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Abstract
Gene delivery to bone is useful both as an experimental tool and as a potential therapeutic
strategy. Among its advantages over protein delivery are the potential for directed, sustained and
regulated expression of authentically processed, nascent proteins. Although no clinical trials have
been initiated, there is a substantial pre-clinical literature documenting the successful transfer of
genes to bone, and their intraosseous expression. Recombinant vectors derived from adenovirus,
retrovirus and lentivirus, as well as non-viral vectors, have been used for this purpose. Both ex
vivo and in vivo strategies, including gene-activated matrices, have been explored. Ex vivo
delivery has often employed mesenchymal stem cells (MSCs), partly because of their ability to
differentiate into osteoblasts. MSCs also have the potential to home to bone after systemic
administration, which could serve as a useful way to deliver transgenes in a disseminated fashion
for the treatment of diseases affecting the whole skeleton, such as osteoporosis or osteogenesis
imperfecta. Local delivery of osteogenic transgenes, particularly those encoding bone
morphogenetic proteins, has shown great promise in a number of applications where it is
necessary to regenerate bone. These include healing large segmental defects in long bones and the
cranium, as well as spinal fusion and treating avascular necrosis.
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1. INTRODUCTION
Bone is subject to a number of systemic and local disorders that may be, to a greater or
lesser degree, genetic or environmental in origin. Gene therapy is being investigated as a
way to treat or cure several of these (Table 1).

Gene therapy is an obvious strategy for treating Mendelian diseases, including those that
affect bone. Its use in treating complex genetic or non-genetic disorders is less evident. In
such cases, the intent is not to compensate for a genetic defect, but to serve as a delivery
system for therapeutic gene products, be these RNA or protein. The advantages of gene
delivery over protein delivery are several (Table 2), including the flexibility to express the
protein locally and focally, or in a disseminated fashion, as needed. Gene transfer is

© 2012 Elsevier B.V. All rights reserved.

Address for correspondence: Center for Advanced Orthopaedic Studies, BIDMC-RN 115, 330, Brookline Avenue, Boston MA 02215,
Tel: 617-667- 4621, Fax: 617-667-7570, cevans@bidmc.harvard.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Adv Drug Deliv Rev. Author manuscript; available in PMC 2013 September 01.

Published in final edited form as:
Adv Drug Deliv Rev. 2012 September ; 64(12): 1331–1340. doi:10.1016/j.addr.2012.03.013.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



particularly useful for the delivery of intracellular proteins, which are otherwise difficult to
target into cells. Unlike its recombinant equivalent, the protein delivered via gene transfer
will be nascent and uncontaminated by a variable percentage of incorrectly folded, and
possibly antigenic, molecules; moreover, proteins delivered via gene transfer will have
undergone authentic post-translational modification. Additional advantages of gene delivery
include the ability to express proteins for extended periods of time and to regulate the level
of transgene expression, both quantitatively and temporally. Moreover, the use of tissue
specific promoters opens additional possibilities for controlling the geography of gene
expression. Depending on the application, there may also be advantages of cost, as a gene
therapy may only need to be delivered once and in a relatively small amount.

In addition to its therapeutic potential, gene delivery is a valuable experimental tool for
laboratory research into the biology of bone.

This article reviews strategies for gene transfer to bone and summarizes progress towards
clinical application.

2. STRATEGIES FOR GENE TRANSFER
2.1 Vectors

Successful gene therapy requires vectors that deliver transgenes to the nuclei of target cells
in an efficient manner that ensures adequate levels and duration of transgene expression.
The therapeutic transgene product may be a protein or non-coding RNA. Vectors have been
the subjects of numerous extensive reviews (e.g. (1–4)), so they will be dealt with only
briefly.

