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ABSTRACT
Objectives To address the challenge of balancing privacy
with the need to create cross-site research registry
records on individual patients, while matching the data
for a given patient as he or she moves between
participating sites. To evaluate the strategy of generating
anonymous identifiers based on real identifiers in such
a way that the chances of a shared patient being
accurately identified were maximized, and the chances
of incorrectly joining two records belonging to different
people were minimized.
Methods Our hypothesis was that most variation in
names occurs after the first two letters, and that date of
birth is highly reliable, so a single match variable
consisting of a hashed string built from the first two
letters of the patient’s first and last names plus their
date of birth would have the desired characteristics. We
compared and contrasted the match algorithm
characteristics (rate of false positive v. rate of false
negative) for our chosen variable against both Social
Security Numbers and full names.
Results In a data set of 19 000 records, a derived match
variable consisting of a 2-character prefix from both first
and last names combined with date of birth has a 97%
sensitivity; by contrast, an anonymized identifier based
on the patient’s full names and date of birth has
a sensitivity of only 87% and SSN has sensitivity 86%.
Conclusion The approach we describe is most useful in
situations where privacy policies preclude the full
exchange of the identifiers required by more
sophisticated and sensitive linkage algorithms. For data
sets of sufficiently high quality this effective approach,
while producing a lower rate of matching than more
complex algorithms, has the merit of being easy to
explain to institutional review boards, adheres to the
minimum necessary rule of the HIPAA privacy rule, and is
faster and less cumbersome to implement than a full
probabilistic linkage.

INTRODUCTION AND OBJECTIVES
One of the challenges facing disease registries is the
need to balance patient privacy with the desire to
build cross-site records, matching the data for
a given patient as he or she moves between
participating sites. Some registries1 address this
problem by mandating that identifiers be disclosed,
but this is rarely acceptable to privacy officers. A
more viable solution from a privacy standpoint is to
keep only de-identified information in the registry,
but share an algorithm between trusted third
parties for generating an anonymous identifier in
such a way that the chances of the same identifier
being generated by two different sites when
treating the same individual are maximized, and
the chances of generating the same identifier for
two different individuals is minimized.

The use of social security numbers (SSNs) for
this purpose is associated with a variety of prob-
lems.2 Matching on an anonymized hash of full
patient name and date of birth seems an attractive
option until one considers that it can lead to
excessive splitting of patient records due to differ-
ences in how a given person identifies themselves at
different sites of care.3 Patients may use a partial
name on one visit and their full given name on
another. The electronic health record may
compound the problem by treating ancillary infor-
mation such as titles very inconsistently when
generating discrete records for first and last names.
Misspellings are common. Within a given institu-
tion this error rate is often corrected after the fact
by Master Patient Index (MPI) maintenance, but
when comparing records collected at different
institutions there may be differences in identity
resolution methodology.
The work described in this paper grew out of

a research project involving two distinct Health
Insurance Portability and Accountability Act
(HIPAA) covered entities in the San Francisco Bay
Area, Stanford University and the Palo Alto Medical
Foundation (PAMF), collaborating on a joint
research study of women being treated for breast
cancer at both of these institutions.
The goal of the project was to assemble a de-

identified merged data set consisting of diagnosis and
treatment records for breast cancer patients seen at
both institutions to support analysis of cross-insti-
tutional standards of care and comparative outcomes
research. In accordance with the minimum necessary
principle of the HIPAA Privacy Rule, the participating
institutions decided to exchange only de-identified
(by HIPAA standards) data between clinical
researchers and minimize the protected health
information (PHI) exchanged between informatics
staff responsible for constructing the linked de-iden-
tified data set in support of the clinical research
protocol. Each institution obtained permission from
their respective Institutional Review Boards (IRBs)
for 1) a determination of non-human subjects review
for the clinical researchers and 2) a full IRB protocol
with a waiver of consent and authorization for the
informatics staff involved in record linkage. This,
along with a decision by both parties to design
a system in which a copy of the joint data set resided
at each local site and was not hosted remotely, led to
the system design depicted in figure 1.
At each site the fully identified data are staged in

a separate secure zone that only institutional
informatics technical support personnel not
involved in the clinical research project have access
to. From this staging environment the data were
extracted, transformed by removing all identifiers
and mapping into the shared coding scheme, and
loaded into a set of tables in the shared database. We
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used Oracle Gateway to set up a two-way secure data flow from
the Oracle database on one side to the Microsoft SQLServer
database on the other.

Given that some of the patients are treated at both institu-
tions, due to both geographic proximity and the fact that PAMF
is an outpatient facility while Stanford offers both inpatient and
outpatient treatment, we were confronted with the issue of
how to reliably identify individual patients who received care at
both sites. We had to generate anonymous identifiers based on
real identifiers in such a way that the chances of a shared patient
being accurately identified were maximized, and the chances of
incorrectly joining two records belonging to different people
were minimized.

