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ABSTRACT
Introduction Systematic approaches to dealing with
missing values in record linkage are still lacking. This
article compares the ad-hoc treatment of unknown
comparison values as ’unequal’ with other and more
sophisticated approaches. An empirical evaluation was
conducted of the methods on real-world data as well as
on simulated data based on them.
Material and Methods Cancer registry data and
artificial data with increased numbers of missing values
in a relevant variable are used for empirical comparisons.
As a classification method, classification and regression
trees were used. On the resulting binary comparison
patterns, the following strategies for dealing with
missingness are considered: imputation with unique
values, sample-based imputation, reduced-model
classification and complete-case induction. These
approaches are evaluated according to the number of
training data needed for induction and the F-scores
achieved.
Results The evaluations reveal that unique value
imputation leads to the best results. Imputation with zero
is preferred to imputation with 0.5, although the latter
shows the highest median F-scores. Imputation with zero
needs considerably less training data, it shows only
slightly worse results and simplifies the computation by
maintaining the binary structure of the data.
Conclusions The results support the ad-hoc solution for
missing values ‘replace NA by the value of inequality’.
This conclusion is based on a limited amount of data and
on a specific deduplication method. Nevertheless, the
authors are confident that their results should be
confirmed by other empirical analyses and applications.

Data deduplication refers to the process in which
records referring to the same real-world entities are
detected in datasets such that duplicated records
can be eliminated. The denotation ‘record linkage’ is
used here for the same problem.1 A typical appli-
cation is the deduplication of medical registry
data.2 3 Medical registries are institutions that
collect medical and personal data in a standardized
and comprehensive way. The primary aims are the
creation of a pool of patients eligible for clinical or
epidemiological studies and the computation of
certain indices such as the incidence in order to
oversee the development of diseases. The latter task
in particular requires a database in which syno-
nyms and homonyms do not distort the measures.
For instance, synonyms would lead to an over-
estimation of the incidence and thereby possibly to
false resource allocations. The record linkage
procedure must itself be reliable and of high quality
in order to achieve clean data (for measures
regarding the quality of record linkage methods see

also Christen and Goiser4). A number of other
important works have also investigated record
linkage.5e16

Missing values in record linkage applications
constitute serious problems in addition to the
difficulties introduced by them in areas in which
there is no necessity for computing comparison
patterns. In settings such as survey analysis missing
values emerge, for example, due to missing
responses or knowledge of the participants. Anal-
yses based on the data gathered can be biased in
this case because of unfilled fields, for example,
higher wages are less likely to be revealed than
lower ones. Papers that deal with missing values in
survey analysis are, for example, the ones of
Acock17 and King et al.18

In contrast, in record linkage of electronic health
records using personal data, the impact of missing
values is augmented because they occur in
comparison fields if any of the underlying fields has
a missing value. Therefore, missingness in record
linkage applications with a significant number of
NA values is not ignorable, ie, not random. This
non-randomness can also occur when blocking is
applied in order to reduce the number of resulting
record pairs: one or more features are selected as
grouping variables and only pairs with agreement
in these variables are considered. A comprehensive
survey regarding blocking is given by Christen.19

The distinction into missing completely at
random (MCAR), missing at random (MAR) and
missing not at random (MNAR) of Little and
Rubin20 is only relevant as a starting point. An
introduction to missing values in clinical trials
based on these distinctions is given by Molenberghs
and Kenward.21 Ding and Simonoff22 show that
the Little/Rubin distinctions are unrelated to the
accuracy of different missing-value treatments
when classification trees are used in prediction time
and the missingness is independent of the class
value. This holds for three of the four evaluated
datasets in our study (see next section). We give
a short overview of the notions in Little and
Rubin:20 MCAR applies when the probability that
a value of a variable is missing (NA) does not
depend on the values of other observed or unob-
served variables o and u, that is, P(NA | o, u) ¼
P(NA); MAR is present when the probability of NA
depends only on (the values of other) observed
variables, that is, P(NA | o, u) ¼ P(NA | o); MNAR
means that P(NA | o, u) cannot be quantified
without additional assumptions.
The most used technique for dealing with

missing values seems to be imputation, which
means to replace every NA by a value estimated
from the data available. Imputation can be point
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based or distribution based. In the latter case the (conditional)
distribution of the missing value is calculated and predictions are
based on this estimated distribution. Multiple (or repeated)
imputation generates some complete versions of the data that
are combined for final inference in a statistical setting. Regarding
further information on this variant we refer to Little and
Rubin.20

There is no internationally published systematic approach to
missing values in record linkage, as far as we know. Works such
as the ones by McGlincy23 or James24 do notdas their titles
might suggestddeal with the missing values in the matching
attributes but with predicting matches as such. The former
paper states that the ‘problem of missing links is similar to the
problem of non-response in surveys’, which renders missing
values in matching attributes out of sight. Our paper is meant to
serve as the base for future work regarding missing values in
record linkage.

