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Abstract
A better understanding of processes and mechanisms linking human aging with changes in health
status and survival requires methods capable of analyzing new data that take into account
knowledge about these processes accumulated in the field. In this paper, we describe an approach
to analyses of longitudinal data based on the use of stochastic process models of human aging,
health, and longevity which allows for incorporating state of the art advances in aging research
into the model structure. In particular, the model incorporates the notions of resistance to stresses,
adaptive capacity, and “optimal” (normal) physiological states. To capture the effects of exposure
to persistent external disturbances, the notions of allostatic adaptation and allostatic load are
introduced. These notions facilitate the description and explanation of deviations of individuals’
physiological indices from their normal states, which increase the chances of disease development
and death. The model provides a convenient conceptual framework for comprehensive systemic
analyses of aging-related changes in humans using longitudinal data and linking these changes
with genotyping profiles, morbidity, and mortality risks. The model is used for developing new
statistical methods for analyzing longitudinal data on aging, health, and longevity.
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1. Introduction
Age patterns of human mortality rates demonstrate remarkable regularities in different
populations: they decline in childhood, exponentially increase in adult ages, and tend to
decelerate and level off at the oldest-old ages. Demographers have developed a number of
parametric descriptions of mortality curves capturing all aspects of their variation with age
[1-4]. Biodemographers and gerontologists have aimed to explain observed features of
mortality curves using emerging theoretical concepts [5-12]. Since the chances of death are
affected by internal and external stresses challenging deteriorating defense mechanisms in
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an aging body, the shape of the age trajectories of mortality curves is likely to reflect the
average effects of such deterioration, as well as external influences. In other words, if one
wants to make conclusions about the aging process developing in individuals comprising the
population under study by investigating the age pattern of the corresponding mortality curve,
one has to develop a description of such a curve in terms of parameters characterizing the
processes which are likely to contribute to the shape of this curve. Such a description can be
done using models of aging-related changes represented in longitudinal data merged with
data on health and survival events.

Statistical methods for joint modeling of longitudinal and survival (time-to-event) data have
been developed during the past several decades using both frequentist and Bayesian
approaches (see recent reviews in [13-16] and references therein). Commonly, time-to-event
data are analyzed using the proportional hazards model and the usual approach to modeling
longitudinal data involves a mixed effects model [17] with the assumption that the random
effects or individual-specific parameters are normally distributed, see [18-21] among
others). Several papers have developed semiparametric approaches that do not rely on
normality of the distribution for the random effects or individual parameters (see, e.g.,
[22-26]). Further developments include modeling longitudinal data using a stochastic
process, either an (integrated) Ornstein-Uhlenbeck or Wiener process, that allows a more
flexible description of individual longitudinal dynamics and provides a better fit compared
to the usual random effects model (see, e.g., [27-32]).

To be useful as a tool for extracting new information, models of longitudinal data have to be
based on realistic assumptions and reflect knowledge and evidence accumulated in the field.
Epidemiological studies of risks of disease and death show that the conditional hazards of
such events considered as functions of given risk variables often have U- or J-shapes
[33-43], so the model of aging-related changes has to take this reality into account. The risk
variables as well as their effects on the risks of corresponding events experience aging-
related changes (different for distinct individuals) and are measured with certain periodicity
in longitudinal studies of aging, health, and longevity. Such data make it possible to evaluate
regularities of aging-related changes and their effects on health and survival. An important
class of models for joint analyses of longitudinal and time-to-event data incorporating a
stochastic process for description of longitudinal measurements is based on this biologically-
justified assumption of a quadratic hazard (i.e., U-shaped in general and J-shaped for
variables that can take values only on one side of the U-curve) considered as a function of
risk factors (i.e., physiological variables). Quadratic hazard models have been developed and
intensively applied in studies of longitudinal data [44-48]. The advantage of this approach is
that it allows for incorporation of new insights and ideas appearing in the course of research
on aging. The prototype of a model discussed in this paper was suggested in [44]. Yashin
[45, 49] investigated conditions for preserving a Gaussian distribution property of the
stochastic covariates under the operation of conditional averaging, and found that model
[44] satisfies these conditions. An important property of this model is that the age trajectory
of the total mortality rate can be explicitly represented in terms of the first two moments of
the conditional distribution of the processes involved in the description of the conditional
mortality risk. This property, as well as its flexibility in describing age trajectories of factors
affecting conditional risk, make this model a valuable tool for studying aging, health, and
longevity using longitudinal data.

