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ABSTRACT
Objective To develop an algorithm for the discovery of
drug treatment patterns for endocrine breast cancer
therapy within an electronic medical record and to test
the hypothesis that information extracted using it is
comparable to the information found by traditional
methods.
Materials The electronic medical charts of 1507
patients diagnosed with histologically confirmed primary
invasive breast cancer.
Methods The automatic drug treatment classification
tool consisted of components for: (1) extraction of drug
treatment-relevant information from clinical narratives
using natural language processing (clinical Text Analysis
and Knowledge Extraction System); (2) extraction of
drug treatment data from an electronic prescribing
system; (3) merging information to create a patient
treatment timeline; and (4) final classification logic.
Results Agreement between results from the algorithm
and from a nurse abstractor is measured for categories:
(0) no tamoxifen or aromatase inhibitor (AI) treatment;
(1) tamoxifen only; (2) AI only; (3) tamoxifen before AI;
(4) AI before tamoxifen; (5) multiple AIs and tamoxifen
cycles in no specific order; and (6) no specific treatment
dates. Specificity (all categories): 96.14%e100%;
sensitivity (categories (0)e(4)): 90.27%e99.83%;
sensitivity (categories (5)e(6)): 0e23.53%; positive
predictive values: 80%e97.38%; negative predictive
values: 96.91%e99.93%.
Discussion Our approach illustrates a secondary use of
the electronic medical record. The main challenge is
event temporality.
Conclusion We present an algorithm for automated
treatment classification within an electronic medical
record to combine information extracted through natural
language processing with that extracted from structured
databases. The algorithm has high specificity for all
categories, high sensitivity for five categories, and low
sensitivity for two categories.

BACKGROUND AND SIGNIFICANCE
The electronic medical record (EMR) has tradi-
tionally been viewed by medical practitioners as
a place to document the medical care of their
patients, provide a record of billable services, and
protect the legal interests of both patients and
healthcare providers. A less appreciated purpose of
the EMR is its potential for medical research. A
broad EMR implementation will result in the

accumulation of vast quantities of patient data that
can be mined to improve the quality, safety, effi-
ciency, and efficacy of healthcare, and also advance
research and public health. These developments
will necessitate exposing enormous computational
and analytical tools directly to practitioners and
investigators. At the national level, the US Office of
the National Coordinator of Health Information
Technology (ONC) has emphasized the importance
of the use of information technology in healthcare
by leading the Strategic Health IT Advanced
Research Projects (SHARP)1 initiative. One of the
four SHARP projects focuses exclusively on
secondary data use of information arising from
EMR (SHARPn).2

Several national efforts, supported by the US
National Institutes of Health, demonstrate the
secondary use of the EMR for research purposes by
focusing on ‘developing, disseminating and
applying approaches to research that combine DNA
biorepositories with the EMR systems for large-
scale, high-throughput biomedical research’3 such
as the electronic Medical Record and Genomics
consortium3 4 and the Pharmacogenomics Research
Network (PGRN).5 Wilke and colleagues6 overview
the convergence of healthcare and genotyping
technologies. In a 2010 JAMA manuscript on the
association between CYP2D6 polymorphisms and
outcomes among women with early stage breast
cancer treated with tamoxifen, Schroth and
colleagues7 point out that the results of their study
‘once more underscore the need for high-powered
data sets.’ A major bottleneck is patient data
abstraction, traditionally a time-consuming, effort
intense review of patients’ medical records by
trained abstractors to find relevant phenotype
nuggets.
The EMR offers the computational environment

for automated or semi-automated information
extraction across data residing in structured data-
bases and in the free-text clinical narratives gener-
ated by the practitioners at the point of care.
Information extraction from structured databases
requires standard querying techniques, while
information extraction from the clinical narrative
calls for Natural Language Processing (NLP)
methods. EMR algorithms for high-throughput
phenotyping require merged information extracted
from multiple sources, for example, prescribing
systems, laboratory results, and clinical notes.
Many academic healthcare centers now recognize
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the secondary uses of the EMR by creating operational EMR
mirrors for research purposes as exemplified by the Mayo Clinic
Enterprise Data Trust (EDT)8 and Informatics for Integrating
Biology and the Bedside (i2b2) datamarts.9 In an August, 2011
JAMA editorial, Jha10 discusses the promises of the EMR,
emphasizing the importance of NLP as an enabling tool for
accessing the vast information residing in the EMR, and stated
that ‘federal government can play a helpful role by funding the
basic research needed to launch this field forward.’