Relevant papers regarding classification trees with missing
values are the papers of Ding and Simonoff22 and Saar-
Tsechansky and Provost.25 The former work investigates six
different approachesdprobabilistic split, complete case method,
grand mode/mean imputation, separate class, surrogate split,
and complete variable methoddto missing values and concludes
that treating missing values as a separate class (in this paper:
imputation with unique value 0.5) performs best when miss-
ingness is related to the response variable, otherwise results
exhibit more ambiguity. The authors use real datasets and
simulated datasets in which missing values are increased based
on MCAR, MAR and MNAR sampling. Among others, they use
a classification induction tree algorithm that is used in this paper
(ie, classification and regression trees (CART); see Methods
section). In the articles by Saar-Tsechansky and Provost25 a set of
C4.5-classification trees induced on reduced sets of attributes (ie,
reduced-model classification) exhibit the best results. For further
information regarding the classification-tree induction approach
C4.5 we refer to Salzberg.26 This reduced model classification is
compared with predictive value imputation (eg, surrogate-split
mechanism in CART; see Methods section) and distribution-
based imputation (eg, sample-based induction; see Methods
section) used by C4.5. Datasets with ‘naturally occurring’
missing values and with increased numbers of missing values
(chosen at random: MCAR) were considered. The authors
explicitly deal solely with missingness in prediction time. We
want to tackle the induction time as well.

This paper empirically studies the effect of different
approaches for missing values on the accuracy in a record linkage
setting in which classification trees are used for the classification
of record pairs as match or non-match. Our main aim is to
determine the best record linkage strategy on a large amount of
real-world data as well as on data based on them in which NA
values are manually increased. The number of the data items
considered in the evaluation is above five million, which is
unusually large for classification-tree settings: datasets in Saar-
Tsechansky and Provost25 have at most 21 000 items and Ding
and Simonoff22 perform classification with CARTwith at most
100 000 items (their implementation of CARTcannot cope with
more data in prediction time).

METHODS
Datasets
The data used stem from a German epidemiological cancer
registry with corresponding matching attributes listed in table 1.
The data were collected through iterative insertions since the
foundation of the registry in 2005. In the course of a mandatory

evaluation of the registry’s record linkage procedures we received
100 000 randomly sampled records dating from 2006 to 2008.
Record pairs were classified as ‘match’ or ‘non-match’ during an
extensive manual review in which several skilled persons were
involved. The resulting classification formed the basis for
assessing the quality of the registry’s own record linkage
procedure and served as a gold standard in the context of our
evaluations. While the methods presented in this paper rely only
on personal data such as name and date of birth, diagnostic
information (International Classification of Disease version 10
and O-3 codes) was considered in the review process to decide in
uncertain cases.
Record pairs were constructed and transformed into binary

comparison patterns. For instance, the record pair

( ‘Tim’ ‘Joe’ ‘Hanson’ ’03’ ‘07’ ’1982’ ’22765’ ‘m’
‘Tim’ ‘Hansen’ ‘Smith’ ’03’ ’07’ ’1982’ ’22767’ )

yields the binary comparison pattern (missing values are
replaced by 0).

1;0;0;0;1;1;1;0;0:

As a result of natural and local capacity restrictions
concerning memory and computation, blocking was used to
limit the amount of resulting record pairs. This means that the
amount of comparison patterns is reduced through imposition
of conditions concerning the agreement of attributes in record
pairs. Six blocking iterations with different conditions were run
in order to account for possible errors in the blocking variables.
The blocking iterations with corresponding attribute names are
listed in table 2. Equality of the first name and name in the
blocking procedure is based on a German phonetic code, called
‘Koelner Phonetik’.27 For instance, in block B, agreement on the
phonetic code of the first component of the first name and on
the day of birth is required. All resulting comparison patterns of
the six blocks A, B, C, D, E and F were merged together, resulting
in 5728.201 record pairs (and therefore comparison patterns)
that are non-matches and 20 931 record pairs that are matches.
When missing values are replaced by 0, there are 212 distinct