Viruses are frequently used as the basis for vectors because they naturally transfer their
genetic material very efficiently into the cells they infect. For gene therapy, the viral genome
is modified to remove sequences that contribute to pathogenicity and, in most cases, viral
replication without eliminating infectivity. Therapeutic genes, usually in the form of their
cDNA equivalents, are cloned into the modified viral genome to produce a recombinant,
viral vector. Their experimental use for gene delivery to bone includes vectors derived from
oncoretroviruses (often referred to just as retroviruses), lentiviruses (also members of the
retrovirus family), adenovirus, and adeno-associated virus (AAV). Each of these vectors has
its own idiosyncratic properties (Table 3). Moreover, progressive modification of each virus
has led to the production of different generations of viral vectors with altered properties,
making generalizations difficult. Of most relevance to the present discussion is the
distinction between first generation adenoviral vectors, which continue to express viral
proteins at low levels in the cells they transduce, and later generation vectors, which do not
(5). These viral proteins trigger cell-mediated immune responses that eliminate the cells that
express them. Gene transfer using a virus is known as transduction.

Because viral vectors can be expensive and complicated to make, and continue to raise
safety concerns, interest in the use of non-viral vectors remains high (3, 4). These can be
simple plasmids. Often the efficiency of gene transfer is improved by associating the DNA
with a carrier such as a liposome or other polymer. Efficiency can also be improved by
physical means such as electroporation or sonication. In general, non-viral vectors, although
simpler, are far less efficient than viral vectors. Gene transfer using a non-viral vector is
known as transfection.

The choice of vector depends upon a number of issues. In the first instance, there is a need
to achieve the required level and duration of transgene expression. These parameters will
vary, depending upon the nature of the disease or condition to be treated. A genetic disease
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is likely to require life-long expression of a transgene, while healing an osseous defect
probably only requires transient expression of suitable osteogenic factors.

Long-term transgene expression is best achieved by the use of an integrating virus, such as
retrovirus or lentivirus; certain non-viral constructs based upon transposons also integrate
(6). Prolonged transgene expression can sometimes be obtained with non-integrating vectors
if the host cells do not divide. As noted, cells transduced with first generation adenovirus
vectors, unlike those transduced with retroviruses and AAV, continue to express antigenic
viral proteins that trigger cell-mediated immune responses leading to elimination of the
transduced cells. This need not be a disadvantage if long-term transgene expression is not
necessary and success does not require persistence of the transduced cells. For certain
indications it may be necessary to regulate the level and duration of transgene expression
with more precision than is provided by the natural history of the virus and the cells it
infects. In this case, it is possible to use a variety of native or engineered, inducible
promoters that respond to exogenous or endogenous cues, such as a drug, inflammation or
other local conditions (7–12). When clinical translation is intended, additional factors, such
as safety, cost and intellectual property become very important (13).

AAV is widely perceived to be the safest of the commonly used viral vectors, as the wild-
type virus causes no disease and cannot even replicate without a helper virus. The death in
2007 of a subject receiving intra-articular injections of AAV as part of an arthritis gene
therapy trial was not attributed to AAV (14, 15). Clinical grade, recombinant AAV is,
however, demanding to manufacture and it needs to be used at high multiplicities of
infection; both of these factors increase costs. Retroviruses efficiently transduce dividing
cells, but are known to cause insertional mutagenesis (16) and are unlikely to see clinical
application in any but life-threatening diseases. Lentiviral vectors raise the same safety
issues, but non-integrating lentiviral vectors have been developed and are very attractive,
given the high transduction efficiency of lentiviruses and ability to transduce non-dividing
cells (17) (Table 3).

Perceptions concerning the safety of adenoviral vectors have had to recover from the death
of a subject in a gene therapy trial in 1999 (18). When delivered locally at moderate doses,
there is no associated toxicity and when used in an ex vivo fashion, risk is reduced even
more. The major issue surrounding the use of adenoviral vectors is their high
immunogenicity, which may cause inflammation, curtail transgene expression and interfere
with repeat dosing. Most humans have been infected naturally with adenovirus serotype 5,
the one most commonly used for making vectors, and have circulating neutralizing
antibodies that may interfere with even the first use of the vector (19). Using adenovirus in
an ex vivo fashion reduces this problem (20), as does the use of an alternative serotype, such
as adenovirus 35 (21). Use of first generation, serotype 5 adenovirus vectors is not
constrained by issues of intellectual property, and their construction and manufacture are
straightforward, thus reducing costs.