Our study contributes to the growing body of research
demonstrating the secondary use of the EMR data enabled by
NLP methods for mining the clinical narrative and its integra-
tion with other types of EMR information. In this study, we
used the manually abstracted treatment regimens from a prior
breast cancer pharmacogenomic study to test the hypothesis
that automatically extracted information from the EMR orig-
inally created by the practitioner at the point of care, coupled
with computational techniques, is comparable to the infor-
mation found by traditional manual abstraction methods. Our
model study is part of a larger PGRN-supported breast cancer
pharmacogenomic study designed to evaluate the role of
genetic variation related to endocrine therapy, clinical
outcomes, and drug-related side effects. We chose this study as
a ‘model system’ because: (1) it is an example of medical
research combining large-scale genomic and phenotype data in
an attempt to advance breast cancer drug therapy; and (2) it
presents technical challenges typical for information extraction
from the EMR, specifically mining treatment events and
relating them temporally. The study objectives were: (1) to
develop an automated EMR endocrine breast cancer treatment
classification algorithm; (2) to measure the agreement between
the data abstracted by the algorithm and the traditional
manual abstraction method; and (3) to perform a detailed error
analysis to outline the next steps. The purpose of this study
was not to reach conclusions about the ‘pharmacogenetics’ of
the endocrine therapy of breast cancer, but rather to test an
enabling high-throughput EMR automated tool to obtain
endocrine treatment patterns.

MATERIALS AND METHODS
Patient cohort
The Mayo Clinic Breast Cancer study is an on-going cohort
study initiated in February 2001 at Mayo Clinic, Rochester,
Minnesota. Patients (women aged 18 years or over from
Minnesota, Iowa, Wisconsin, Illinois, North Dakota, and South
Dakota diagnosed with histologically confirmed primary inva-
sive breast cancer and no prior history of another cancer
(excluding non-melanoma skin cancer)) were enrolled within
6 months of diagnosis. Patients’ written informed consent was
obtained. All aspects of these studies were approved by the
Mayo IRB. The cohort used in this analysis consisted of 1507
women with stage I, II, or III breast cancer.

Manual data abstraction
A trained registered nurse abstracted the treatment information
for tamoxifen and/or aromatase inhibitor (AI) cycles from the
patient’s chart. Table 1 lists the relevant treatments. Informa-
tion for 14 cases was abstracted from paper histories, typically
notes from the local physicians who treated patients after the
patients returned to their homes. Based on the information in
these sources, each patient was assigned to one treatment
category:
Category 0: no tamoxifen or AI
Category 1: Tamoxifen only

Category 2: AI only
Category 3: Tamoxifen then AI
Category 4: AI then tamoxifen
Category 5: multiple AIs and tamoxifen cycles in no specific order
Category 6: no specific dates could be attributed to the AI and
tamoxifen treatment/s
Category 7: no confirmation of whether the patient has received
either tamoxifen or AI treatment.

Electronic medical record
The Mayo Clinic has utilized a comprehensive EMR since 2002.
Some EMR data types are the free-text clinical narrative gener-
ated by the practitioners at the point of care, laboratory results,
and the electronic prescribing database (Orders97) with fields for
drug name, generic drug name, prescription dates, dose, refills,
quantity, frequency, route, and duration. We used the research
mirror of Mayo’s EMR, the EDT.8 Orders97 provides a medica-
tion history as part of outpatient clinical notes and is a means to
enter prescriptions related to all types of services including
ophthalmology (eye glasses) and other general applications
(wheel chairs), in addition to medications.