Despite the availability of efficient statistical methods for analyzing longitudinal data, and
considerable progress in understanding various aspects of human aging, health, and
longevity, many facts and research findings remain largely disconnected. Researchers
working with data on aging usually deal with small portions of information used for
addressing specific research question using standard statistical methods. Such methods,
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however, largely ignore available knowledge, new research findings, and emerging
theoretical concepts about aging in the process of data analyses. As a result, the potential of
many large longitudinal datasets, as well as the knowledge accumulated in the field, remains
underused.

Progress in this area would be substantially facilitated if researchers had a tool for analyzing
the wealth of available data and were able to incorporate important facts, research findings,
and emerging theoretical concepts in the analyses. Several such concepts capable of
capturing fundamental features of aging-related changes are currently under development.
They are related to the notion of allostatic load [50], the decline in adaptive capacity
(homeostenosis) [51-54], the decline in resistance to stresses [5, 55-57], aging-related
physiological norms, and heterogeneity in longitudinal data.

In this paper, we describe a mathematical model for analyzing longitudinal data on aging,
health, and mortality that incorporates the four concepts of aging described above (i.e., the
notions of age-dependent physiological norms, allostatic load, adaptive capacity, and
resistance to stress), review applications of this model to analyses of longitudinal data, and
investigate its potential for performing more comprehensive analyses of such longitudinal
data.

An initial version of such a model was suggested in [58]. Its various extensions have been
applied in different contexts to investigate mechanisms of aging-related changes in
connection with morbidity/mortality risks. This includes analyses of age trajectories of
different physiological indices (such as blood glucose, body mass index, cholesterol,
diastolic blood pressure, hematocrit, pulse pressure, and pulse rate) in relation to mortality/
morbidity risks [59-62]; applications to “indices of cumulative deficits,” which have proved
to be useful for analyses of a wide spectrum of information in relation to health- and aging-
related changes and better characterize the aging phenotype than chronological age [63]; and
analyses of trajectories of medical costs in relation to mortality risks [64]. Extended versions
of this model also have been used in analyses of dependent competing risks [65, 66],
heterogeneity in longitudinal data [67], analyses of genetic effects on age trajectories of
physiological indices [68], joint analyses of individual health histories and physiological
aging [69], and joint analyses of data collected using different observational plans [70].

2. Model
2.1. General description

To analyze longitudinal data on age-dependent changes in physiological states, we propose a
dynamic model describing the trajectories of the individual physiological variables and their
influence on mortality risks, which have the J-, or U-shape considered as a function of risk
factors [71]. Let Yt (where t is age) be a k-dimensional stochastic process describing a
continuously changing vector of risk factors/covariates (e.g., physiological variables), and Z
be a vector of time-independent observed covariates (e.g., person’s genetic background). We
specify the risk function or conditional hazard of death in the form

(1)

Here μ0(t, Z) is a background hazard characterizing the mortality rate that would remain if
the vector of covariates Yt followed the optimal trajectory coinciding with f0(t,Z). “T” in (1)
and in formulas below denotes the transposition of the noted vectors or matrices. The matrix
Q(t,Z) is a non-negative-definite symmetric matrix of dimension k × k. We use column
vectors throughout; thus, the transposition to row vectors in (1) is needed to produce a scalar
quadratic term in the hazard rate. The one-dimennsional version of (1) is

Yashin et al. Page 3

Phys Life Rev. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(2)

μ is some non-negative function of age, t. The U-shape of the risk function may change with
increasing age. This is important because the narrowing of the U-shape for some risk factor
with age captures the age-related decline in resistance to stresses associated with changes in
this factor.