2.2 Modes of delivery
In general terms, the vector can be introduced into the patient directly (in vivo delivery) or
indirectly, using cells that are first genetically modified outside the body and then injected,
infused or implanted (ex vivo delivery). In the latter case it is usual to use autologous cells,
although there is increasing interest in the use of allografted cells for certain purposes. These
delivery modes can be used for systemic or local transgene delivery. Systemic delivery aims
to disseminate and express the transgene widely in the skeleton and is particularly useful for
applications such as osteoporosis or osteogenesis imperfecta, which affect the entire
skeleton. Local delivery, in contrast, introduces and expresses the transgene in a limited,
defined area such as a fracture or a tumor.
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For many purposes with ex vivo delivery there would be advantages to using cells that can
home to bone after systemic administration. If the intent is to promote osteogenesis, it may
be a further advantage to use cells that can also differentiate into osteoblasts. A number of
types of cells are being investigated in this regard, particularly so-called mesenchymal stem
cells (MSCs). These are able to differentiate into osteoblasts, but they do not seem to home
to bone very efficiently after intra-venous injection, as approximately 98% of the injected
cells are lost to the liver and spleen (22). Homing to bone seems to require expression of
CXCR4 and about 30% of murine MSCs express this molecule (23). Restoration of bone
mass and mechanical strength has been achieved in a murine model of osteoporosis by the
injection of transduced MSCs expressing CXCR4 and Cbfa-1 (24). Incorporation into bone
is increased in areas of bone turnover (25) and in sites of injury (26). Homing to bone is also
enhanced by expression of CD49d (27).

Niyibizi and colleagues have succeeded in grafting MSCs by suspending the cells in
collagen and injecting them in an intra-medullary fashion (28). This appears to be a useful
technique for the regional treatment of an individual bone. Because large numbers of
autologous MSCs may be necessary for the treatment of osteogenesis imperfecta, Li et al.
have suggested using induced pleuripotent stem (iPS) cells that are differentiated into MSCs
prior to use (29). MSCs have the potential not only to serve as convenient, osteogenic cells
with the possibility to home to bone, but also to secrete helpful trophic factors (30). Other
types of circulating osteoprogenitor cells, reviewed recently by Pignolo and Kassem (31),
may also be useful for systemic transgene delivery to bone, but remain to be evaluated.

Although systemic delivery holds promise for treating disseminated diseases of bone, most
of the literature describes local gene delivery to accelerate the healing of fractures and large
segmental defects.

3. LOCAL GENE DELIVERY TO BONE
Based upon the principles described above, four different strategies have been described in
the pre-clinical literature (figure 1). Two of these are ex vivo techniques and two of them are
in vivo.

3.1. In vivo delivery
3.1.1. Gene Activated Matrices (GAMs)—Gene activated matrices (GAMs) consist of
a matrix with associated vectors that are released into surrounding tissues after implantation
(Table 4). They are usually designed to be stable and “off-the-shelf”.

The first in vivo strategy to be described for bone used a GAM comprising a collagen
sponge impregnated with plasmid DNA encoding parathyroid hormone (PTH) 1–34 or bone
morphogenetic protein (BMP) - 4. It was designed to deliver DNA to infiltrating reparative
cells when implanted into an osseous defect. By expressing the transgene, the infiltrating
cells create an autocrine and paracrine osteogenic environment. Very promising results were
demonstrated in segmental defect models in rats (32) and dogs (33). Improvements to this
system use viral vectors instead of plasmid DNA, and a construct incorporating an
adenovirus vector expressing platelet-derived growth factor (PDGF) has shown promise in
peridontal lesions (34, 35). As the same construct has given encouraging results in human
clinical trials for healing diabetic foot ulcers (36, 37), it is well positioned to enter clinical
trials for bone healing.

Schwarz’s group has developed a different type of GAM. This comprises allograft bone
coated with recombinant AAV expressing one or more genes associated with osteogenesis
or bone remodeling. Compelling data have been reported using a murine, segmental defect
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model with AAV carrying cDNAs encoding BMP-2 (38), constitutively active Alk-2 (a
BMP receptor) (39), or a combination of receptor activator of NF-κB ligand (RANKL) and
vascular endothelial growth factor (VEGF) (40). When freeze-dried onto allograft bone,
AAV is stable enough for “off-the-shelf” use.

