 and P5 from the line

segment were both v0:0001. The individual admixture propor-

tions of P4 and P5 were calculated using Equations (18) and (19)

and were found to be very close to the corresponding simulating

values (data not shown). Note that the admixed individuals of P4

and P5 were scattered along both directions on the right panel of

Figure 3. However, the elongations of the two clusters along these

two directions have different meanings: spreading along the first

eigenvector implies a genetically recent admixture, whereas

spreading along the third eigenvector simply reflects within-

population variations.

For the example shown in Figure 3, the individual admixture

proportions were also estimated using STRUCTURE for the two

Principal Components Analysis of Admixture
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admixed populations, P4 and P5. As shown in Figure S2, our PCA

approach outperformed STRUCTURE in the sense that the

estimated admixture proportions obtained by PCA were much

closer to the generating values than those obtained by STRUC-

TURE, although estimates from both methods were highly

correlated (Spearman correlation coefficient R~0:98).

Figure 4 shows the results for the four HapMap populations

ASW, CEU, CHB and YRI using markers on chromosome 1, as

an example of two-way admixture. Here, CEU and YRI were

used to represent the European and African ancestries, respec-

tively, of the ASW population. CHB was included in the analysis

to provide an additional axis of variation. Most of the ASW

samples were found to be restricted on the cline of CEU and YRI;

the distance between the centroid of ASW and the line segment

connecting the centroids of CEU and YRI is 0:002, much smaller

than the length of the line segment (0:11). The results confirmed

Figure 1. Simulation of genetically homogeneous admixed populations: two-way admixture. The first two eigenvectors are shown for a
simulated data set with five populations. P1 and P2, the two parental populations of sample size 65 each, were both simulated using Fst~0:05. P3 is
an admixture of P1 and P2 with proportion 0.5:0.5. P4 is an admixture of P1 and P2 with proportion 0.3:0.7. P5 is an admixture of P1 and P2 with
proportion 0.7:0.3. The sample size for the three admixed populations is 35. The ratios of the distances between the centroids of P3, P4, and P5 and
those of P1 and P2 were found to be approximately equal to the corresponding admixture proportions.
doi:10.1371/journal.pone.0040115.g001

Figure 2. Simulation of genetically homogeneous admixed populations with an additional population: two-way admixture. The first
two eigenvectors are shown for a simulated data set with five populations. P4 and P5, each with sample size 10, were simulated as admixed
populations of P1 and P2 with admixture proportions 0:3:0:7 and 0:7:0:3, respectively. P3 was simulated as an additional population. P1, P2, and P3,
each with sample size 45, were simulated using Fst~0:05. The clusters of P4 and P5 were found to lie on the line segment connecting the centroids
of P1 and P2, and they divided the segment according to ratios that are approximately equal to the corresponding simulating values of the admixture
proportions. The third eigenvector in the left panel addresses the within-population variations.
doi:10.1371/journal.pone.0040115.g002
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that the ASW population is a genetically recent admixture with an

average of 19:2% of European and 80:8% of African ancestry, as

calculated using Equations (18) and (19) with P3 representing the

centroid of ASW. The individual admixture proportions were

calculated also using Equations (18) and (19) and are listed in

Table S1. The results of STRUCTURE were also shown in Table

S1. The average admixture proportions estimated by STRUC-

TURE were 26:3% and 73:7%, for European and African

ancestry, respectively. The Spearman correlation coefficient

between the results of PCA and those of STRUCTURE was

R~0:847.