The age trajectory of a physiological variable, for which the minimum value of the risk
function is reached, is called the physiological norm. We allow for the norm to be a function
of age.

Temporal changes in the vector of risk factors Yt are described by a diffusion type stochastic
differential equation:

(3)

with intial condition Y0. Here Wt is specified as a vector Wiener process with independent
components, which describes exogenous challenges affecting these covariates. The process
Wt is assumed to be independent of the initial vector Y0 and covariate Z with normally
distributed components. Note that such a model preserves the Gaussian property: in the case
of an initial Gaussian distribution for Y0, i.e., in the case that the vector of risk factors
observed/measured at the initial wave of a longitudinal study is distributed as a Gaussian
random variable, the distribution of Yt among survivors is also Gaussian [45, 46, 49]. Thus,
our assumption of a Gaussian initial distribution defines the structure of the entire process
Yt. The strength of disturbances of Wt is characterized by a matrix of diffusion coefficients
b(t,Z).

The vector-function f1(t,Z) (with the same dimension as the vector Yt) describes a trajectory
of physiological states that organisms subject to allostasis [72] are forced to follow by the
process of adaptive regulation at age t. Allostasis is the process of individual adaptation to
persistent external disturbances aimed at achieving stability, or homeostasis, through
physiological or behavioral change.

The trajectory of Yt reflects aging-related changes in the organism’s functioning due to the
average effects of a complicated interplay among the ontogenetic program, senescence, and
environmental stresses. Persistent external or internal disturbances affect age trajectories of
the physiological indices. This is called the effect of allostatic adaptation. Taking into
account this effect is especially important in analyses of longitudinal data in which
measurements of external disturbances are absent or limited. The effects of allostatic
adaptation produce deviations from the norm in the trajectories of the process Yt. The
magnitudes of such deviations for each physiological index will be associated with
components of allostatic load.

Homeostatic regulation plays a fundamental role for living organisms and such regulation
needs to be included in the equation describing physiological changes. The dynamic model
(3) includes a description of negative feedback mechanisms with coefficients of homeostatic
regulation given by a matrix a(t,Z). According to (3), the age trajectory of physiological
variables Yt will tend to follow the function f1(t,Z), i.e., adapt to changes in f1(t,Z) (the
absence of such negative feedback mechanism would allow the trajectories to deviate from
f1(t,Z) indefinitely, which is biologically implausible). The ability to adapt depends on the
absolute values of the coefficients that are components of the matrix a(t,Z). Age-related
changes in these coefficients characterize changes in adaptive capacity with age.
Specifically, the elements of the matrix a(t,Z) regulate the age trajectories of the components
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of the physiological state approximated by the vector Yt, i.e., they characterize the rate of
the adaptive response for any deviation of a physiological index from the state f1(t,Z) which
an organism tends to follow. An important feature of aging – the decline in adaptive
capacity – has never been measured directly in longitudinal studies of aging, health, and
longevity before. The use of the matrix a(t,Z) in our model allows us to evaluate this effect.
For example, in a simplified one-dimensional case, when b(t,Z)=0, for all t, in equation (3),
and constant negative a(t,Z)= a for all t, the parameter a is the coefficient of negative
feedback in the equation for Yt, which keeps the trajectory Yt close to f1(t,Z). When f1(t,Z)=
f1, constant for all t and Z, the value of Yt asymptotically approaches f1. In the case of non-
zero disturbances, the higher the absolute value of a, the closer Yt is to f1, and the faster Yt
tends to f1. That is why the value a(t,Z) characterizes adaptive capacity. When the absolute
value of the coefficient a(t,Z) declines with age, more time is needed for the trajectory of Yt
to approach f1(t,Z) at old ages compared to younger ages. Practical estimation of the
changes in adaptive capacity with age involves maximization of the likelihood function (6)
below, in which coefficients of matrix a(t,Z) are described as parametric functions of age.