Reference (41) provides a comprehensive, recent review of viral gene delivery from
scaffolds.

3.1.2. Direct Injection—Direct injection provides an alternative way to introduce
transgenes into osseous lesions. Success has been reported in experimental animals using
several different genes delivered by recombinant adenoviral, retroviral or plasmid vectors
(Table 5). Success seems to vary by the test species, at least when delivering BMP-2 with an
adenovirus. Encouraging results have been reported with rabbits (42), rats (43) and horses
(44), but not sheep (45). An immune response to both the adenovirus and the human BMP-2
by the sheep seemed to play a role in the lack of success in this species (45, 46). Efficacy in
the horse is noteworthy, as successful treatment in large animal models is normally a
requirement before clinical trials can start.

One safety concern with in vivo delivery is dissemination of the vector and adverse side
effects in non-target sites. However, when using adenovirus in a rabbit segmental defect
model little transgene was expressed outside of the osseous lesion (47). Indeed, most of the
transgene was expressed in the muscle surrounding the defect. However, heterotopic or
ectopic bone formation was not been observed in a rat model (43). It is interesting that,
although direct adenoviral delivery of BMP-2 formed copious bone in femoral segmental
defects in rats, intra-muscular injection of the same vector formed no bone in
immunocompetent rats (43). The immune response is probably important in this dichotomy,
because this vector formed far more bone after intramuscular injection into SCID mice than
immunocompetent mice (48).

Less promising results were seen when the healing environment was more challenging, as in
an infected, sclerotized, non-union in rabbits (49), and an atrophic non-union in rats (Kelly
and Simpson, personal communication) although marker gene transfer to cells within an
experimental, atrophic non-union in rabbits has been confirmed (50).

In vivo gene delivery to bone has recently been reviewed by Pelled et al (51).

3. 2. Ex vivo delivery
The direct introduction of vectors into the body always raises safety concerns and, as already
discussed, the effectiveness of strongly antigenic viruses, such as adenovirus, can be reduced
by the immune system. Ex vivo technologies help obviate these concerns as all genetic
manipulations are performed outside the body.

3.2.1. Traditional Ex Vivo approaches—Traditional ex vivo strategies enable the use
of expanded cultures of particular cell types, such as MSCs. Recombinant adenovirus (52)
has been most commonly used in such studies, although retrovirus (53), lentivirus (54) and
non-viral vectors (55) have also been evaluated (Table 6). Human and rat bone marrow
MSCs have recently been reported to resist efficient transduction by AAV serotype 2 (56),
although previous authors have not noted this problem (12, 57, 58). MSCs have been
obtained most frequently from bone marrow, but similar cells derived from fat (59) and
muscle (53) have also proved effective. When using transduced cells in this way it is usually
necessary to attach the cells to a scaffold. Discussion of such scaffolds is beyond the scope
of this paper; see Zippel et al (60) for recent review. The ex vivo delivery of genetically
modified cells using a variety of different transgenes has given promising results in the
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healing of segmental defects in long bones, cranium and mandible, as well as in spinal
fusion. In some cases, efficacy has been demonstrated in large animal models (Table 6).

3.2.2. Expedited Ex Vivo Delivery—One disadvantage of the traditional ex vivo
approach is the time, laboriousness and expense of establishing cultures of autologous cells.
For clinical use, cells would need to be grown under Good Manufacturing Practice (GMP)
conditions, which is very expensive. Moreover, the patient is subject to two invasive
procedures, one to harvest cells and the other to reimplant their expanded and genetically
modified progeny (61). One way to address these issues is to use allograft cells, and there is
presently much interest in this possibility. Interest in allografted MSCs has been enhanced
by the recent perception that these cells need not persist in the host to effect tissue repair and
regeneration (30). Allografted chondrocytes expressing TGF-β1 have been used to improve
the healing of fractures in osteoporotic rats (62). Nevertheless Tsuchida et al. (63), using a
rat femoral defect model, were only able to achieve healing with allogeneic MSCs
expressing BMP-2 in the presence of immunosuppression.