Three-way Admixture
In the previous subsection, we have analytically proved the

diagnostic of two-way admixture, that is, an admixed sample is

located on the line segment connecting the two parental

populations and divides the segment according to the admixture

proportions. The proportion of ancestry from the parental

populations can thus be estimated using the distances of the

admixed sample from the parental populations in the eigenvector-

plot. Natural questions arise: What is the diagnostic of three-way

admixture? How can the three-way admixture proportions be

estimated using the pattern of the eigenvector-plot? One of the

main results of the present paper is as follows. Suppose that

Figure 3. Simulation of genetically recently admixed populations with an additional population: two-way admixture. The first two
eigenvectors are shown for a simulated data set with five populations. P4 and P5, with sample size 30, were simulated as admixed populations of P1
and P2 with admixture proportions drawn from a beta distribution with shape parameters a~3:5 and b~1:5. P3 was simulated as an additional
population. P1, P2, and P3, each with sample size 45, were simulated using Fst~0:05. Samples from P4 and P5 were distributed along the line
connecting the centroids of P1 and P2. Because there were only three independent populations (P1, P2, and P3), only two eigenvectors are needed to
address the population variations. This is why along the third eigenvector, only the within-population variations were addressed.
doi:10.1371/journal.pone.0040115.g003

Figure 4. An example of two-way admixture from HapMap data. The first two eigenvectors are shown for the four HapMap populations ASW,
CEU, CHB, and YRI. A dispersion, or gradient, was formed by the ASW samples as a recently admixed population. CEU and YRI served as the proxy
parental populations of ASW. CHB was included in the analysis to introduce an additional dimension of variation, so that the dispersion can be seen
in the two-dimensional space. The third eigenvector addresses the within-population variation.
doi:10.1371/journal.pone.0040115.g004
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population P4 is an admixture of populations P1, P2, and P3 with

admixture proportions a1:a2:1{a1{a2. In the space spanned by

the first two eigenvectors, the representative point of P4 is located

inside the triangle formed by the representative points of P1, P2,

and P3, and it divides the area of this triangle according to the

admixture proportions:

S234

S123
~a1 ð21Þ

S134

S123
~a2 ð22Þ

S124

S123
~1{a1{a2, ð23Þ

where Sijk is the area of the triangle formed by Pi, Pj, and Pk. To

prove Equations (21),(22) and (23) analytically, we would need to

solve the reduced eigenequation (1) for K§4 analytically. A

closed-form of solution to this eigenequation, however, is difficult,

if not impossible, to find. Nevertheless, we can numerically solve it.

We confirmed Equations (21),(22) and (23) by numerically solving

Equation :w (1) for various different combinations of variance-

covariance parameters and admixture proportions when K~4.

Figure 5 shows one example of a three-way admixture, for four

hypothetical populations defined in Table 1. In Figure S3, we

show an example of two three-way admixture, where it can also be

seen that it is the two-dimensional metric (namely, the areas),

instead of the one-dimensional metric (namely, the distances), that

should be used to estimate the admixture proportions in the case of

three-way admixture.

When an additional population that is not related to admixture

is included in PCA, in the three-dimensional space spanned by the

first three eigenvectors, the representative point of the admixed

population will still be located on the plane formed by the

representative points of the three parental populations and will

divide the triangle according to the admixture proportions by

Equations (21), (22) and (23). Note that the triangle formed by the

Figure 5. Theoretical prediction of PCA: three-way admixture. The eigenvectors for the four hypothetical populations defined in Table 1 were
calculated from the reduced eigenequation (1). In the plane spanned by the first two eigenvectors (left panel), the representative point of the
admixed population, P4, was located inside the triangle formed by the representative points of the three parental populations, P1, P2, and P3, and
divided the triangle into three small triangles with areas according to the admixture proportions. On the right panel, P4 was outside the triangle
because the third eigenvector, corresponding to a small eigenvalue, did not reflect population structure.
doi:10.1371/journal.pone.0040115.g005

Table 1. Parameters for the hypothetical populations shown
in Figure 5.

