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Abstract
AMPA receptors (AMPARs) mediate the majority of fast excitatory synaptic transmission in the
brain. Dynamic changes in neuronal synaptic efficacy, termed synaptic plasticity, are thought to
underlie information coding and storage in learning and memory. One major mechanism that
regulates synaptic strength involves the tightly regulated trafficking of AMPARs into and out of
synapses. The life cycle of AMPARs from their biosynthesis, membrane trafficking and synaptic
targeting to their degradation are controlled by a series of orchestrated interactions with numerous
intracellular regulatory proteins. Here we review recent progress made towards the understanding
the regulation of AMPAR trafficking, focusing on the roles of several key intracellular AMPAR
interacting proteins.

Introduction
The mammalian central nervous system is comprised of the incredibly complex connectivity
between billions of neurons that are highly specialized for the fast processing and
transmission of cellular signals. Communication between neurons, each of which contains
thousands of synapses, underlies all basic and higher-order information processing essential
for normal brain function. The ability of neural circuits to strengthen or weaken their
connectivity forms a molecular basis underlying the experience-dependent changes in
adaptive behaviors.

Synaptic plasticity can be regulated at the presynaptic side by altering the efficacy of
neurotransmitter release, or on the postsynaptic side by changing the density, types and
properties of neurotransmitter receptors. AMPA receptors (AMPARs) are the principal
ionotropic glutamate receptors that mediate fast excitatory synaptic transmission in
mammalian brain. AMPARs are tetrameric assemblies of highly homologous subunits
encoded by four different genes, GluA1-4. The trafficking of AMPARs into and out of
synapses is highly dynamic and is regulated by subunit specific AMPAR-interacting
proteins as well as by various post-translational modifications that occur on their
cytoplasmic carboxyl terminal (C-terminal) domains. The regulated trafficking of AMPARs
is a major mechanism underlying activity-induced changes in synaptic transmission. In
general, increases in AMPAR function at synapses result in the long-term potentiation (LTP)
of synaptic strength, whereas removal of synaptic AMPARs leads to long-term depression
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(LTD) [1]. This review focuses on recent advances providing new insights into the
molecular control of AMPAR trafficking by proteins that directly interact with the
intracellular domains of GluA1 and GluA2.

AMPAR Structure and Subunit Composition
All AMPAR subunits consist of highly homologous extracellular and transmembrane
regions, but vary in their intracellular C-terminal domains. The GluA1, GluA4 and an
alternatively spliced form of GluA2 (GluA2L) contains long C-terminal domains, whereas
the GluA2, GluA3 and an alternatively spliced form of GluA4 (GluA4S) have shorter C-
terminal domains (Figure 1). Expression of these subunits is developmentally regulated and
is region specific. The C-termini of AMPAR subunits contains multiple regulatory elements
that are subjected to various post-translational modifications, including protein
phosphorylation, palmitoylation and ubiquitination. They also interact with scaffold proteins
that bind signaling molecules as well as cytoskeletal proteins. Hence, the C-terminal
domains of these subunits are crucial for the regulation of AMPAR function, including
channel gating, trafficking and stabilization at synapses [1,2].

AMPARs are assembled as two identical heterodimers with GluA1/2 being the most
predominant AMPAR subtype in hippocampal pyramidal neurons, followed by GluA2/3
heteromers [3]. The presence of GluA2 subunit has a profound impact on the biophysical
property of AMPAR heteromeric complexes such that the GluA2-containing AMPARs are
Ca2+-impermeable with linear current-voltage relationship while GluA2-lacking receptors
are Ca2+-permeable and have an inwardly rectifying current-voltage relationship. The
subunit composition of AMPARs also governs the rules of AMPAR trafficking. The long-
tailed AMPARs are important for the activity-dependent insertion of AMPARs to synapses
during synaptic strengthening, such as LTP, whereas the short-tailed AMPARs appear to
constitutively recycle in and out of synapses in the absence of activity, while internalization
of both forms of AMPARs occurs during activity-dependent synaptic weakening, such as
LTD [4].