As an alternative approach, expedited ex vivo techniques are being developed where tissue
is harvested, genetically modified and reimplanted within a single operative session. Our
group is very interested in the use of autologous muscle, fat and marrow in this regard,
because these tissues contain progenitor cells that can be genetically modified in situ (61).
Moreover, they have intrinsic scaffolding properties and thus do not require matrices for
reimplantation. In preliminary experiments, samples of fat and muscle were genetically
modified with adenovirus expressing BMP-2 and implanted into critical size femoral defects
in rat femora. The data confirmed rapid healing of the defects in all animals (20). We have
also used clotted bone marrow for gene delivery to osteochondral lesions (64).

In a slightly different approach, Viggeswarapu et al. (65) isolated buffy coat cells from the
peripheral blood of rabbits, transduced them intra-operatively with adenovirus carrying
LMP-1 cDNA, and implanted the cells on a collagen-ceramic sponge in a spine fusion
model. All animals that underwent this procedure achieved solid spinal fusion. Following a
similar logic, Lieberman’s group have also obtained very good results using buffy coat cells
obtained from the bone marrow of rats and transduced intraoperatively with a lentivirus
expressing BMP-2 (66). All rats receiving the genetically modified cells healed a critical
sized, femoral defect.

4. PROPECTS FOR CLINICAL APPLICATION
Of the candidate indications listed in Table 1, two areas of application offer the greatest
potential for clinical application: osteogenesis imperfecta and bone healing. Although
osteoporosis is a tempting target several new, non-genetic drugs have recently become
available and these seem very effective.

4.1. Osteogenesis imperfecta
After a long delay and many setbacks, the field of gene therapy is finally registering some
major successes (67, 68). These are all in the treatment of rare, genetic diseases that are
difficult to treat by conventional means. Some of these gene therapies have a persistence that
suggests a possible cure. With such encouraging outcomes, it might be worth investing in
the most common Mendelian disease of bone, osteogenesis imperfecta, even though the pre-
clinical work in this area is still evolving (69, 70).

Most, but not all, cases of osteogenesis imperfecta result from mutations in type I collagen
genes. Because they are predominantly dominant negative disorders, in most cases the
mutant gene will need to be silenced before the beneficial effects of a wild-type gene can be
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realized. This is complicated because the primary amino acid sequence of each alpha chain
of type I collagen largely consists of repeating triplets with glycine at every third residue.
Thus gene silencing with anti-sense RNA affects expression of wild-type, as well as mutant,
alpha chains (71). Ribozymes and RNA interference have greater precision and offer better
prospects in this regard (72, 73). However, because many different mutations can cause
osteogenesis imperfecta, specific RNA molecules will need to be designed for each
mutation.

A more generalized approach is suggested by the work of Chamberlain et al (74, 75) using a
novel strategy in which AAV is targeted to the collagen alpha chain gene, where it inserts
and disrupts expression. Although this does not discriminate between mutant and wild-type
genes, it is possible to select for the appropriately modified cells, which can then be
expanded and used for transplant. As noted (29), the resistance of iPS cells to replicative
senescence is an advantage when generating modified MSCs for repeated use in
osteogenesis imperfecta. In this context, Deyle et al (76) have isolated MSCs from patients
with osteogenesis imperfecta, inactivated mutation collagen genes with AAV and generated
iPS cells which were then re-differentiated into MSCs. These cells formed normal collagen
and bone in immunodeficient mice.