P1 P2 P3 P4

Sample size 9000 8000 7000 10000

For allele count

Variance (s2
i ) 0.68 0.68 0.68 0.6224

Covariance (sij )

P1 0.4 0.04 0.16 0.136

P2 0.4 0.36 0.32

P3 0.4 0.328

P4 0.2848

For allele frequency

Mean (�ppi ) 0.4 0.4 0.4

Variance-covariance (Sij )

P1 0.1 0.01 0.04

P2 0.1 0.09

P3 0.1

Admixture proportion

P4 0.2 0.6 0.2

Eigenvalue 3599.06 204.80 0.32 20.00

Eigenvector

P1 20.82 20.10 20.17 0.50

P2 0.50 20.48 20.58 0.50

P3 0.23 0.86 20.22 0.50

P4 0.18 20.13 0.77 0.50

doi:10.1371/journal.pone.0040115.t001
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representative points of the three parental populations does not

necessarily lie in a plane formed by any two of the first three

eigenvectors. This inclined triangle formed by the admixed

population and the parental populations in a three-dimensional

space is reminiscent of the slanted segment for a two-way admixed

population and the parental populations in a two-dimensional

space. We confirmed this pattern by numerically solving the

reduced eigenequation (1) for K~5 with various different values of

variance-covariance parameters and admixture parameters. An

example is given in Figure S4.

In Figure 6, we show an example of simulations for a three-way

admixture. Here, P5 was an admixed population, with sample size

20, of P1, P2, and P3, with admixture proportions of 0.2:0.5:0.3

and sample sizes of 15, 25, and 10, respectively. P4 was an

additional population with sample size 12. P1, P2, P3, and P4 were

simulated using Fst~0:05 (see Methods). The centroids of all five

populations were calculated by solving the reduced eigenequation

(1) with variance-covariance parameters estimated using the

method given in [6]. We can see that the samples from P5 lie

approximately in the plane formed by the centroids of the three

parental populations; the distance from the centroid of the P5

samples to the plane is 0:0026, much smaller than the dimensions

of the triangle (0:33, 0:40, and 0:37). The admixture proportions

were estimated using Equations (21), (22) and (23) as

0:19:0:51:0:29, very close to the simulating values. In contrast,

the performance of STRUCTURE was poor in the case of three-

way admixture; the admixture proportions estimated using

STRUCTURE were 0:31 : 0:48 : 0:21.

Figure 7 shows the results for four HapMap populations, CEU,

CHB, MEX, and YRI, and one HGDP population, Pima, as a real

example of three-way admixture. PCA was performed for the

intersection of the HapMap III and HGDP marker sets. Here,

CEU, Pima, and YRI were used to represent the European,

Native American and African ancestries, respectively, of the MEX

population. CHB was included in the analysis to provide an

additional axis of variation. The MEX samples were found to lie

approximately in the plane formed by the centroids of the CEU,

Pima, and YRI samples in the three-dimensional space spanned by

the first three eigenvectors (Figure 7): The distance from the

centroid of the MEX samples to the plane is 0:01, which is small

compared with the dimensions of the triangle (0:27,0:21, and

0:27). The results confirmed that the MEX population is a

genetically recent admixture with an average of 50:8% of

European, 43:3% of Native American, and 5:9% of African

Figure 6. Simulation of a genetically homogeneous admixed population with an additional population: three-way admixture. The
first three eigenvectors are shown for a simulated data set with five populations. P5, with sample size 25, was an admixed population of P1, P2, and
P3 with admixture proportions 0:2:0:5:0:3. P4 was an additional population. P1, P2, P3, and P4 were simulated using Fst~0:05, with sample sizes 15,
20, 10, and 12, respectively. In the three-dimensional space, the samples from P5 were found to cluster around a point inside the triangle formed by
the centroids of the three parental populations, and they divided the triangle into three small triangles, the ratio of the areas of which was
approximately equal to the corresponding ratio of the simulating admixture proportions. Population P4 was included to introduce an additional
dimension of variation, so that the admixed population and the parental populations formed an inclined triangle.
doi:10.1371/journal.pone.0040115.g006
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ancestry, as calculated using Equations (21), (22) and (23) with P4

representing the centroid of the MEX samples. The individual

admixture proportions of the MEX samples were calculated also

using Equations (21), (22) and (23) and are listed in Table S2. Also

shown in Table S2 were the results of STRUCTURE. The

average proportions estimated by STRUCTURE were 44:1%,

42:2%, and 13:7%, for European, Native American and African

ancestry, respectively. The Spearman correlation coefficients

between our PCA method and STRUCTURE for these three

admixture proportions were 0:93, 0:91, and 0:49, respectively.