AMPA Receptor Trafficking
The number of AMPARs at synapses is dependent on relative rates of exocytosis and
endocytosis at the postsynaptic membrane. Enhanced receptor exocytosis and recycling
occur during synaptic potentiation, while increased rate of endocytosis results in LTD [1,4].
The delivery of AMPARs to the synapse requires dynein- or kinesin-dependent transport of
AMPARs-containing vesicles (or endosomes) and SNARE-mediated fusion events at the
plasma membrane. Recent studies have identified myosinVa and Vb as the Ca2+-sensitive
motor proteins that deliver cargo vesicles containing AMPARs [5,6], as well as SNAP-23
and syntaxin-4 as the postsynaptic v- and t-SNAREs, respectively [7,8]. AMPARs are
inserted into the plasma membrane in the soma or dendrites at extrasynaptic sites and travel
to dendritic spines via lateral diffusion [9-11]. However, the exact site of AMPAR
exocytosis during LTP remains an ongoing debate. Several studies have reported that
AMPARs first appear exclusively in the dendrites and are subsequently incorporated into
synapses [12,13], while some have shown direct insertion of AMPARs both into spines and
dendrites [6,8,14].

On the other hand, clathrin- and dynamin-mediated endocytosis of AMPARs mainly occurs
at the somatodendritic plasma membrane as well as at endocytic zone (EZ) adjacent to the
postsynaptic density (PSD) following NMDA treatment [15,16]. Depending on the type of
stimulation, internalized AMPARs undergo complex endosomal sorting processes that direct
receptors either to recycle back to the plasma membrane or to be degraded by the lysosomal
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pathway [17,18]. Local endocytosis and recycling at EZ may provide a pool of mobile
AMPARs to maintain synaptic strength during LTP [19,20].

AMPA Receptor Interacting Proteins
As mentioned above, subunit composition of AMPARs determine the routes of AMPAR
trafficking, such that GluA1 is dominant over GluA2 during activity-dependent AMPAR
exocytosis, while GluA2 is the primary determinant during endocytosis and post-endocytic
endosomal sorting [1]. This differential regulation is mainly due to interactions of
intracellular C-terminal domain of GluA subunits with various components of the PSD and
their associated proteins that function during receptor internalization and exocytosis.

Synaptic Associated Protein 97 kDa (SAP97)
SAP97 belongs to the PSD95-like membrane-associated guanylate kinase (PSD-MAGUK)
protein family, which include PSD93, PSD95 and SAP102. Despite being the first protein
shown to bind directly to GluA1 C-terminal domain, the exact function of SAP97 has
remained elusive [21]. SAP97 also interacts with PKA anchoring molecule AKAP79 [22],
which may enhance GluA1 phosphorylation at Ser-845 that can regulate LTP [23].
However, SAP97 has also been shown to act early in the secretory pathway to facilitate
maturation of AMPARs [24]. While some studies have shown that overexpression of SAP97
increases AMPAR function at synapses [25,26], some have suggested otherwise [27,28].
Nonetheless, expression of SAP97 is able to rescue AMPAR transmission reduced by loss of
PSD95 and PSD93 function, suggesting a functional redundancy among PSD-MAGUK
members [27,29].

It has long been postulated that LTP activates CaMKII, which in turn phosphorylates GluA1
and other proteins that may interact with PDZ motif of GluA1 [1]. SAP97 is believed to play
critical role in AMPAR trafficking and LTP since it interacts with the PDZ motif of GluA1
and is targeted into spines upon CaMKII phosphorylation [30]. However, knock-in mice
lacking GluA1 PDZ motif show normal GluA1 synaptic localization and hippocampal LTP
[31]. This result is further corroborated by a recent study showing that SAP97 conditional
knockout mice have normal LTP [29]. Further study is required to determine the precise
function of SAP97 in AMPAR trafficking and synaptic plasticity.