Clinical Text Analysis and Knowledge Extraction System
(cTAKES)
cTAKES (http://ohnlp.svn.sourceforge.net/viewvc/ohnlp/trunk/)
is an open-source, general purpose, modular, extensible NLP
software for processing the clinical narrative.11 cTAKES applica-
tions to mining the clinical narrative are presented else-
where.12e15 cTAKES processes clinical notes and identifies the
following clinical named entity mentions (NEs): Drugs, Diseases/
Disorders, Signs/Symptoms, Anatomical sites, and Procedures.
Each discovered NE is assigned attributes such as text span,
ontology mapping code (UMLS,16 SNOMED CT,17 RxNorm18),
context (family history of, current, unrelated to patient), and
a negation indicator. Version 1.1.0 of the cTAKES platform
consists of the following annotators in this specific order:
< Sentence boundary detector, a wrapper around OpenNLP’s

sentence boundary detector,19 but trained on clinical data
< Rule-based tokenizer to separate punctuations from words
< Normalizer, a wrapper around LVG20 to standardize, for

example, morphologically different phrases with the same
meaning, for example, ‘infection,’ ‘infecting,’ ‘infects’
normalize to the same form of ‘infect’

Table 1 List of tamoxifen and aromatase inhibitor
medications

Tamoxifen drugs and synonyms
(yes/no inclusion in RxNorm)

Aromatase inhibitors
(yes/no inclusion in RxNorm)

Tamoxifen (yes) Arimidex (yes)

Fentamox (yes) Anastrozole (yes)

Nolvadex (yes) Aromasin (yes)

Emblon (yes) Exemestane (yes)

Tamofen (yes) Femara (yes)

Soltamox (yes) Letrozole (yes)

Oestrifen (yes)

Noltam (yes)

Fentamox (yes)

Tamox (no)

Tam (no)

Unified Medical Language System (UMLS; http://www.nlm.nih.gov/
research/umls/) 2009AB version of the RxNorm drug terminology (http://
www.nlm.nih.gov/research/umls/rxnorm/)

e84 J Am Med Inform Assoc 2012;19:e83ee89. doi:10.1136/amiajnl-2011-000295

Research and applications



< Context dependent tokenizer grouping tokens to create Date,
Time, Fraction, Range, Measurement, and PersonTitle groupings

< Part-of-speech tagger, a wrapper around OpenNLP ’s but
trained on clinical data. The module assigns a part-of-speech
label to each word

< Phrasal chunker, a wrapper around OpenNLP’s but trained on
clinical data to detect phrases such as noun phrases, verb
phrases, and prepositional phrases

< Dictionary lookup annotator which performs a permutational
lookup against a dictionary database. The permutations are
computed off the components within the user-specified
lookup window (usually the noun phrase)

< Context annotator based on NegEx21 to link information
with the patient or family members

< Negation detector based on NegEx to discover whether
a concept is negated or not

< Dependency parser to detect dependency relationships
between words22

< Module for the identification of patient smoking status: past
smoker, current smoker, non-smoker, smoker, unknown23

< Drug mention annotator populating a drug template
(described in the section entitled ‘Component one: informa-
tion extraction from the clinical narrative (document-level
treatment extraction)’).
cTAKES is built within the engineering framework of the

Apache Unstructured Information Management Architecture
(UIMA)24 which facilitates scalability, expandability, and
collaborative software development.

Treatment/drug classification algorithm
A multidisciplinary approach was required to develop the algo-
rithm that leveraged the knowledge of epidemiology, oncology,
pharmacogenomics, NLP, statistics, and software engineering
experts. The clinical notes for each patient from the date of their
breast cancer diagnosis (as established by the pathology test)
were extracted. The automated tool relied only on information
extracted from the EMR and had the four components as listed
below to combine information extracted from the free-text part
of the EMR using NLP techniques with information extracted
from structured databases through traditional queries.

Component one: information extraction from the clinical narrative
(document-level treatment extraction)
This component processed each electronic free-text clinical note
to discover treatment information. cTAKES functionality was
extended for the discovery of medication-specific attributes
(figure 1). Of note, optical character recognition was not applied
to the scanned local medical doctor documentation and paper

histories, hence information from them was not included in the
automated tool.
To extract information from the clinical narrative, we