Table 1 Matching attributes

Comparison Name Description

cmp_firstname_c1 Comparison of first names (first component)

cmp_firstname_c2 Comparison of first names (second component)

cmp_lastname_c1 Comparison of names (first component)

cmp_lastname_c2 Comparison of names (second component)

cmp_bd Comparison of day of birth

cmp_bm Comparison of month of birth

cmp_by Comparison of year of birth

cmp_plz Comparison of postal code

cmp_sex Comparison of sex

Table 2 Blocking iterations and variables: columns stand for the
blocking steps as upper case characters and crosses in the cells indicate
that equality in the corresponding attributes (listed in the rows) is
required

Blocking iteration
A B C D E FAttribute

First component of first name x x x x

First component of name x x

Day of birth x x x

Month of birth x x x

Year of birth x x x

Sex x
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comparison patterns in the data (out of 512 possible patterns).
The most frequent pattern is ‘1011001000’, which occurs
1 811 626 times (note that blocking was used). The second most
common pattern is ‘1011000100’, which occurs 678 283 times,
the third most common pattern ‘1011010000’ occurs 662 743
times and so on.

Some 5 749 112 of the 5 749 132 patterns (nearly all) contain
at least one NA; regarding the attributes in detail:
cmp_firstname_c1 has 1007 NA values,
cmp_firstname_c2 has 5.645.434 NA values,
cmp_lastname_c1 has 0 NA values,
cmp_lastname_c2 has 5.746.668 NA values,
cmp_sex has 0 NA values
cmp_by, cmp_bm, cmp_bd have all 795 NA values,
cmp_plz has 12.843 has 795 NA values.

Besides these complete data, three further datasets are gener-
ated based on them. Two filters are used beforehand: (1) if an
attribute has more than 70% missing values it is discarded; (2)
an attribute with values that are equally likely in matches and
non-matches is omitted due to the lack of discrimination power.
Discrimination power is also low when in the underlying
comparisons of an attribute only a few values are being
compared. Applying these filters, the second name components
and the sex attributes are discarded. On the whole, the following
datasets are considered (the filters lead to the last three datasets):
< Real unmodified complete data (RealFull): Data with only 20

patterns that do not have NA values. This case represents
MNAR-missingness because the probability of NA in the
matching attributes cmp_firstname_c2 and cmp_lastname_c2
depends highly on the match status: NA values are more likely
in non-matches than in matches (combination possibility of
the underlying records is much more limited for matches,
which prevents the augmentation of NA values). This case is
used for two reasons: first, to demonstrate how the
approaches to missing values behave when the numbers of
NA values are very high and second, because the underlying
attribute-set is used in real-world applications.

< Real unmodified reduced data (RealRed): Data with reduced
attributes. Here, 14 644 patterns do have NA values. In
contrast to RealFull, this case demonstrates how the
approaches to missing values behave when the numbers of
NA values are relatively low.

< RealRed with 10% randomly generated NA values in
cmp_lastname_c1 (GenMCAR). This missingness is
MCAR. Here, 588 122 (10, 23%) patterns have NA values of
which 574 913 are due to NA values in cmp_lastname_c1.

< RealRed with NA-filling in cmp_lastname_c1 (GenMAR):
Based on to the sum of zeros (s) in a comparison pattern i,
the value of cmp_lastname_c1 is replaced by NA according to
the following conditional probability distribution: P(replace
value of cmp_lastname_c1 by NA in i |number s of zeros in i)
¼0.27+0.09*s, 0# s #7. The reason for using this discrete
probability distribution is twofold: every pattern should have
a significant probability for an NA-replacing (>0.2 but hot
higher than 0.9) and in the result we should have a dataset
with an NA-fraction in the comparison patterns that is, in
between the NA-fractions of the other cases. This missing-
ness is MAR. The results: 3 792 065 (65, 96%) patterns have
NA values of which 3 787 046 (65, 87%) are due to NA values
in cmp_lastname_c1.
Near-zero values of the correlations between match status and

missingness indicators for all attributes (0: value is not NA, 1:
value is NA) suggest that there is no relevant dependency of
missingness on the target attribute for the last three cases.