Because osteogenesis imperfecta affects the entire skeleton, ex vivo gene therapy using
osteoprogenitor cells is an attractive strategy. This has received a boost from reports
claiming that allo-transplants of bone marrow or MSCs from normal donors improves
certain clinical measures in patients with osteogenesis imperfecta (77). Such studies are,
however, controversial because the engraftment rate of the MSCs is very low and the cells
are cleared with time, possibly as a result of an allograft response. As discussed earlier in
this review, the ability of MSCs to home to bone is an issue that remains to be resolved.
Nevertheless, if the patient’s own cells were used and engraftment of MSCs improved, there
would be considerable potential for clinical application in the more severe forms of
osteogenesis imperfecta, a rare and troubling condition with orphan drug status. Because
osteogenesis imperfecta can be diagnosed soon after birth, there is the possibility to
administer cell-based gene therapy in very young individuals in whom the ability of MSCs
to engraft in bone after injection seems much higher than in adults (78). It is also possible to
contemplate in utero delivery, where engraftment rates seem particularly high (79, 80).

4.2. Long Bone Healing
As noted above, there is convincing proof of principle in animal models that gene transfer
can be successfully used to heal segmental defects in bone (81). Most experimenters have
used BMP-2. The significance of this has recently achieved additional prominence with the
revelation that when used clinically to promote spine fusion, recombinant human BMP-2
causes a number of previously unreported adverse side effects, including osteolysis,
infections, boney overgrowth, radiculitis, malignancy, and retrograde ejaculation and other
urogenital events (82, 83).

Because of the problems associated with achieving the slow release of recombinant proteins
at sites of bone healing, Infuse™ deposits milligram quantities of rhBMP-2 directly into the
lesion. Most of this diffuses away within hours. Gene transfer, in contrast, achieves the
sustained secretion of nanogram quantities of newly synthesized BMP-2 in a local and focal
manner. It is highly likely that all the nascent BMP-2 is consumed locally, suggesting that
the adverse side-effects seen at distant anatomical locations when using Infuse™ will not
occur with gene transfer. Ironically, gene therapy thus may turn out to be safer than protein
therapy in this application. The major impediments to clinical application of gene therapy
are the lack of large animal studies, which are expensive and take a long time, and the
restrictive regulatory environment (13, 84).
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5. SAFETY
Clinical application of gene therapy, especially for non-lethal diseases, is hindered by its
pervasive reputation for being unsafe. This is more perception than reality. Table 7 lists the
known cases of the death of a subject in a gene therapy trial (14). Of these 4 instances, only
2 were attributable to gene transfer. Given that over 1,700 human gene therapy trials have
been initiated, this is a remarkably low mortality.

The use of viral vectors makes a major psychological contribution to the belief that gene
therapy is inherently more risky than non-genetic therapy. This is especially the case for
lentiviral vectors derived from HIV. It is often overlooked that non-genetic medicines can
have fatal side effects too. For example, at least 16,500 NSAID-related deaths occur each
year in the US among arthritis patients alone. It is likely that the first human gene therapy
trials in the context of this article will be for bone healing. Adenovirus is a probable vector,
which suffers from the epithet of being the vector that killed Jesse Gelsinger. However, in
this case an enormous amount of virus was infused directly into the liver. For bone healing,
a relatively small dose will be delivered locally and, if an ex vivo protocol is used, no viral
particles will enter the body.

6. CONCLUSIONS
Genes can be transferred to the bones of experimental animals with a number of different
viral and non-viral vectors using in vivo and ex vivo strategies. The choice of vector and
strategy are largely determined by the biology of the indication. For systemic, disseminated
diseases ex vivo strategies using modified osteoprogenitor cells that home to bone hold
advantages; for local application, in vivo or expedited ex vivo methods may be preferred.
Recombinant adenoviral vectors usually provide a high level of transgene expression for up
to 3 weeks in vivo and so are appropriate for short term need, such as providing a growth
factor to heal a fracture or supplying an agent to kill a tumor. Integrating vectors, such as
retrovirus and lentivirus, provide the potential for the long-term transgene expression needed
to treat a genetic disease. For clinical translation safety issues also determine the choice of
vector, with AAV and non-viral vectors favored in this regard. Given the widespread,
general concern about the safety of gene therapy it is worth noting that genetic delivery of
BMP-2 has the potential to be much safer than delivery of the large amounts of recombinant
protein presently administered in the clinic. However, gene therapy approaches to bone
healing are still hindered by incomplete understanding of how much BMP-2 is needed to be
produced and at what time(s) during the healing process.