extended the cTAKES information model with medication-
specific attributes such as frequency, route, and dosage and
developed a module to extract values from the free-text clinical
document. Figure 1 provides an example of values extracted by
cTAKES for a typical text string. The values for the drug-specific
attributes such as dosage, route, frequency, etc, are discovered by
scanning the text within a particular window (defined below)
and extracting values from within that window. Windows are
defined using two methods. The first method is designed to
extract data from a list-type format typically found in the
section entitled ‘Current/admission/discharge medications’;
thus this first window is delimited by new line characters. The
second method is designed to extract data from narrative
sections of the EMR and search for sentence boundaries. Each
sentence containing a medication mention becomes one window
from which the attribute values are extracted. If a sentence
contains multiple medication mentions, then the sequencing
pattern is taken into account and the closest attributes to the
particular drug mention are assigned to that mention. For
example, in ‘Aspirin 325 mg PRN, Tylenol 325 mg PRN,’ the
sequencing pattern is Drug mention, Strength, Frequency, hence the
Strength and Frequency attributes following the Drug mention are
assigned to that specific medication.

Extraction of associated code attributes
The associated code primary attribute is reserved for the
RxNorm18 code while the associated code secondary attribute
represents an additional mapping to medication classes, for
example, the National Drug File e Reference Terminology25

class. RxNorm terminology provides normalized names for
clinical drugs used in pharmacy management. Each drug links to
a unique code, for example, tamoxifen is assigned an RxNorm
code of 10324. RxNorm, however, does not provide a list of
unofficial abbreviations that practitioners might use in their
daily practice and care management documentation, for
example, the commonly used in clinical notes abbreviation
‘tam.’ The list of tamoxifen and AI medications consisted of 11
and seven items, respectively (table 1). Two terms (‘tam’ and
‘tamox’) not found in the RxNorm (UMLS26 version 2009AB)
were added to the dictionary.

Extraction of date attributes
Date attributes for each drug mention are extracted from the
free text through a pattern matching technique. The Date
attribute is populated with a spanned text date field which can
be associated with either the start or end date.

Figure 1 cTAKES expansion for drug-
specific attributes at the document
level.

Drug mention class

drug mention text : Drug Mention Element 

associated code primary: Associated Code Element 

associated code secondary: Associated Code Element 

context: Context Element 

negation: boolean 

start date: Start Date Element 

end date: End Date Element 

dosage: Dosage Element 

frequency: Frequency Element 

frequency unit: Frequency Unit Element 

duration: Duration Element 

route: Route Element 

form: Form Element 

change status: Drug Change Status Element 

strength: Strength Element 

Values extracted from text: 
Tamoxifen 20 mg po daily started on March 1, 2005 

drug mention text : Tamoxifen 

associated code primary: C0351245 

associated code secondary: null 

context: current 

negation: false 

start date: March 1, 2005 

end date: null 

dosage: 1.0 

frequency: 1.0 

frequency unit: daily 

duration: null 

route: Enteral_Oral 

form: null 

change status: noChange 

strength: 20 mg 
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Extraction of dosage attribute
Dosage refers to how many of each drug the patient is taking.
Any numeric text description or a number value adjacent to
a Strength or Frequency mention will populate Dosage with its
value. For instance, in the phrase ‘Take two 325-mg aspirin
tablets’ the ‘two’ would indicate the Dosage attribute and
‘325 mg’ would indicate the Strength.

Extraction of frequency attribute
Frequency describes how often the patient needs to take the drug.
It consists of a frequency number and frequency unit. Periodic
phrases coupled with numeric text values or number values
adjacent to Drug named entity, Strength, and Frequency terms
are discovered as Frequency. This also includes common Latin
terms (eg, ‘b.i.d.,’ ‘p.r.n.,’ and ‘qhs’) and hyphenated phrases (eg,
‘every-other-evening,’ ‘as-needed,’ and ‘once-a-day’).

Extraction of duration attribute
Duration represents how long the patient is expected to take the
drug. Phrases starting with terms like ‘for,’ ‘x,’ ‘continued,’
‘until’ and followed by periodic values, key hyphenated phrases,
and/or numeric text or number values are used for this term.

Extraction of route attribute
Route refers to the way that the drug is introduced into the
body. Phrases that are equivalent or synonymous of the
following are included: topical, oral, gastric, rectal, intrave-
nous, intra-arterial, intramuscular, intracardiac, subcutaneous,
intrathecal, intraperitoneal, transdermal, and transmucosal.