General remarks on record linkage
As hinted in the introduction, the goal of record linkage is to
remove synonyms in datasets while avoiding homonym errors in
that process. Record linkage requires the generation of record
pairs out of the single data items (feature space C) and the
subsequent creation of comparison patterns (gf : C 3 C / IRn).
Two classes of comparison patterns can be distinguished: binary
(g ˛ {0,1}n) and real valued comparison patterns (g ˛ [0,1]n).
The former class represents cases in which it only matters
whether attribute values are equal (gi ¼ 1) or unequal (gi ¼ 0).
Real valued comparison patterns exhibit similarity between
attribute values by using string metrics. The resulting compar-
ison patterns are further processed (ie, computation of weights)
in order to decide which patternsdand therefore which record
pairsdpertain to matches and which to non-matches. Yancey28

and one of our previous studies29 empirically show that the
usage of string metrics does not improve record linkage when
sufficiently many attributes are available. This is the main
reason why we can focus on binary comparison patterns in this
paper (resulting, for example, from encrypted data). Further
research in record linkage should consider missing values in real
valued comparison patterns as well.
Generalization and abstraction of the problem of record

linkage as object identification broaden the spectrum for further
models such as classification trees. They are non-probabilistic
alternatives to the frequently used probabilistic record linkage
methods based on the framework of Fellegi and Sunter.5 Clas-
sification-tree models seem eligible due to their good interpret-
ability and performance in record linkage and other settings (see
also Ding and Simonoff22 and Cochinwala30). In this paper, the
expression ‘classification tree’ is used synonymously with the
general expression ‘decision tree’.

Classification trees and active learning
For the classification of record pairs into matches or non-
matches, we use the classification-tree method CART as imple-
mented in the R-package ‘rpart’.31 32 First usages of classification
trees for the solution of the record linkage problem are presented
by Cochinwala30 and Verykios et al.33 Other papers that exploit
classification trees for record linkage are, for example, the ones
by Sarawagi and Bhamidipaty34 and Tejada et al35 or Sariyar
et al.29 For the usage of CART in record linkage using R we refer
to our R package RecordLinkage36 and a related article37 in
which all relevant functions for this paper are discussed.
Classification-tree models represent relevant information of

the data to be classified (in our case binary comparison patterns)
in a hierarchical structure. This representation of a hierarchical
structure is achieved by inducing a classification tree on labeled
training data. In most casesdas in CARTdonly binary classifi-
cation trees are generated. In the induction process of such
a binary classification tree, first a root is generated that contains
all training samples. This root node is split (ie, partitioned based
on one attribute and a corresponding split value) into two child
nodes according to some purity measure (we use the Gini
index),38 which quantifies the homogeneity of the target class,
for example, the relation of matches to non-matches, in the
resulting nodes. The values of every (matching) attribute are
examined and the split is performed according to that attribute
value that maximizes the purity. This process is continued
recursively until changes of the impurity measure reach a lower
bound or the number of objects in a node is lower than or equal
to a fixed minimum size. The edges of a classification tree
represent the conditions according to which the objects in
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parent nodes are allocated to their child nodes. The leaves
represent those classes to which the objects in these leaves are
assigned.

The most important algorithm for creating decision trees is
CART, developed by Breiman et al.31 The algorithm has
two steps: first a maximal tree with a very simple stopping
rule is generated. Afterwards, this tree is pruned to avoid over-
fitting. The second step is only necessary when there are
redundant attributes present. In order to improve and stabilize
the results of classification trees induced on different training
data, weighted aggregations of classification trees like bagging39

and boosting40 can be considered. One of our previous studies29

suggests that non-aggregating classification trees with nearly
maximal depth perform no worse than their aggregated variants
in record linkage settings; this is the reason for using CART in its
original form with parameters such that maximal height is
achieved.38

Possible ways for the acquisition of labeled training data are,
for example, the generation of artificial data, making use of data
from other but similar contexts or a manual review of a selection
from the data to be linked. To get a minimum amount of
informative training set from the data on hand, we use active
learning, a machine learning approach in which the user is asked
to label data with special characteristics (ie, high information
according to some measure), see, for example, Sarawagi and
Bhamidipaty.34 For the binary comparison patterns in our eval-
uations, a simple strategy is considered: each distinct compar-
ison pattern represents a stratum to which all identical patterns
belong; and from every stratum one item is randomly sampled.
As every stratum consists of the same patterns, the difference in
different samplings is only related to the matching status of the
patterns in the resulting training data. This strategy leads to
training sets of different sizes for the different approaches
presented below; therefore the comparability of results needs
some consideration. We will come to this issue more thoroughly
in the Discussion section.