Admixture with an Arbitrary Number of Ancestral
Populations

The relationship between the geometric properties of the

eigenvector-plot and the admixture proportions can be extended

to the general case of multiple parental populations. For example,

if there are four parental populations, the representative point of

the admixed population will be located inside a tetrahedron with

the representative points of the four parental populations on the

four vertices, and will divide the tetrahedron into four small

tetrahedra, the ratio of the volumes of which will be the

corresponding ratio of the admixture proportions.

In general, if population K is an admixture of K{1 other

populations, we have the eigenvectors of the reduced eigenequa-

tion (7) listed in the columns as follows:

~ee1 ~ee2 � � � ~eeK{2 ~eeK

P1 x1,1 x1,2 � � � x1,K{2 1

P2 x2,1 x2,2 � � � x2,K{2 1

..

. ..
. ..

.
� � � ..

.
1

PK xK ,1 xK ,2 � � � xK ,K{2 1

ð24Þ

where the (K{1)th eigenvector is discarded because it corre-

sponds to the eigenvalue of zero in the asymptotic limit because of

admixture. In the case of two-way admixture, this eigenvector is

given by Equation (20). The trivial eigenvector,~eeK , which reflects

the mean adjustment (2), is listed for a reason that will soon be

clear. For the admixture proportion of the ith parental population,

Figure 7. An example of three-way admixture from the HapMap and HGDP samples. The first three eigenvectors are shown for pooled
data of the HapMap populations CEU, CHB, MEX, and YRI and the HGDP population Pima. Samples from MEX were found to be distributed around
the inclined triangular plane formed by the clusters of CEU, Pima, and YRI, and most of them were inside the triangle. CEU, Pima, and YRI served as
the proxy parental populations of the MEX population. CHB was included to introduce an additional dimension of variation, so that the three-way
admixture-related populations formed an inclined triangle.
doi:10.1371/journal.pone.0040115.g007
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ai~

x1,1 x1,2 � � � x1,K{2 1

..

. ..
.

� � � ..
.

1

xi{1,1 xi{1,2 � � � xi{1,K{2 1

xK ,1 xK ,2 � � � xK,K{2 1

xiz1,1 xiz1,2 � � � xiz1,K{2 1

..

. ..
.

� � � ..
.

1

xK{1,1 xK{1,2 � � � xK{1,K{2 1

����������������������

����������������������
x1,1 x1,2 � � � x1,K{2 1

x2,1 x2,2 � � � x2,K{2 1

..

. ..
.

� � � ..
.

1

xK{1,1 xK{1,2 � � � xK{1,K{2 1

������������

������������

{1

ð25Þ

for i~1,2, . . . ,K{1, where DD:DD denotes the absolute value of the

determinant of a matrix. The matrix in the denominator is simply

the first K{1 rows of the matrix given in Equation (24), and the

matrix in the numerator is obtained by replacing the ith row of the

matrix in the denominator with the last row of the matrix in

Equation (24).

It can easily be seen that the expressions for the as are the

solutions of the following equations:

xK,1~
XK{1

i~1

aixi,1

xK,2~
XK{1

i~1

aixi,2

..

.
ð26Þ

xK ,K{2~
XK{1

i~1

aixi,K{2

1~
XK{1

i~1

ai:

This implies that the component corresponding to the admixed

population in each main eigenvector consists of the components of

the parental populations in the same proportions as the admixture

proportions. In other words, the position of an admixed sample is

given by the weighted sum of the positions of the parental

populations, a statement similar to what is proposed in [7] for

conventional PCA with markers as features. The weights are

simply the corresponding admixture proportions.