Extraction of form attribute
Form describes the physical appearance of a drug. Terms include
aerosol, capsule, cream, elixir, emulsion, enema, gel, implant,
inhalant, injection, liquid, lotion, lozenge, ointment, patch, pill,
powder, shampoo, soap, solution, spray, suppository, syrup, and
tablet.

Extraction of change status attribute
Change status refers to whether the medication is currently being
taken or not and the change associated with this. Its values are
started, stopped, increased, decreased, and no change. For example,
the extraction from ‘increased Zoloft from 5 mg to 10 mg’
results in two drug annotations: (1) Drug mention¼‘Zoloft,’
context¼current, change status¼increased, strength¼10 mg;
and (2) Drug mention¼‘Zoloft,’ context¼history of, change
status¼null, strength¼5 mg.

Extraction of strength attribute
Strength is a two word text span of, typically, number and unit.
It is subdivided into strength number and strength unit, for

example in the span ‘325 mg,’ 325 is the number and mg is the
unit.

Estimation of confidence in data extracted
A confidence metric that the medication has been prescribed is
used for the Impression/Report/Plan (I/R/P) and History of
Present Illness (HPI) sections based on the presence of drug-
related attributes near the drug mention. For instance, if the I/R/
P section contains ‘tamoxifen 20 mg daily,’ the presence of both
‘20 mg’ and ‘daily ’ boosts the confidence. Any drug-related
named entity will be assigned a base value of 0.05 for the
Confidence initially; however, this value will be set to 0.15 if there
is an adjacent Strength discovered. Additionally, 0.05 will be
added if the presence of the Dosage attribute is determined. This
value will increase with the addition of other drug elements if
discovered. ‘Confidence’ will increase by a factor of 1.3 if Form,
Route, or Duration attributes are found, and it will increase by
a factor of 1.5 if Frequency and Frequency Unit are discovered. The
maximum confidence would be just under 1.0 (0.989¼(0.05
+0.15)31.331.331.331.531.5) in the event that all elements
of the drug named entity were discovered (see figure 2 for
examples). The weights of these attributes are used to reflect the
scale of the likelihood that this attribute relates to a drug term,
so the presence of Form/Route/Duration is slightly less weighted
than Frequency/Frequency Unit. The ‘Confidence’ value threshold
that will determine if a mention will be extracted is 0.15 and
above. The confidence scaling was determined empirically based
on observations of the likelihood that a drug mention was
related to the patient and not a hypothetical general discussion.
The more detail about the drug mention, the higher the confi-
dence that the mention is related to a present or recent
prescription. In the absence of a medication dosage and strength
information, at least four other signature elements are required
to achieve the desired threshold. Figure 3 represents the resulting
scores when different signature elements are discovered and the
effect of each element on the final score (1.3 or 1.5 factor). The
only combination not represented in the figure would be a drug
mention with dosage and no strength, which is atypical.

Consideration of negation terms
The list of discovered medication mentions was additionally
pruned to filter out negated AI and tamoxifen mentions. We
extended the list of the negation words incorporated within the
generic cTAKES negation detection algorithm.21 Terms signaling
non-confirmed treatments included ‘suggest,’ ‘doubt,’ ‘discuss,’
‘decide,’ ‘recommend,’ ‘talk,’ ‘plan,’ ‘think,’ ‘consider,’ and
‘considers’ along with their variants. For example, in ‘I discussed

Figure 2 Confidence scores for five
examples.
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with the patient tamoxifen treatment,’ ‘tamoxifen’ is flagged as
a medication, but filtered out as it was in the context of
a discussion only and not a confirmed treatment.

Component two: information extraction from the medication
prescribing system
This component extracted prescription information from the
electronic prescribing database (Orders97) through standard
database queries. The same window used for the clinical notes
was applied to obtain all prescription entries starting 2 weeks
prior to the diagnosis of breast cancer to allow for slight devia-
tions in the date of diagnosis. The start date for an Orders97
medication was the time the medication was prescribed. As
typical for electronic prescription interfaces, Orders97 specifies
no end date.