Handling missing values in record linkage with CART
The solutions for missingness in prediction time are adopted in
induction time when not otherwise stated. Considering both
cases simultaneously reflects the fact that we want to find
a practicable and therefore integrated solution for record linkage
studies that use classification trees. Four approaches to handling
missing data that take all cases in prediction time into account
are used. The approaches are applied to all NA values in the
datasets (thus, also for multiple NA values). We consider the
following approaches:
1. Imputation with unique values. This is the standard ad-

hoc solution in record linkage settings. We use the results of
this simplistic solution as benchmark. NA values will on the
whole either be substituted by 0 (regarded as unequal), 1
(regarded as equal) or 0.5 (neither equal nor unequal). The
latter case is equivalent to the treatment of NA as a separate
class. Abbreviations: Imp0, Imp05, Imp1.

2. Sample-based Imputation. Using binary comparison
patterns facilitates this approach enormously. For all attri-
butes, the fractions of zeros and ones among all (in our case
5.728.201) comparison patterns are computed and NA values
are substituted by a value according to random sampling
from the resulting binary probability distribution. Abbrevia-
tion: SampImp.

3. Reduced-model classification. The comparison patterns
are partitioned such that each resulting group consists of
patterns with missing values in the same attributes. For every

partitioned set that consists of at least 1000 comparison
patterns (this limits the number of resulting partition sets to
5 and thus bounds computational costs), the matching
attributes containing NA values are dropped and trees based
on these reduced attribute sets are induced using the active
learning strategy described in the former section. Classifica-
tion of these patterns is based on the classification trees thus
induced. For all other patterns containing NA values, the
classification tree with the highest amount of agreeing non-
NA attributes is selected and if necessary the surrogate-split
mechanism of CART is used: for an NA another attribute is
used which yields similar splitting results as the primary
splitter.31 Abbreviation: RedMod.

4. Complete-case induction. Only patterns with no NA are
used in induction time. The resulting classification treed
generated based on these complete cases using again active
learningdis applied in prediction time for classifying all
patterns. For an NA the surrogate-split mechanism of CART
is used as in reduced model classification. Abbreviation:
ComplCase.
Connection between induction and prediction time is

accomplished by our active learning strategy, which is applied to
every dataset. Using training data from the data to be classified
implies that solutions for missing values affect both the training
and the test phase. Training data are not considered in the final
classification.
We use the example of the data section for a clarification of

the approaches to missing values. Without 0-replacing, we have
ð1;NA; 0; NA; 1; 1; 1; 0; NAÞ:

Imp0, Imp05 and Imp1 are straightforward; for instance,
Imp05 yields

ð1;0:5;0;0:5;1;1;1;0;0:5Þ:
In SampImp, we must first determine the binary probability

distribution. For the first attribute with an NA, let us assume
that it has 10 000 1s and 40 000 0s and 10 000 NA values (hence,
we assume 60 000 comparison patterns). Then, with probability
0.2 a 1 will be sampled and with probability 0.8 a 0 (the NA
values are not considered for the probability distribution). For
the other NA values the same procedure is applied and we could
have

ð1;0;0;1;1;1;1;0;0Þ:
For RedMod, let us assume that the example pattern occurs

more than 1000 times. In that case a classification tree for
patterns without the second, the fourth and the ninth attribute
exists and we can use the following pattern for classification (be
aware that the pattern is strictly linked to a specific omission of
attributes):

ð1;0;1;1;1;0Þ:
If the pattern (1, NA, 0, NA, 1, 1, 1, 0, NA) occurs less

that than 1000 times, a search for the classification tree with
the highest number of the agreeing non-NA attributes is
performed. A classification tree that is, for example, based on
patterns in which the second and the fourth attributes
are omitted gives the highest possible agreement and would be
used. If a split in that classification tree is based on the
ninth attribute, the surrogate split mechanism would be
necessary.
In ComplCase, we use the example pattern as such and hope

that the surrogate split mechanism will perform well for cases in
which splits are based on an attribute for which the pattern has
an NA.
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Evaluation measures
Outcomes of a record linkage procedure are designated as links
and non-links. Links and non-links follow from classifying
record pairs as representing matches and non-matches, respec-
tively. Due to the huge imbalance between matches and non-
matches the accuracy is not very informative as an absolute
measure. Instead, we use the F-score, which is the harmonic
mean of precision and recall):34