The vector-function f0(t,Z) in (1) (or, correspondingly, the scalar function f0(t,Z) in (2)) is
introduced to explicitly characterize age-related changes in the “optimal” physiological state
corresponding to the minimum hazard at a given age. It represents the age-dependent norm
for a given functional state. It may differ from f1(t,Z) since the process of allostatic
adaptation does not necessarily result in the optimal physiological state. Thus, the difference
between f1(t,Z) and f0(t,Z) provides a measure of the allostatic load.

2.2. Estimation procedure
The model can be estimated using the maximum likelihood method. The survival function

associated with the life span distribution is , where the

marginal (unconditional) hazard  has the form (see [47, 65, 73]):

(4)

where Tr(·) denotes the matrix trace operator and m(u, Z) and γ(u, Z) satisfy the following
system of ordinary nonlinear differential equations:

(5)

with m(0, Z) and γ(0, Z) being the mean and the variance/covariance matrix of the
conditional normal distribution of the initial vector Y0, given Z. Note that in such a model
the conditional distribution of Yt among survivors is also Gaussian at any age t [45, 46, 49].
The mean and the variance/covariance matrix of this distribution at age t are given by m(t,
Z) and γ(t, Z ,), respectively.

Let the sequence  represent the results of measurements of the process Yt
and the life span (which may be censored) related to the ith individual. The conditional
likelihood function for N individuals is (see [47, 65, 73]):
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(6)

Here the superscript “i” denotes respective characteristics for ith individual, δi is a censoring
indicator, mi(t, Z) and γi(t, Z) satisfy equation (5) at the intervals

 with the initial conditions , respectively.

Here , and , and  is the age of the latest
measurement of a functional state before death/censoring at τi.

Maximization of this likelihood function is computationally extensive, because it involves
solution of the systems of ordinary differential equations (ODE) (5) for each measurement,
for each individual, and at each step of the likelihood optimization procedure. However, our
experience with these models is that such solutions are feasible on modern computers and
using modern statistical and technical software, e.g., MATLAB’s Optimization Toolbox and
ODE solvers, or SAS PROC NLP, implementing different optimization algorithms (such as
the Newton-Raphson or trust-region methods) and the Runge-Kutta method for the ODE
solution. The parameter estimates then characterize the dynamics of the stochastic process
Yt describing the trajectories of physiological aging, as well as changes in mortality risk
over age.

Note that the observed values  are used as initial conditions for differential
equations (5) at the beginning of subsequent intervals between the observation times.
Therefore, the individual trajectories of mi(t,Z) and γi(t, Z) differ even for individuals
having the same values of Z. Consequently the estimates of the chances of death for
individuals having different observed values of the respective covariates also differ.

In this version of the model, we assume that observations  do not contain
measurement errors. This assumption is not a serious problem when the model’s parameters
are used to characterize the entire population of study participants. In this case one random
process describes age trajectories of functional state in the population. The individual
trajectories are just sampling paths of this process, so the differences among individuals are
generated by the Wiener process and difference in values at the age at entry into the study.
This rough approximation is appropriate for evaluating and predicting population
characteristics (e.g., changes in distributions of aging, health, and survival indices in the
population in response to changes in health care policy, modification in Medicare services,
etc.). It, however, may be unsatisfactory in applications dealing with “personalized”
analyses when one is more concerned about the response of individual characteristics to
preventive measures or medical interventions. In this situation, one has to “track” individual
age trajectories of physiological states, i.e., use different model parameters to describe the
age trajectories of the functional states for different individuals. In such individualized
applications, taking the measurement error into account could be an important issue. The
model can easily be extended to this case. The random process described by equation (3) can
be personalized, i.e., (ideally) each individual can be characterized by his/her own stochastic
process independent of the processes describing the other individuals.