Component three: information merging
This component unified the information from the first two
components to create the patient-level medication history. The
final patient-level start date for a medication was determined by
its first Orders97 entry if there was one, otherwise by the first
start date of that medication as discovered from the clinical
notes. If a start date existed for both the clinical document and
the Orders97 entry, then the Orders97 date was used, unless the
Orders97 date was more than 2 weeks earlier than the diagnosis
date for this particular patient. In the event that the Orders97
information was earlier than 2 weeks, the clinical document
date was used. The final end date for a medication was deter-
mined by the last stop date attribute if available, otherwise by
the date of the last mention within the clinical notes if there
was no 7+ month gap of inactivity. If there was a 7+ month
gap, then a new start/end cycle was begun. The 7-month
timeframe was considered the most reasonable from a clinical
practice standpoint in that 6-month intervals are most
commonly used for follow-up.

Component four: automatic treatment classification
This component applied the final logic based on the evidence
from the third component. The algorithm collapsed into one
category the data points for category 0 and 7 from the manually
abstracted data because the distinctions were not entirely clear.
Patients with no medication data are classified into category 0.

Evaluation metrics
We report results in terms of sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV).
Accuracy is the ratio between the total number of system
assignments that agree with the abstractor assignments and the
total number of cases.

RESULTS
A total of 96 833 clinical notes were identified for the 1507
patients, and 1384 (91.84%) patients had notes with at least one
medication mention. The clinical notes of 619 (41.07%) patients
contained at least one tamoxifen mention (6338 tamoxifen
instances; mean 10.24, median 7). The clinical notes of 539
(35.77%) patients contained at least one aromatase inhibitor (AI)
mention (6759 AI instances; mean 12.54, median 8). For patients
with any Orders97 orders (1378 patients (91.43%)), there were
a total of 20 323 medication orders. Overall, 510 (33.86%)
patients had at least one tamoxifen order (1337 tamoxifen orders,
mean 2.62, median 2) and 446 (29.54%) patients had at least one
AI order (1233 AI orders; mean 2.76, median 2).
Each clinical note document was processed through the

enhanced cTAKES to discover medications from the following
five sections: Impression/Report/Plan, History of Present Illness,
Current medications, Admission medications, and Discharge
medications. Processing took approximately 3 h and 15 min
(Dual AMD Opteron 248 processors (64 bit) with 16 GB system
RAM running the Linux-based Fedora Core 6 (64 bit) OS).
Manual data abstraction is estimated to proceed at a rate of 25
charts per week by an experienced registered nurse abstractor,
which for this study totals 15 weeks.
The accuracy of overall agreement for the results for treat-

ment classification was 0.925. For categories 0, 1, 2, 3, and 4, the
sensitivity and specificity ranged from 90.27% to 99.83%, while
the predictive values ranged from 80.00% to 99.93% with lower
results for categories 5 and 6 where complex treatment timelines
presented a challenge (table 2).
Due to time limitations, we randomly selected 131 (63.6%)

from the total of 206 disagreements between the automated
system and the traditional manual abstraction method for
review. Table 3 summarizes the disagreements. Some 73% (96
instances) were true algorithmic errors, and 27% (35 instances)
were not algorithmic errors, of which 11% (14 instances) were
due to the lack of data source access (eg, scanned documents or
paper histories), 8% (10 instances) were misses by the abstractor,
and 8% (11 instances) were disagreements due to the last manual
abstraction date. The algorithmic errors were related to the
discovery of complex temporality, medication attributes outside
of the window, and confidence metric assignment. The cut-off
date disagreements are such that the system abstracted infor-
mation from documents after the last manual abstraction date.

DISCUSSION
Within an EMR environment, we built an algorithm for mining
endocrine breast cancer treatment patterns that combines NLP
and standard database queries. The algorithm has high

Figure 3 Confidence scores for three
base states representing the drug
signature elements’ relative effect on
the confidence score. The first three
column groups represent the addition of
Form, Route, and Duration attributes.
The last two column groups represent
the addition of Frequency and
Frequency Unit attributes.
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specificity for all categories, high sensitivity for five of the
categories, and low sensitivity for two of the categories.
Approaches like ours could assist accrual of large EMR cohorts
for research as they are scalable and can be used both retro-
spectively and prospectively.