Protein 4.1N
The actin cytoskeleton immobilizes glutamate receptors at synapses and plays a crucial role
in basal synaptic transmission and synaptic plasticity [32]. Protein 4.1N contains a spectrin/
actin-binding domain and binds directly to the membrane proximal region of GluA1 C-
terminal domain and regulate surface expression of GluA1 [33]. GluA1 and 4.1N interaction
is enhanced by PKC phosphorylation of GluA1 on Ser-816 and Ser-818 but is negatively
regulated by GluA1 palmitoylation on Cys-811 [10,34]. A recent study showed that acute
knockdown of protein 4.1N decreases the frequency of GluA1 plasma membrane insertion
on extrasynaptic sites and impairs the maintenance phase of LTP [10]. Although another
study showed normal basal synaptic transmission and LTP in 4.1N/4.1G double knockout
mice [35], recent results have shown that LTP maintenance is impaired in the 4.1N/4.1G/
4.1B triple knockout mice (Nils Brose, personal communication) indicating significant
functional redundancy in this family of proteins.

Glutamate Receptor Interacting Protein (GRIP)
GRIP1 and GRIP2 (also called AMPAR binding protein/ABP) are two homologous proteins
that contain seven PDZ domains and interact directly with GluA2/3 C-terminal domains
through their fourth and fifth PDZ domains [36,37]. The interaction of GRIP1 and 2 with
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GluA2/3 regulates the membrane trafficking and synaptic targeting of AMPARs and is
critical for several forms of synaptic plasticity. Interestingly, the binding of GluA2 to GRIP1
is disrupted upon GluA2 phosphorylation on Ser-880 and Tyr-876 [38,39]. Since GluA2
Ser-880 phosphorylation is crucial for the expression of LTD in both hippocampal SC-CA1
and cerebellar parallel fiber-Purkinje cell synapses, it has been hypothesized that detachment
of GRIP1 upon Ser-880 phosphorylation increases the internalization rate of AMPARs
leading to LTD [40-42]. Importantly, cerebellar LTD is completely absent in the GRIP1/2
double knockout mice [43].

Although GRIP1 and 2 are important for plasticity, how GRIP1/2 regulates AMPAR
trafficking is an active area of investigation. Early studies suggested that GRIP1 interaction
with kinesin heavy chain [44] and liprin-α, which binds to another kinesin-family member,
KIF1A [45,46], is important for AMPAR delivery to dendrites and synaptic targeting. Some
studies, however, suggested that GRIP1 might function to retain AMPARs intracellularly
[47,48]. Recently, several studies have reported a role for GRIP1 in regulating AMPAR
endosomal recycling. GRIP1 binding to neuron-enriched endosomal protein 21kDa
(NEEP21) promotes recycling of internalized AMPARs back to the plasma membrane
through the recycling pathway [49,50]. Disruption of GRIP1 and NEEP21 interaction
induces aberrant accumulation of AMPARs in early endosomes and lysosomes, reduces
GluA2 surface expression, which in turns abolishes the maintenance of LTP [49,51]. Live-
cell imaging analyses also reveal a delayed rate of AMPAR recycling following NMDA-
induced endocytosis when measured using a GluA2 mutant that can not interact with GRIP1
[52]. More importantly, AMPAR recycling is also slower in GRIP1/2 double knockout
neurons [53]. The interaction between GRIP1 and Sec8, a core component of the exocyst
complex, which has been implicated in AMPAR targeting and insertion to the plasma
membrane, could explain the recycling rate deficit seen in GRIP1/2 knockout neurons
[53,54].

GRIP1 also directly interacts with GRIP-associated protein 1 (GRASP-1), a neuron-specific
effector of Rab4 that regulates the directionality of AMPAR endosomal trafficking [55,56].
GRASP-1 facilitates the segregation of Rab4 from early endosomes and coordinates the
coupling to recycling endosomes by interacting with the endosomal SNARE syntaxin 13
[56]. Knockdown of GRASP-1 reduces activity-dependent recycling of AMPARs and
maintenance of late phase LTP in hippocampal slices [56]. Whether or not GRIP1 is
required for GRASP-1-mediated endosomal coupling still remains an open question. In
addition, a newly identified AAA-ATPase, Thorase, directly interacts with GRIP1 and
promotes the disassembly of GRIP1-AMPAR complexes in an activity-dependent manner
[57]. Genetic deletion of Thorase results in the reduction in AMPAR internalization,
impaired LTD as well as deficits in learning and memory [57].