Clinical application of gene transfer to bone is not yet on the near horizon, but certain
applications hold potential. Osteogenesis imperfecta is a rare Mendelian condition that could
benefit from gene therapy, especially as genetically unmodified MSCs have already been
used experimentally to treat patients. Bone healing, another possible application, has an
impressive body of supportive pre-clinical data in animal models using simple, readily
available technologies. In this case, the route to the clinic is less likely to be retarded by
science and technology, than by funding and regulatory issues. These are large, but under-
appreciated barriers to progress (13).
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Figure 1. Strategies for gene transfer to bone
There are two general strategies: in vivo (right hand side) and ex vivo (left hand side). For in
vivo gene delivery, the vector is introduced directly into the site of the osseous lesion, either
as a free suspension (top, right hand side) or incorporated into a gene activated matrix
(GAM) (bottom, right hand side). For ex vivo delivery, vectors are not introduced directly
into the defect. Instead they are used for the genetic modification of cells, which are
subsequently implanted. Traditional ex vivo methods (top, left hand side) usually involve
the establishment of cell cultures, which are genetically modified in vitro. The modified
cells are then introduced into the lesion, often after seeding onto an appropriate scaffold.
Expedited ex vivo methods (bottom, left hand side) avoid the need for cell culture by
genetically modifying tissues such as marrow, muscle and fat, intraoperatively and inserting
them into the defect during a single operative session.
From reference (81) with permission.
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TABLE 1

Disorders affecting bone addressed by gene therapy approaches

INDICATION COMMENT REPRESENTATIVE REFERENCES

Osteogenesis imperfecta A monogenic, dominant negative, genetic disease. Some progress in
silencing the mutant allele and restoring function. Lack of efficient cell
homing to bone is a barrier to progress.

(69)

Osteoporosis Some encouraging pre-clinical data in animal models. Transgenes
delivered to sites where secreted factors will influence bone, or via
MSCs. Gene therapy superseded by advances with more conventional
therapies.

(24, 85–87)

Bone healing
 Fractures
 Osteoporotic fractures
 Non-unions
 Segmental defects
 Spine fusion
 Avascular necrosis

Considerable body of encouraging pre- clinical data, especially in
segmental defects and spine fusion.

(51, 81, 88, 89)

Tumors
 Osteosarcoma
 Ewing’s

Research in this area is at an early stage. The translocations in Ewing’s
provide targets for siRNA.

(90–92)

Osteolysis
 Cancer induced
 Aseptic loosening

Transgene not delivered to bone, but to sites where secreted factors will
influence bone formation/lysis or inhibit reaction to wear debris. There
has been one clinical trial in aseptic loosening, targeting the
pseudosynovium around the implant.

(93–96)
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TABLE 2

Gene and protein therapy compared

Gene Delivery Protein Delivery

Use of viral vectors raises safety concerns Safety concerns are psychologically lower

Sustained, local delivery is possible Sustained, local delivery is difficult to achieve

Regulated gene expression, both temporally and quantitatively, is possible Very difficult to achieve regulated delivery

Protein is nascent and authentically processed Protein is usually stored and processing often inauthentic

Suitable for intra-cellular gene products (RNA and protein) Difficult to deliver proteins to intra- cellular
compartments

Therapy may only need to be delivered once For many indications, therapy needs repeated delivery

Potentially less expensive, because one gene can give rise to large number of
protein molecules

Ultimately, the method of choice for Mendelian disorders
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TABLE 3

Salient properties of the main viral vectors used in studies of gene transfer to bone

Parent virus Key properties of
w.t. virus

Advantages Disadvantages Comment

Adenovirus Double stranded
DNA genome, ~
35Kb

Straightforward production of
recombinant vectors at high titers

Inflammatory and antigenic Various generations
with increasingly
deleted genomes
“Gutted” vectors
have no viral coding
sequences and large
carrying capacity but
are difficult to
produce.