Discussion

The study of population admixture can be dated back to the

1970s [11], although there were few markers that can be used to

estimate admixture proportions. We have extended our previously

developed theoretical formulation of PCA to the general case

where some of the populations may be admixtures of others. Our

generalized formulation can be used to theoretically predict the

pattern of the eigenvector-plot from PCA using pre-specified

parameters reflecting the population structures, relationships and

admixture proportions. For real data analysis in population

genetics and genetic epidemiology, our formulation can provide

theoretical guidance on how to properly infer population structure

and relationships, how to identify admixed individuals, and how to

distinguish admixture distributions from within-population varia-

tions. Based on theoretical investigations using our formulation, we

have justified the diagnostic of two-way admixture, and more

importantly, proposed diagnostics of multi-way admixture, which

can also be used to estimate admixture proportions.

In a majority of literature on PCA, as a tool to detect population

structure, individuals are treated as samples and markers as

features in a natural way. In our formulation, we adopt the other

statistical viewpoint: individuals sampled from various populations

are treated as features and the markers as ‘‘samples’’ or

realizations. This is why the parameters reflecting the population

properties and admixture proportions can be defined a priori, and

thus can be directly related to the theoretical pattern of the

eigenvector-plot. Although conceptually different, the eigen-

solutions for these two approaches are found to be almost identical

up to a scale constant (data not shown). Specifically, the pattern of

the scatter plot of PCs is the same as that of the eigenvector-plot in

our formulation. Therefore, the diagnostics of admixture and the

method of estimating admixture proportions obtained here from

our formulation should apply to the PC scatter plot (obtained

using, e.g., EIGENSTRAT) widely used in the literature.

In our theoretical formulation of PCA, an important issue is that

values of the elements of the variance-covariance matrix depend

on the coding of alleles, which is not specified. Specifically, the

covariances will be largest if the alleles of markers are randomly

labelled, and smallest if the major (or minor) allele is always chosen

as the variant allele. Simulation studies showed that the pattern of

eigenvector-plot is not influenced by the coding of alleles (data not

shown). However, if the variance-covariance parameters are used

to measure the population structures and relationships, the coding

of alleles should be prespecified for all markers.

For the estimation of admixture proportions, we have compared

our results obtained using PCA with those obtained using

STRUCTURE [12], and found that they were highly correlated

for both simulated data and real data. Although it seems that our

PCA-based method outperformed STRUCTURE for the simu-

lated data sets, it should be noted that a fair comparison of our

method with STRUCTURE or other existing methods requires

comprehensive and extensive simulations for various scenarios,

and thus should be left for a future investigation.

In the present work, we have focused on the overall ancestry

proportions of admixed populations by performing PCA on a

genome- or chromosome-wide scale. Estimation of the local

ancestry of admixed samples is critical for the admixture mapping

approach. The ancestral structure of an admixed genome may also

yield new insights into the evolutionary history of human

populations. Recently, a genome scan approach based on PCA

and wavelet transform analysis has been proposed to estimate the

time of admixture [13]. In a separate study, we have proposed a

method to detect chromosomal inversions by performing PCA
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locally (Ma and Amos, to be published). Our method was based on

the fact that suppression of recombination in inversion heterozy-

gotes due to the loss of unbalanced gametes creates a local

population substructure: two distinct ‘‘populations’’ of inversion

homozygotes of different orientations and their 1:1 admixture,

namely the inversion heterozygotes. Our analysis with the

HapMap data shows that locally performed PCA can identify this

substructure on the scale of ~1100 kb. We expect that the proposed

diagnostics of admixture here would prove useful for determining

the local admixture structure of individual admixed genomes.