Recently, a genetic study has identified a number of rare missense mutations within GRIP1
gene encoding PDZ4-6 in patients with autism [58]. They are gain-of-function GRIP1
variants as they accelerate the rate of AMPAR recycling and increase surface expression of
GluA2 in neurons [58]. Genetic ablation of GRIP1/2 abolished the expression of cerebellar
LTD [43], but more importantly these mice exhibit increased sociability and impaired
prepulse inhibition [58]. Together, these studies suggest critical roles of GRIP1/2 in
controlling AMPAR trafficking, synaptic plasticity and social behavior.

Protein Interacting with C-kinase 1 (PICK1)
PICK1 is a BAR domain containing protein that directly interacts with GluA2/3 C-terminal
domains through its PDZ domain [59]. It is well established that PICK1-GluA2 interaction
is required for both hippocampal and cerebellar LTD [40,60-63]. This has led to a model
whereby PICK1 drives synaptic removal of GluA2-containing AMPARs [64]. Elevated
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levels of intracellular [Ca2+] and increased PKC activity upon LTD induction result in
dissociation of GRIP1 and N-ethylmaleimide-sensitive factor (NSF) from GluA2 and
enhanced PICK1 binding to GluA2 and a vesicle fusion protein, β-SNAP to promote
internalization of AMPARs [65-67]. The binding of GluA2 is thought to induce a
conformational change in PICK1 into an “open” confirmation that enhances its interaction
with Arp2/3 complex and actin filaments [68]. This interaction may inhibit actin
polymerization, reducing tension on the plasma membrane allowing membrane bending
during clathrin-coated pit formation, potentially by the BAR domain of PICK1 itself.

Recent studies, however, have suggested an alternative function for PICK1 in retaining the
internalized AMPARs intracellularly [52,63,69,70]. PICK1 knockdown has been shown to
accelerate the rate of GluA2 recycling following NMDA stimulation and reduce intracellular
AMPAR accumulation [69,70]. The rate of AMPAR recycling is also increased in the
PICK1 knockout mice [52]. In line with these observations, PICK1 has been found to
localize in the early and recycling endosomes, and its colocalization with early endosomal
marker Rab5 is rapidly enhanced following NMDA stimulation [71,72]. Since the activity
Arp2/3 complex is required for the maturation and fission of endosomes, the recruitment of
PICK1 to the early endosomes could delay this process and prolong the retention of
intracellular AMPARs [73,74].

PICK1 has recently been shown to interact with KIBRA, a protein encoded by a memory-
associated gene in human [75]. Loss of KIBRA function phenocopies many defects in
AMPAR trafficking, synaptic plasticity and behavioral phenotypes seen in PICK1 knockout
animals [75], suggesting that KIBRA and PICK1 act within the same pathway to regulate
AMPAR trafficking. Interestingly, PICK1 and KIBRA, similar to GRIP1, also interact with
Sec8, a member of the exocyst complex. This suggests that the PICK1-KIBRA-Sec8
complex may interfere with the delivery of vesicles containing AMPARs from the recycling
endosomes to the plasma membrane. However, the precise molecular role of PICK1 in
regulating AMPAR endosomal trafficking is not clear.