Since the conditional distribution of Yt among survivors is Gaussian, whereas most of
physiological indices that can be represented by Yt are positive, and because the model’s
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characteristics have to be biologically interpreted, appropriate constraints on the parameters
of the model are necessary in the estimation procedure. In particular, a) the distribution of
Y0 should guarantee a negligible probability of negative values; b) the functions f1(t,Z) and
f0(t,Z) should have non-negative values for each age; c) the absolute values of feedback
coefficients in the matrix a(t,Z) in (3) should not become too small for the trajectories of Yt
to tend to f1(t,Z)); d) the background hazard μ0(t, Z) should have non-negative values for
each age and a non-decreasing age pattern; and e) the matrix Q(t,Z) should remain non-
negative definite for each age. Our practical experience with these models shows that such
constraints usually do not impose limitations in applications of models to real data. An
alternative approach would involve the use of the geometric Brownian motion (GBM) for
description of trajectories of physiological variables. GBM is, for example, the most popular
model used in financial mathematics for description of stock price dynamics (see, e.g., the
works by Samuelson [74], Black and Scholes [75], and Merton [76], and numerous
developments and applications of this theory in the later decades). GBM ensures that the
modeled trajectories are non-negative, which is the desired property for trajectories of
physiological variables. Such considerations, however, are beyond the scope of this paper.

2.3 Simulation studies
We generated 100 datasets with data on life spans and a hypothetical physiological index
(mimicking pulse pressure) for 5,000 individuals in each dataset. We followed individuals
for 56 years with 28 biennial observations of physiological indices, with ages at entry to the
study uniformly distributed over the age interval [30, 60]. Individuals with life spans
exceeding the age at entry plus duration of the follow-up period (56 years) were considered
censored at this age. Such a data structure is similar to the Framingham Heart Study original
cohort data [77, 78]. We estimated the one-dimensional version of the model (equations (2),
(3)) with a constant diffusion coefficient (function b), σ1, linear functions of age (t) for the
quadratic hazard term (function μ1), the adaptive capacity (i.e., the negative feedback
coefficient a), and the physiological “norm” (function f0): μ1(t) = aμ1 + bμ1t, a(t) = aY +
bY(t - 30), f0(t) = af0 + bf0(t - 30), and a Gompertz function for the baseline hazard: ln μ0(t)
= ln aμ0 + bμ0(t - 30) (note that for simplicity all these characteristics are assumed
independent of covariates (Z)). The “allostatic trajectory” (function f1) was assumed
dependent on age (t) and a dichotomous covariate Z (Z = (0, 1); P(Z = 1) = 0.5): f1(t, Z) =
af1 + bf1(t - 30) + βf1 Z. The initial value of the diffusion process for Yt, Y0, was assumed
normal, Y0 ~ N(f1(t0, Z), σ0), where t0 is the age at the baseline exam for the respective
individual. Initial values of the parameters are given in Table 1 in the row labeled True
Values.

The results of simulations are summarized in Table 1 and Figure 1. The simulations confirm
that the parameters of the models can be estimated with reasonable accuracy for a sample
size of this magnitude.

3. Discussion
In experimental studies of aging using populations of laboratory animals, the sensitivity of
the individual aging process to external disturbances (e.g., medical interventions), or genetic
manipulations often is evaluated by comparing empirical survival functions (or mortality
rates) constructed for populations in the experimental and control groups. Similarly, the
slope of the logarithm of the mortality curve at the adult and old ages often is interpreted as
the aging rate [79]. The limitations of such an interpretation have been discussed in a
number of papers. Yashin et al. [80] argued that the use of such a measure of the aging rate
may be misleading: the changes in the slope of the mortality curve may occur for many
other reasons having little to do with the aging process. For example, the slope could change
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as a result of changes in the heterogeneity distribution (e.g., distribution of frailty [81, 82]),
saving individuals’ lives by providing necessary medical help in cases of emergency, etc.
Analyzing changes in mortality rates in developed countries, Rozing and Westendorp [83]
came to the conclusion that recent progress in mortality reduction does not affect the slope
of the logarithm of the mortality curves (see also [80] and references therein for similar
observations). Koopman et al. [84] criticized the use of the slope of the logarithm of the
mortality curve as a measure of the aging rate and proposed, instead, the use of the age
derivative of the mortality rate as such a measure. Although the use of the derivative
overcomes some limitations of the slope measure, it could also be criticized because it does
not link changes in mortality with biological changes in the aging human body. Data on
many such changes affecting health and survival events are collected in longitudinal data.
That is why in situations characterized by the wide spectrum of longitudinal data and
findings on aging, focusing solely on the properties of the mortality curve and ignoring the
presence of other relevant information about aging-related changes affecting survival
chances is scientifically incomplete.