In our previous work [6], we have analytically shown and

numerically demonstrated that simply removing the first few PCs

from the allele counts is equivalent to subtracting the population

group means, a simple method to correct for population

stratification. Although including admixed samples whose parental

populations are already present in the analysis does not add to the

number of axes of variation, as shown here in the case of two-way

admixture, not all markers follow the global admixture proportion.

It would be interesting to figure out how many PCs should be

removed for correcting population stratification and whether it is

still equivalent to removing the group means in the case where

admixed samples are included in the analysis. Answers to these

questions would be important for genetic association tests using

admixed populations, especially for tests of gene-gene and gene-

environment interaction using case-only approaches.

Methods

Simulations of Population Structure
We used the same method as in [14], [2], and [6] to simulate

genotype data for non-admixed populations with pre-specified

values of Fst. Briefly, the method of simulation is based on the

Balding-Nichols model [15]. We first generated the overall

ancestral allele frequencies for all markers separately from the

uniform distribution on (0:1,0:9). For each population, say,

population k, the allele frequencies were then drawn from a beta

distribution with parameters (1{Fk)pl=Fk and

(1{Fk)(1{pl)=Fk, where Fk was the value of Fst for this

population and pl was the overall ancestral allele frequency for

locus l. The generated allele frequencies were then used to

generate the genotypes for each of the individuals in the

population by assuming Hardy-Weinberg equilibrium.

Simulations of Admixture
Two or three populations generated in this way can be chosen

as parental populations, and an admixed population was simulated

using the following approach. To simulate a well-admixed

population, we draw an allele frequency for a marker for each

individual in the admixed population from the allele frequencies of

the parental populations according to the pre-specified, common

admixture proportions. For example, if there are three parental

populations with allele frequencies, p1, p2, and p3, and the

admixture proportions are a1:a2:(1{a1{a2), the allele frequency

of the admixed population may be p1, p2, or p3, with probabilities

a1, a2, or (1{a1{a2), respectively. For a recently admixed

population, the allele frequency was still generated from those of

the parental populations, but according to different admixture

proportions drawn from a beta distribution with parameters 3:5
and 1:5.

Datasets Used
Unphased genotype data for the ASW, MEX, TSI, and YRI

populations from the International HapMap Project (HapMap III

release 2) and for the HGDP population Pima. PCA of simulated

data, HapMap data, and HGDP data was carried out using the R

function eigen (www.r-project.org).

Comparison with STRUCTURE
Estimation of admixture proportions using PCA was compared

with that of STRUCTURE. For all STRUCTURE runs, we ran

with a burn-in of 10,000 iterations with 40,000 follow-on

iterations. The admixture model was used, and the population

ID for each ancestral populations were used as prior information.

The posterior mean estimates of ancestry proportions were

obtained for each individual in the admixed population. We used

the first 300 AIMs for the populations involved in the analysis.

Similar results were obtained when more AIMs (e.g. 600 SNPs)

were used to run STRUCTURE for the examples we were

interested here. To determine the AIMs for the samples in each

analysis, we rank the SNPs according to their capability of

distinguishing populations using the following approach. Suppose

there are K distinct populations (excluding any admixed

populations of them). We will need K{1 eigenvectors to

distinguish them. For each of these eigenvectors, ~ee, we first

calculate the projections of all markers:

~OO~C:~ee, ð27Þ

where C is the data matrix. Then we sort the elements of ~OO
according to their absolute values. The markers with large values

of DOD will be chosen as the most informative markers for the

populations addressed by the iegenvector~ee.

Programs and scripts used in this work are available from the

authors upon request.

Supporting Information

Figure S1 Theoretical prediction of PCA: two-way
admixture. The first three eigenvectors of four hypothetical

populations, P1, P2, P3, and P4, were calculated from the reduced

eigenequation (1). Populations P1, P2, and P4 were defined by the

following parameters: allele frequency mean, pi~0:4 for i~1,2,

and 4; variance-covariance parameters, S2
i ~0:1 for i~1,2, and 4,

S12~0:03, and S14~S24~0:01. P3 was an admixture of P1 and

P2 with admixture proportions 0:5:0:5. Samples sizes for P1, P2,

P3, and P4 were 1000, 2000, 3000, and 4000, respectively. In the

plane spanned by the first two eigenvectors (left panel), P3 was

located on the line segment connecting P1 and P2 and divided the

line segment in the ratio of the admixture proportions: 0:5:0:5.