PICK1 also plays a differential role in regulating the membrane trafficking of GluA2-
containing and GluA2-lacking Ca2+-permeable AMPARs (CP-AMPARs). Overexpression
of PICK1 reduces surface expression of GluA2 and facilitates the expression of CP-
AMPARs in cultured neurons [76]. Conversely, surface expression of CP-AMPARs is
decreased in PICK1 knockout neurons, while the levels of surface GluA2/3 receptors are
elevated [69,77]. Interestingly, specific forms of synaptic plasticity that dynamically
regulate the differential expression of CP-AMPARs at synapses are abolished in PICK1
knockout animals [77-79]. The exact mechanism on how PICK1 regulates the expression of
CP-AMPARs is unclear. Presumably, PICK1 might selectively retain the intracellular pool
of GluA2 during AMPAR endosomal trafficking hence regulating dynamic changes in CP-
AMPARs synaptic targeting. PICK1 may also delay the maturation of GluA2-containing
receptors in the ER and Golgi during biosynthesis of AMPAR [69,80].

Transient incorporation of synaptic CP-AMPARs has been observed at an early stage of
hippocampal LTP induction and loss of PICK1 function has been reported to prevent the
expression hippocampal LTP [62,81]. However, the recruitment of CP-AMPARs during
LTP is controversial [82,83] and the role of PICK1 in LTP appears to be complex [61,70]. A
systematic study in PICK1 knockout mice has revealed a selective requirement of PICK1 in
hippocampal LTP in an induction protocol- and an age-dependent manner [61]. Loss of
PICK1 has no significant effect on synaptic plasticity in juvenile mice but impairs some
forms of LTP in adult mice. In support of this observation, hippocampal-dependent
inhibitory avoidance learning is impaired only in adult knockout mice.

Anggono and Huganir Page 5

Curr Opin Neurobiol. Author manuscript; available in PMC 2012 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N-ethylmaleimide-sensitive factor (NSF)
NSF, an essential component of SNARE-mediated fusion machinery, directly binds to the
carboxyl-terminus juxtamembrane region of GluA2 [84-86]. This interaction is required for
direct insertion of GluA2 into the plasma membrane, as well as its rapid incorporation and
stabilization at synapses [87,88]. In agreement with these observations, disruption of GluA2-
NSF interaction causes a run-down in AMPAR-mediated synaptic currents [84,85,89,90].
Likewise, the binding of polo-like kinase-2 to NSF is sufficient to disrupt GluA2-NSF
interaction and induce removal of surface GluA2 [91]. Moreover, infusion of peptides that
disrupt GluA2-NSF interaction inhibits PKMζ-induced synaptic potentiation [92] and
formation of fear memory in lateral amygdala [93].

NSF appears to participate in AMPAR endosomal forward trafficking, in part by regulating
the interaction between GluA2 and PICK1 in a Ca2+-dependent manner [66,67]. Under basal
low [Ca2+] condition, NSF interaction with GluA2 may reduce intracellular retention of
GluA2 by PICK1, and hence maintain constitutive recycling of GluA2 and stabilize
AMPARs at synaptic sites. GluA2 mutant devoid of NSF binding exhibits a greatly reduced
recycling rate upon NMDA stimulation and is mis-sorted into NEEP21-negative endosomes
and late endosomes [18,52,87]. On the other hand, elevated [Ca2+] during LTD decreases
NSF-GluA2 interaction, which in turns promotes GluA2-PICK1 interaction and prolongs
intracellular retention of internalized GluA2 in endosomal compartments. Conversely,
enhancement of GluA2-NSF interaction through S-nitrosylation of NSF in response to
glycine stimulation increases surface expression of GluA2 [94].

AP-2 and BRAG-2
AMPAR internalization is mediated by dynamin-dependent clathrin-mediated endocytosis
[1]. The μ2-subunit of AP-2 adaptor directly interacts with GluA2 C-terminus that overlaps
with NSF binding site [89,95]. This interaction is involved specifically in NMDA-induced
internalization of AMPARs and NMDA-dependent hippocampal LTD [89]. Recently,
BRAG2, which functions as a guanine-exchange factor for the coat-recruitment GTPase
Arf6, has been also been shown to interact with GluA2 C-terminal domain [96]. This
interaction is regulated by GluA2 phosphorylation on Tyr-876, and is important for mGluR-
induced internalization of AMPARs and mGluR-dependent LTD [96]. Interestingly,
activation of Arf6 triggers local increase in phosphatidyl-inositol (4,5)-bisphosphate, which
mediates the recruitment of AP-2 and formation of clathrin-coated vesicles at the plasma
membrane [97]. However, the cooperative action of BRAG2 and AP-2 in mediating
AMPARs internalization and LTD is yet to be determined.