F ¼ 2$
precision$recall
precision þ recall

Recall (also called sensitivity) is computed as the fraction of
correct links among all matches. Precision is the fraction of
correct links among all links. The F-score combines accuracy and
comprehensiveness concerning the detection of matches. Listing
recall and precision values is only relevant when they show
considerable differences. This is not the case in our evaluations
due to the high quality of the data (ie, high discernibility
between matches and non-matches); therefore, their listing
would only overload the result presentation without adding
relevant information.

Due to random sampling of training data the classification
results can vary. As a consequence, the process of training data
sampling is repeated 25 times and the resulting F-scores are
plotted as boxplots. The number 25 is used, for example, as
default in the bagging function of R; experience shows that
stabilization of classification-tree results is often achieved
with that number of trees.39 41 The median F-scores are also
specified as decimal numbers in order to facilitate the overview
of the most effective approaches. The boxplots show the vari-
ation of the results (corresponding to CI). As there is no distri-
butional assumption and asymmetries of the frequencies are
highly probable (the boxplots show that the F-score distribu-
tions are indeed skewed), the median is used instead of the
mean.42

The amount of training data is listed for every missing value
approach and every dataset. Solely sample-based imputation on
dataset RealFull exhibits variation in the number of comparison
patterns that form the training data; variation is minor and
between 340 and 354, therefore we use the median (346) for final
analysis.

RESULTS
Figures 1e4 show the resulting boxplots, table 3 the number of
training data and table 4 the median F-scores. The figures illus-
trate that increasing the number of NA values impairs the
results. ComplCase on dataset RealFull constitutes an exception
because only six complete cases are available for the original data
and that is not enough for inducing a suitable classification tree.
ComplCase is therefore omitted from the corresponding boxplot
in figure 1. For the other methods, the results on RealFull and
RealRed are very similar, which confirms that the discarded
attributes do not discernibly contribute to the discrimination
between matches and non-matches. Comparison of figures 1e4
further shows that the approaches to the missing value problem
differ recognizably only when substantial numbers of missing
values occur in relevant attributes.

On all datasets imputation with value 0.5 exhibits the highest
median values. The superiority is only marginal and in contrast
to the other unique-value imputations this could be (at least)
partly ascribed to the higher amounts of training data. The
complete-case approach yields the worst results. One of the
obvious reasons is the concept of surrogate split of CART:
choosing the attribute that splits a node into similar child nodes

as the primary split significantly worsens the results in contrast
to the non-NA case, especially when the training data are as few
as in our study. In RedMod the results are not impaired in such
magnitude because surrogate splits are only used for the
remaining cases for which no classification tree is induced.
Sample-based imputation is never the best nor the worst

approach. It is remarkable that this holds as well on GenMCAR
in which the NA values are increased randomly. This again
confirms the observations and theoretical reasons concerning the
minor relevance of the MCAR/MAR/MNAR distinctions in
record linkage studies when classification trees are used.
In summary, the methods considered in this paper exhibit

similar F-scores on our real-world data. Therefore, the simplest
approach should be considered in practice. Because Imp05
increases the amount of training data to be manually classified,
the simplest solutions are either Imp0 or Imp1. Another
advantage of these is that the binary structure of the data is
maintained. For the purpose of generalizability Imp0 is to be
preferred. If NA values are augmented artificially for cmp_last-
name_c1, Imp0 is the second best method and only slightly
worse than Imp05. Hence, for simplicity reasons, Imp0 is the
method of choice.

DISCUSSION AND CONCLUSION
The outcome of our empirical evaluations does not confirm the
results of Saar-Tsechansky and Provost25 but those of Ding and
Simonoff.22 One reason for the differences to the former paper
can be ascribed to the validity of the MCAR assumption in that

Figure 1 Boxplots of the F-scores on the RealFull data.

Figure 2 Boxplots of the F-scores on the RealRed data.
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paper in contrast to its unlikeness in record linkage settings. In
both papers it is shown that the results are generalized to other
classification methods such as logistic regression. This is one of
the reasons why we are confident that our results could be
reproduced with other record linkage methods.