The EMR environment we used, EDT,8 is grounded in
interoperability principles such as Health Level 7 Standards to
‘improve care delivery, optimize workflow, reduce ambiguity
and enhance knowledge transfer among all stakeholders’
(http://www.hl7.org/). A direct implication of that

Table 2 Agreement results between the two methods: (1) traditional manual abstraction (manual
abstraction columns) and (2) automated tool combining information extracted from clinical free-text
through natural language processing with information extracted from an electronic prescribing system
(automated tool, all components rows)

Manual abstraction

True False Total Sensitivity Specificity
Positive
predictive value

Negative
predictive value

Category 0 and 7: no tamoxifen or AI treatment, or no confirmation for tamoxifen or an AI

Automated tool (all components)

True 573 36 609 99.83% 96.14% 94.09% 99.89%

False 1 897 898

Total 574 933 1507

Category 1: tamoxifen only

Automated tool (all components)

True 334 9 343 90.27% 99.21% 97.38% 96.91%

False 36 1128 1164

Total 370 1137 1507

Category 2: aromatase inhibitors only

Automated tool (all components)

True 305 25 330 91.59% 97.87% 92.42% 97.62%

False 28 1149 1177

Total 333 1174 1507

Category 3: tamoxifen followed by aromatase inhibitors

Automated tool (all components)

True 160 34 194 92.49% 97.45% 82.47% 99.01%

False 13 1300 1313

Total 173 1334 1507

Category 4: aromatase inhibitors followed by tamoxifen

Automated tool (all components)

True 16 4 20 94.12% 99.73% 80% 99.93%

False 1 1486 1487

Total 17 1490 1507

Category 5: multiple aromatase inhibitors and tamoxifen cycles in no specific order

Automated tool (all components)

True 4 1 5 23.53% 99.93% 80% 99.13%

False 13 1489 1502

Total 17 1490 1507

Category 6: no specific dates can be attributed to treatment, thus no sequencing timelines

Automated tool (all components)

True 0 0 0 0% 100% NA 99.73%

False 4 1503 1507

Total 4 1503 1507

Table 3 Distribution of manually reviewed disagreements (a sample of a randomly selected 131
disagreements from a total of 206 disagreements)

Treatment
category

Manually
reviewed:
algorithm
errors

Manually
reviewed:
errors related
to data access

Manually reviewed:
manual abstraction
misses

Manually reviewed:
evidence found after
the last abstraction date

Total manually
reviewed
errors

Category 0 and 7 25 0 3 9 37

Category 1 35 6 0 1 42

Category 2 18 2 4 1 25

Category 3 5 4 2 0 11

Category 4 0 1 1 0 2

Category 5 9 1 0 0 10

Category 6 4 0 0 0 4

Total 96 14 10 11 131
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implementation is the clear boundaries of the clinical note
sections enabling unambiguous phenotype extraction, for
example, limiting medication extraction to Impression/Report/
Plan, History of Present Illness, Current Medications, Admis-
sion Medications, and Discharge Medications sections. Such an
environment allows data sharing and phenotype extraction not
only across patients, but across institutions and healthcare
providers. Our approach is disease-agnostic and could be
applied to other diseases after a modification of the medication
dictionary. We also hope to contribute to a shift where each
practitioner starts to view the EMR as a valuable data resource
with a life that extends beyond purely patient care and
administrative tasks.

Our study emphasizes important technical challenges for
information extraction from the clinical narrative such as
clinical events temporality.27 Another challenge includes
incomplete event documentation. If there is insufficient
evidence and/or heavy reliance on background knowledge and
inference, the current NLP-based system does not have any
recovery functionalities.

CONCLUSION
Our goal in this study was to demonstrate a secondary and
meaningful use of the EMR data generated at the point of care,
coupled with information technologies for high-throughput
phenotyping for clinical translational research. We chose
a breast cancer pharmacogenomic study for our model system.
We showed that data harvested from the EMR in an automated
fashion are comparable to those manually abstracted by
a trained registered nurse abstractor. Next steps will include
the incorporation of additional modules for chemotherapy,
radiation therapy, breast cancer recurrence, and other types of
cancer diagnosis extraction as well as drugs that are CYP2D6
inhibitors, which are known to affect tamoxifen metabo-
lismdall these extracted from the EMR using NLP and stan-
dard database queries. Our hope is that studies like ours will
enable the EMR to achieve its full potential as an indispensible
analytical aid for both practitioners and biomedical investiga-
tors to improve patient care and accelerate translational
research.
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