Non-enveloped Transduces non-dividing cells Tropism can be
modified by altering
coat proteins

Over 50 serotypes Wide choice of serotypes

Genome episomal in
infected cells

Adeno-associated virus Single-stranded
DNA genome, 4.8
Kb

Perceived to be safe (w.t. virus
causes no known disease)

Difficult to produce W.t. virus cannot
replicate without
helper virus

Non-enveloped Transduces non-dividing cells Carrying capacity is
insufficient for certain
applications

W.t. virus integrates
in a site-specific
manner; recombinant
virus remains as a
stable, concatameric
plasmid

Growing number of
serotypes identified

Thought to have low
immunogenicity, but this is being
re-evaluated

Transduction efficiency
sometimes low

Limitations of single
stranded genome
now overcome by
development of
double copy (self
complementing)
DNA viruses

Oncoretrovirus RNA genome ~ 8–
10 Kb

Straightforward production of
recombinant vectors at moderate
titers

Require host cell division Usually used ex vivo

Enveloped Pseudotyped vectors have wide
host range

Risk of insertional
mutagenesis

2 genomes per
virion, reverse
transcribed into DNA

Lentivirus RNA genome ~ 8–
10 Kb

Straightforward production of
recombinant vectors at moderate
titers

Risk of insertional
mutagenesis, but non-
integrating vectors being
developed

2 genomes per
virion, reverse
transcribed into DNA

Enveloped Pseudotyped vectors have wide
host range and are often very
efficient

w.t. = wild-type

Adapted from reference (97)
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TABLE 5

In vivo gene delivery to bone

Transgene Vector Model References

BMP-2 Adenovirus Rabbit femur segmental defect (42)

BMP-2 Adenovirus Infected rabbit femur segmental defect (49)

BMP-2 Adenovirus Rat femur segmental defect (43, 111, 112)

BMP-2 Adenovirus Distraction osteogenesis–rat mandible (113)

BMP-6 Adenovirus Rabbit ulna, horse metatarsal (44, 114)

BMP-2, BMP-9 Adenovirus Rat mandible (115)

BMP-4; COX-2; LMP-1 Retrovirus Rat femoral fracture (116–118)

VEGF Adenovirus Rat femur drilling (119)

VEGF Adenovirus Rabbit avascular necrosis (120)

BMP-9; BMP-2
BMP-2 + BMP-7

Adenovirus Rat spine fusion (121, 122)

BMP-6 Adenovirus Rabbit spine fusion (123)

BMP-7 Plasmid Rat spine fusion (124)

BMP-2 Adenovirus Sheep tibial defect (45, 46)

BMP-9 Plasmid (electroporation) Mouse radial non-union (125)

COX-2: cyclooxygenase-2
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TABLE 6

Gene delivery to bone using traditional ex vivo methods

Transgene Vector Model References

BMP-2 Adenovirus Rodent long bone (52, 59, 126)

IGF-1* Plasmid* (26)

VEGF Plasmid (55)

BMP-4 Retrovirus (53)

BMP-2 Lentivirus (54, 66)

FGF-2 Plasmid Rabbit radial defect (127)

BMP-2, -7 Retrovirus, Adenovirus Rodent cranial defect (128) (129)

BMP-4 + VEGF Adenovirus (130)

Cbfa1 Adenovirus (131)

Osterix Retrovirus (132)

LMP-1 Plasmid – liposomes Rat spine fusion (133)

BMP-7 Adenovirus (134)

BMP-2 Adenovirus (135)

BMP-2 Adenovirus; lentivirus (136)

BMP-2 Adenovirus Mouse spine fusion (137)

BMP-2 Adenovirus Rabbit spine fusion (135)

BMP-2 Liposomes, Adenovirus Rat mandibular defect (138)

LMP-3 Adenovirus (139)

Hepatocyte growth factor Adenovirus Avascular necrosis (140)

BMP-2 Adenovirus Goat Tibial defect (141, 142)

BMP-2 Adenovirus Horse Metatarsus/metacarpus Rib (143, 144)

BMP-2 Adenovirus Goat, avascular necrosis (145)

BMP-2 Adenovirus Pig, cranial defect (146)

BMP-6 Plasmid (nucleofection) Rat, vertebral defect (147)

*
stably transfected cell line
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