Skip to main content
. 2012 Jun;19(e1):e13–e20. doi: 10.1136/amiajnl-2011-000741

Table 1.

Comparison of precision, recall, and F-measure obtained with stepwise regression (SW), elastic net (EN), logistic lasso (LL) and BOSS

Scenario Average precision Average recall Average F-measure
SW EN LL BOSS SW EN LL BOSS SW EN LL BOSS
A90 0.29 0.26 0.33 0.93 1 0.99 0.99 1 0.44 0.40 0.49 0.96
A70 0.28 0.35 0.45 0.78 0.93 0.89 0.89 0.80 0.42 0.48 0.57 0.75
A50 0.23 0.40 0.52 0.68 0.73 0.54 0.50 0.46 0.34 0.44 0.46 0.53
B90 0.35 0.28 0.39 0.95 1 1 1 0.98 0.52 0.43 0.56 0.96
B70 0.31 0.35 0.44 0.78 0.82 0.95 0.93 0.77 0.45 0.50 0.59 0.76
B50 0.26 0.48 0.59 0.83 0.63 0.68 0.61 0.47 0.36 0.49 0.52 0.58

Each value is the average across the 50 datasets simulated in each scenario. In terms of F-measure, BOSS performed better than the three reference methods (p<0.01, one-sided paired t test).