Table 4.
Cumulative Accuracy (%) | SVM setting | Parameters Used |
---|---|---|
84 | Unsealed | ClusterOnTime(%) clusterfreq3 clusterfreq8 clusterfreq9 |
80.8 | Unsealed | Spike Amplitude (pA) NumPeakslnCluster ClusterOnTime(%) freq3 clusterfreq1 clusterfreq2 clusterfreq3 clusterfreq5 clusterfreq6 clusterfreq7 clusterfreq8 wavelet5 wavelet7 |
80.7 | Easy | NumPeakslnCluster ClusterOnTime(%) freq2 clusterfreq2 clusterfreq7 clusterfreq8 wavelet2 |
80.7 | Easy | NumPeakslnCluster clusterfreq1 clusterfreq4 clusterfreq5 clusterfreq7 waveletl wavelet3 wavelet7 |
80.7 | Unsealed | Spike Amplitude (pA) Spike Frequeney (spikes per 4000 samples) NumPeakslnCluster ClusterOnTime(%) clusterfreq2 clusterfreq3 clusterfreq4 clusterfreq5 clusterfreq7 wavelet2 wavelet4 wavelet7 wavelet9 |
80.5 | Unsealed | NumPeakslnCluster ClusterOnTime(%) freq2 clusterfreq2 clusterfreq7 clusterfreq8 wavelet2 |
80.5 | Easy | Spike Amplitude (pA) NumPeakslnCluster ClusterOnTime(%) freq3 clusterfreq1 clusterfreq2 clusterfreq3 clusterfreq5 clusterfreq6 clusterfreq7 clusterfreq8 wavelet5 wavelet7 |
80.3 | Unsealed | Spike Amplitude (pA) NumPeakslnCluster ClusterOnTime(%) freq1 freq4 clusterfreq1 clusterfreq2 clusterfreq5 clusterfreq7 clusterfreq8 clusterfreq9 wavelet2 wavelet3 wavelet5 |
80.1 | Easy | Spike Width (Samples) ClusterOnTime(%) freq1 freq2 freq4 freq7 clusterfreq2 clusterfreq4 clusterfreq5 clusterfreq6 clusterfreq7 waveletl wavelet2 wavelet3 wavelet4 wavelet6 |
The SVM settings are as follows: Easy: Easy.py is a predefined python script that is distributed with LIBSVM to automatically determine a few of the adjustable parameters of the SVM. The script iteratively searches the SVM parameters (gamma, C) to specify the most accurate kernel. Scaled: Before training, both the training and testing datasets are scaled so all the parameters range from -1 to 1. This helps to prevent one parameter from overwhelming the SVM data. Unsealed: The SVM is trained with data that has not been scaled.