Concluding Remarks
Cumulative evidence over the past two decades has placed AMPAR trafficking as a major
regulatory mechanism in controlling synaptic plasticity, learning and memory. The past few
years have seen a rapid progress in the field revealing the complexity of AMPAR trafficking
pathways (Figure 2). More importantly, the molecular details regulating AMPAR endosomal
trafficking and sorting have started to be elucidated through identification of new AMPAR
interacting proteins and study of genetically modified mice. Future studies concerning the
cross talk between various signaling pathways, intermolecular regulation between AMPAR
interacting proteins, and identification of molecular cues that determine the sorting of
AMPARs into distinct intracellular compartments under basal, stimulated and pathological
conditions are crucial to better understand mechanisms of AMPAR trafficking and
ultimately its role in higher brain function.
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Highlights

• Highly dynamic trafficking of AMPARs regulates synaptic strength and
plasticity.

• Subunit-specific AMPAR interacting proteins regulate receptor trafficking.

• Genetic deletion of AMPAR interacting proteins impairs synaptic plasticity,
learning and memory.
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Figure 1.
Structure of AMPAR and its direct interacting proteins. AMPAR is a tetrameric channel
assembled from two dimers of different subunits, such as GluA1/GluA2 and GluA2/GluA3.
Each individual subunit is composed of a large extracellular ligand-binding domain and a
short intracellular carboxyl-tail linked by four transmembrane domains. GluA1 C-terminal
domain contains type I PDZ ligand and directly interacts with SAP97, whereas GluA2 C-
terminal domain contains type II PDZ ligand and interacts directly with PICK1 and GRIP1.
In addition, GluA1 also interacts with protein 4.1N through its juxtamembrane region of the
C-terminus, while GluA2 interacts with AP-2, NSF and BRAG-2 through it C-terminus in a
non PDZ-dependent manner. Direct binding of AMPARs and these interacting proteins
regulates various steps in AMPAR trafficking.
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Figure 2.
Routes of AMPAR trafficking. AMPARs are assembled in the endoplasmic reticulum and
Golgi apparatus in the soma and are delivered into the dendrite via kinesin-dependent
vesicular trafficking on microtubule networks prior to their insertion to the plasma
membrane. Via lateral diffusion, surface AMPARs are incorporated into synapse and
stabilized by postsynaptic density scaffolding proteins. Mature AMPARs undergo
constitutive recycling through endosomal trafficking pathway. AMPARs are internalized
from the plasma membrane by clathrin-mediated endocytosis and traffic to the early
endosome. From early endosome, AMPARs can be delivered back to the plasma membrane
either directly (fast recycling) or through recycling endosome, or entering the degradation
pathway through late endosome. During LTD, the rate of AMPAR internalization outweighs
the rate of AMPAR exocytosis, resulting in reduced number of synaptic AMPARs.
Depending on the LTD stimulus, internalized AMPARs can either be retained in
intracellular compartment or be degraded in lysosome. Conversely, during LTP, AMPARs
are constantly delivered to the plasma membrane to induce early burst and long-term
maintenance of synaptic potentiation. Under certain LTP stimuli, recycling endosomes
containing AMPARs are directly inserted into dendritic spine exocytic domain, marked by
the presence of t-SNARE syntaxin-4. The dendritic spine microdomain also includes a
specialized endocytic zone, where AMPARs are rapidly internalized and recycled to provide
a large pool of AMPARs during LTP. These highly complex pathways of AMPAR
trafficking are tightly regulated by a series of orchestrated interactions with key intracellular
regulatory molecules. Disruption of AMPAR binding to its interacting proteins shown in this
diagram often leads to aberrant AMPAR trafficking, impaired synaptic plasticity and deficits
in learning and memory.
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