The need for the development of new models of aging, health, and mortality and for
describing their connection with traditional demographic models has been emphasized by
Manton and Yashin [48]. The connection between the Gompertz model of the mortality
curve with the model describing longitudinal data played an important role in better
understanding forces and mechanisms shaping the age pattern of the demographic mortality
rate (see [48] and references therein). This connection is described by the conditional
mortality rate in the form of a generalized Gompertz model:

(7)

where  is a vector of covariates Yt (e.g., physiological indices), t is age,  is a
(constant) matrix, and θ is the Gompertz exponential growth parameter [48]. In applications
of this model to longitudinal data, the estimated value of the parameter θ has always been
smaller than the corresponding parameter in a Gompertz model that does not include
information on covariates. The reduction of the exponential growth parameter has been
interpreted as an effect of measurements: the new (reduced) value of the parameter θ
characterized the unexplained component of aging-related increase in the mortality rate.
Versions of this model have been applied to several datasets.

For example, Manton et al. [71] applied the generalized Gompertz model in (7) to
longitudinal data from the first 18 biennial examinations of the Framingham Heart Study
(FHS) and compared the results with those obtained from the first 3 waves of the National
Long Term Care Survey (NLTCS: 1982, 1984, and 1989). The use of 10 cardiovascular
covariates in the FHS model reduced the θ-parameters from 9.4% to 8.1% for males and
from 10.0% to 8.1% for females. The FHS study population ranged from 30 to 60 years at
the start of the 34-year observation period; hence, the reduced θ-parameters implied that the
FHS mortality rates would double every 8.6 years if one were to hold the observed
covariates constant at their age-30 values.

The use of 27 ADL, IADL, and physical performance covariates in the NLTCS model
reduced the θ-parameters from 8.2% to 5.3% for males and from 9.1% to 4.8% for females.
The NLTCS study population was 65 years or older at each wave; hence, the reduced θ-
parameters implied that the mortality rates would double every 13.1 or 14.6 years (males,
females) if one were to hold the observed covariates constant at their age-65 values. The
relative reductions in θ and the corresponding increases in the doubling times were larger
for the NLTCS model, indicating that the NLTCS covariates explained more of the age-
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dependence of mortality than the FHS covariates explained. The differences were
attributable, in part, to the age patterns of several FHS covariates which reached peak values
near age 60, followed by declines at older ages [61].

The conditional hazard rate (7) in the one-dimensional version of the original model can be
represented as follows:

(8)

where μ0, μ1 and c are constants. The term (μ0 + μ1(Yi - c)2) in (8) describes one of the
parameters of the Gompertz mortality model explained by observations Yt. Thus, equation
(8) can be interpreted as providing a more detailed description of the Gompertz mortality
curve widely used in demography. In another interpretation, the term μ0eθt is interpreted as
the “optimal” Gompertz mortality rate which would be observed in an ideal situation when
Yt ≡ c. This representation clearly shows the limitations of the original version: (i) the
exponential multipliers in both components of the risk function are the same; (ii) the
minimum of the second (quadratic hazard) term is reached at a constant level of the
observed covariates.

In the generalized hazard model (1) described above, the covariates’ values minimizing the
risk function can change over age. This is a more realistic assumption since in epidemiologic
and medical practice specialists often use the notion of physiological “norm”, specific to a
given age. This age-dependent norm is explicitly included in the description of age
trajectories of mortality risk (compare equations (1), (2), and (8)). This allows one to
statistically test hypotheses about age dependence of physiological norms and verify such
dependence from available data. The modified hazard model (1) includes the earlier version
(8) as a particular case.