Unique value imputation works best on our data and the
pragmatic approach of replacing NA by 0 exhibits results that
are not worse than the computational far more costly reduced-
model classification. This is unusual for most other settings in
which unique value imputations are distinctly inferior to more
sophisticated approaches. A major exception is the paper22

concerning the imputation with 0.5 (own class for NA). But the
theoretical explanation of that paper is only valid for the Real-
Full case. The authors of that paper state that an own class for
NA is preferable when two conditions hold: missingness
depends on the values of the class variable, and this dependence
is present both in the training and in the test data. The last
condition is superfluous in our case because of our active
learning strategy, which selects training data from the data to be
classified. As mentioned above, we could not confirm the first
condition for the other datasets. Either the reasoning of Ding
and Simonoff22 has to be generalized in order to cover our results
or other theoretical bases are to be found. This is an interesting
and worthwhile task for future research.

Our strategy for selecting training data from each dataset to
be classified comes at the cost of different validation sets, which
impairs comparability of the classification results. One possible
alternative would be the determination of one uniform number
for the size of the training data: the largest set on any data for

any of the methods when the active learning strategy is applied.
This would guarantee more comparable results but would
counteract our aim of finding an efficient strategy with a small
amount of training data. Concerning our results, the optimal
accuracies of Imp05 could be a by-product of the larger training
sets in that case. Imp0 yields only slightly worse results with
a substantially smaller training set. It is therefore a good
compromise between accuracy and the size of the training set.
Another insight is related to the surrogate splits of CART.

Complete-case induction relies solely on these for dealing with
missing values and is the worst method on all datasets. As
a consequence, one should not rely on this feature of CART. It is
worthwhile to have a pre-processing in which NA values are
handled in other ways than in CART. The existence of the
surrogate-split mechanism led to a false confidence regarding the
handling of missing values due to the sound foundation of
CART in general. This should be a warning against judgments
based only on theoretical reasoning when the data generating
mechanism cannot be controlled or captured in a model.
In the Result section preference of Imp0 over Imp1 is related

to the generalizability of the former imputation in record linkage
settings. This should be expounded further. In record linkage
settings the canonical situation is the abundance of non-
matches. This means that NA values of any attributes are rather
among non-matches and thus the true comparison value is most
likely zero. The following non-match pattern could occur:

ð1;0;NA;0;1;1;1;1;0Þ;

which means that the first component of the forename, the
birthday and sex are equal. The most relevant attribute
‘comparison value of the first component of the last name’ is
NA. Transforming the NA into a one leads to a non-match
pattern that is more likely under a match. When selecting this
imputated non-match as a member of the training set the ones
can be interpreted as unequal and thus the classification tree
would classify all true matches with patterns like

ð1;0;1;0;1;1;1;1;0Þ

as non-match. Imp1 can therefore lead to bad classifiers if the
training set is selected unluckily. The opposite case is not
problematical as such. A match of the form

ð1;0;0;0;1;1;1;1;0Þ

Figure 3 Boxplots of the F-scores on the GenMAR data.

Figure 4 Boxplots of the F-scores on the GenMCAR data.

Table 3 Number of comparison patterns that form the training sets
(median for SampIm/RealFull)

RealFull RealRed GenMAR GenMCAR

Imp0 167 64 64 64

Imp05 344 115 170 166

Imp1 193 64 64 64

SampIm 346 64 64 64

RedMod 313 107 137 135

ComplCase 6 64 64 64

Table 4 Medians of the F-scores

RealFull RealRed GenMAR GenMCAR

Imp0 0.9965 0.9969 0.9849 0.9940

Imp05 0.9975 0.9977 0.9851 0.9943

Imp1 0.9970 0.9967 0.9677 0.9844

SampIm 0.9968 0.9969 0.9808 0.9931

RedMod 0.9973 0.9972 0.9837 0.9936

ComplCase 0.0318 0.9963 0.8380 0.9439
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can impair the classification result when it occurs in the training
set (softening of the match classification), but the probabilities
of inverting the meanings of zeros and ones and classifying
a true match as non-match are negligible.

In conclusion, we can partly soothe record linkage practi-
tioners who use the ad-hoc solution for missing values ‘replace
NA by the value of inequality ’. It is surprisingly a very good
solution on our data. The soothing is of course only partial
because it is based on a limited amount of data and on a specific
classification-tree method. Nevertheless, the results of Ding and
Simonoff22 and previous experiences suggest that our results
should be confirmed in other empirical analyses and similar
applications.
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