Because there were three independent populations (P1, P2, and

P4), two eigenvectors were needed to address the population-level

variations. Along the third eigenvector (right panel), P3 was

located outside the interval of P1 and P2, indicating that the third

PC addresses within-population variations.

(EPS)

Figure S2 Performance comparison of two approaches
of estimating individual admixture proportions: PCA vs.
STRUCTURE. We show the deviations of the estimated

individual admixture proportions, using the proposed PCA-based

method and STRUCTURE, from the simulating values for the

simulated data shown in Figure 3.

(EPS)

Figure S3 Theoretical prediction of PCA: three-way
admixture. The first four eigenvectors of five hypothetical

populations, P1, P2, P3, P4, and P5, were calculated from the

reduced eigenequation (1). Populations P1, P2, and P3 were

defined by the following parameters: allele frequency mean,
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pi~0:4 for i~1,2, and 3; variance-covariance parameters,

S2
i ~0:1 for i~1,2, and 3, S12~0:01, S13~0:03, and

S23~0:01. P4 and P5 were admixed populations of P1, P2, and

P3 with admixture proportions 0:1:0:7:0:2 and 0:5:0:2:0:3,

respectively. In the two-dimensional space spanned by the first

two eigenvectors, P4 and P5 were inside the triangle formed by

P1,P2, and P3 and divided the triangle into three small triangles

with areas in the ratio of the admixture proportions: 0:1:0:7:0:2
and 0:2:0:3:0:5, respectively. Because there were three indepen-

dent populations, the third eigenvector did not address population-

level variation (right bottom panel). It should be noted that the

distances between P4 and P1 and between P4 were almost

identical (0.083 and 0.080, respectively), although the admixture

proportion of P3 (0.2) is twice that of P1 (0.1). This is an

illustration that it is the areas, not the lengths, that should be used

to measure the admixture proportions in three-way admixture.

(EPS)

Figure S4 Theoretical prediction of PCA: three-way
admixture with an additional population. The first four

eigenvectors of five hypothetical populations, P1, P2, P3, P4, and

P5, were calculated from the reduced eigenequation (1).

Populations P1, P2, P3, and P5 were defined by the following

parameters: allele frequency mean, pi~0:4 for i~1,2,3, and 4;

variance-covariance parameters, S2
i ~0:1 for i~1,2,3, and 4,

S12~0:01, S13~0:02, S15~0:08, S23~0:01, S25~0:07, and

S35~0:06. P4 was an admixture of P1, P2, and P3 with admixture

proportions, 0:2:0:3:0:5. In each of the two-dimensional spaces

spanned by any two of the first three eigenvectors, P4 was located

inside the triangle formed by P1, P2, and P3 and divided the

triangle into three small triangles with areas in the ratio of the

admixture proportions: 0:2:0:3:: 0:5. This implies that in the

three-dimensional space spanned by the first three eigenvectors,

P4 was on the same plane defined by P1, P2, and P3 and divided

the triangle in the same ratio. Because there were four

independent populations, the fourth eigenvector did not address

population-level variation (right bottom panel).

(EPS)

Table S1 Estimated admixture proportions of the ASW samples.

(XLS)

Table S2 Estimated admixture proportions of the MEX

samples.

(XLS)

Text S1 The variance-covariance parameters of variant allele

count in terms of those of allele frequency.

(PDF)

Text S2 Inferring admixture proportions from the asymptotic

pattern of the eigenvector-plot: two-way admixture.

(PDF)

Text S3 Individual-level inference of admixture proportions.

(PDF)
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