In the generalized model, the term μ0(t) can differ from the multiplier of the quadratic
hazard μ1(t) (we omit dependence of these functions on Z to make this case comparable
with (8)) which results in a completely new interpretation of these coefficients. The hazard
rate μ0(t) is associated with death from unmeasured factors. The risk μ0(t) must be smaller

than the total (demographic) mortality risk  calculated in the absence of observations on
risk factors. Therefore, μ0(t) characterizes the mortality remaining after all observed
covariates follow the “optimal” trajectory and its interpretation remains similar to that used
in the original model. In case of a Gompertz specification, both Gompertz parameters in

μ0(t) can be evaluated and compared with their values in . This model allows for
evaluating the gain in life expectancy when observed covariates follow normal age
trajectories.

The term μ1(t) clarifies the connections between senescence, longevity, and stress-
resistance. Indeed, the increasing pattern of μ1(t) indicates that the branches of the
respective U-shaped risk function get steeper, and the range of tolerant deviations of the
resultant risk factor from its “optimal” value becomes narrower with age, reflecting the
decline in stress resistance with age. Although many aspects of such connections have been
investigated in experimental animal studies [56], they have never been adequately addressed
in studies of human longitudinal data. Since the decline in stress resistance is an important
indicator of aging (senescence), the rate of increase in μ1(t) (not the slope of the logarithm
of the mortality curve) may characterize the rate of aging. More generally, the increasing
role of senescence in mortality risk could be captured by the widening pattern of the U-
shape of the relative risk, which would indicate a faster increase in μ0(t) compared to μ1(t).
An important methodological advance of the extended model is that it is transformed to a
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form where effects of senescence on survival, longevity, and disease development may be
evaluated from longitudinal data.

Taking into account the age dependence of the functions f1(t,Z), f0(t,Z), and a(t,Z) allows for
testing hypotheses about factors and mechanisms affecting the dynamic properties of the age
trajectories of physiological states. For example, one could test whether f1(t,Z) coincides
with f0(t,Z). The difference in these functions means that the processes of allostatic
adaptation in response to persistent external disturbances do not tend to minimize mortality
risk. One can also test the hypothesis about declines in “adaptive capacity” in the aging
human body and evaluate patterns of such declines. All such hypotheses can be tested using
the likelihood ratio test. For example, to test the hypothesis about the decline in adaptive
capacity with age, one needs to estimate the model first with a decline (say, a linear decline
with age in a(t,Z)) and then the model without such a decline (i.e., a(t,Z) is independent of
age), where all other functions (except a(t,Z)) are specified similarly in both models, and
compare the likelihood functions in these two models using the likelihood ratio test.

The use of observed fixed covariates Z in the functions f0(t,Z), Q(t,Z), a(t,Z), b(t,Z), and
f1(t,Z) makes the model more personalized. The notion of the “norm” may differ for
individuals carrying different alleles or genotypes, or having different histories of events and
processes experienced by an individual during the life course (e.g., diseases, environmental
exposures), etc. These indicate the need for developing a more general methodology, which
could incorporate individualized notions of “norms” and adaptive responses.

An important feature of the model discussed above is the preservation of the Gaussian
property in the operation of conditional averaging. If the distribution of risk factors at the
initial wave of observations, Y0, is Gaussian, the distribution of Yt among survivors is also
Gaussian. This allows for describing the probability distributions of dynamic covariates in
terms of the first two moments which satisfy ordinary non-linear differential equations. Note
that the Gaussian distribution allows for negative values of the risk factors to occur with
positive probability. Our studies show that in practice this property does not limit the
analyses. The model can also be used as two-moment approximation for the age trajectories
of covariates which follow non-Gaussian dynamics. In non-Gaussian cases, the model could
also be extended to include higher order moments (e.g., conditional semi-invariants).
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Highlights

• An approach to analyses of longitudinal data on aging, health, and longevity.

• Stochastic process models of human aging, health, and longevity is suggested.

• Incorporating state of the art advances in aging research into the model
structure.

• Model deals with resistance to stresses, adaptive capacity, and physiological
norms.
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Fig. 1.
Estimated (solid grey lines) and true (dashed black lines) trajectories in 100 simulated data
sets
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