An elegant approach to this problem is described by Churches
and Christen.4 Their solution involves the exchange of vectors
containing the power set of encrypted bigrams for each string.
Each party (or a single trusted third party) is then able to
compute string similarity via a Dice co-efficient (a ratio of the
number of matching to total number of bigram permutations).
For example, if a given patient seen at both institutions had first
name recorded as Ann at one site and Anne at the other, the
bigrams vectors [AN,NN] and [AN,NN,NE] would be
exchanged, which would generate a Dice co-efficient of 23(2/
5)¼0.8, since four of the five total bigrams are shared.

Other approaches (Chen and Zhong5 for example) share
a cryptographic hash based on patient identifiers, but do not go
into details of how they achieved a fuzzy match. Durham et al6

are far more precise, detailing the use of multiple hash codes on
a variety of full identifiers, assigning probabilities to each, and
combining the result with a Bloom filter7; for a good literature
survey of the Bloom filter approach, the reader is referred to
Schnell et al.8 Note that the complexities of both the bigram
vector and Bloom filter approaches require retaining the services
of highly specialized programmers to implement, which is why
we did not pursue either of these options for our study. Kijsa-
nayotin et al9 proposed an approach very similar to ours in
which a single SHA-1 string was constructed from gender, date
of birth, zip code, and a three letter prefix of the last name. In
our case, however, neither gender nor zip code would have had
any discriminating effect since our patient population was
entirely female and overwhelmingly from one zip code area, so
we opted instead for the first two letters of the patient’s first
and last names.

Our hypothesis was that most inadvertent variation in names
occurs after the first two letters. The name prefix alone was
insufficiently discriminatory but we had observed that both sites
in the study have a similar patient registration process that relies

on date of birth as well as name to fully identify patients at time
of visit registration, so we further hypothesized that the date of
birth would be both highly available and highly reliable.10

Furthermore, although neither name prefixes nor dates of birth
taken individually would be an adequate identifier, due to the
high probability of some other person sharing the same date of
birth, we postulated that when combined the resulting string
would have the desired characteristics.

METHODS
Our approach to institutional privacy and security involved first
obtaining mutual IRB permission to exchange the minimum
necessary conventional PHI between designated informatics
support staff in support of quality assurance, under an IRB
approved waiver of consent and authorization. Under this
protocol the informatics staff securely exchanged the shared
secret for the MD5 hash so that hashes generated on the same
data would result in the same hash string. Neither the algorithm
nor the shared secret was disclosed to the clinical researchers, so
the hashed strings would not be susceptible to dictionary
attack.11 Informatics staff then generated two hashed identifiers
for all patients in their local identified data sets, one based on
name prefix and date of birth, the other on SSN. They then
exchanged these hashed identifiers and in cases of collision the
patient identities were confirmed by exchange of full names,
dates of birth, and street address. The purpose of the initial
hashing was to adhere to the minimum necessary rule: the
informatics staff responsible for validating the record linkage
were exposed only to PHI in cases of suspected false positives
and false negatives, less than 10% of the total number of records
in the shared data set.
We also obtained mutual IRB determinations of non-human

subjects review in support of the clinical research use of the
conjoined data set. The study identifiers used in our research
data set were in most cases the same hashed strings used in the
initial linkage, although informatics staff assigned new identi-
fiers to records as needed to differentiate between false positives
and compensate for false negatives. In retrospect our protocol
would have been even more robust had we decided to take the
additional step of generating a coded anonymous unique iden-
tifier for each patient in the research data set, but a seeded MD5
hash was deemed to present a less than very small risk of
inadvertent disclosure and so was considered de-identified by the
HIPAA standard, particularly since no data ever left the protec-
tion of our shared secure database.
Regarding the investigation into the efficacy of the proposed

linkage variable, we started by measuring the rate of false

Figure 1 Research data flow between
the two separate Health Insurance
Portability and Accountability Act
(HIPAA) covered entities participating in
the study. Protected Health Information
(PHI) remains secure at all times.
Informaticians acting as honest brokers
hold the electronic code book table that
maps hash codes to patient research
database identifiers. Anonymized data
is extracted, transformed and loaded
(ETLed) into a staging database and
securely transmitted over a dedicated
virtual private network (VPN).
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positives inherent in a composite identifier based on name
prefixes and date of birth. The Stanford STRIDE Clinical Data
Warehouse12 contains 2.6 million patient names derived from
both the pediatric and adult electronic medical records (EMRs)
at Stanford University Medical Center. We first created a list of
unique non-null uppercase first name, last name, and date of
birth triples, then dropped all records with first name prefixed by
BABY, BOY, GIRL or UNKNOWN. We also dropped all records
for date of birth January 1, 1900 and January 1, 1901, which
judging by their frequency were used as placeholder values for
unknown dates of birth. From this initial list of 2.5 M name and
date triples, we created three additional lists with 1.5 M rows,
0.5 M rows, and 10 000 rows. We then performed a self-join on
each list counting the number of different rows for which the
composite identifier was the same, the results of which are
shown in table 1.

Having defined the false positive error rate, we then needed
a measure for false negatives. In this regard we were fortunate
that both sites agreed to exchange cryptographic hashes based
on the patients’ SSNs in support of the linkage work. The
securely hashed SSN-based identifiers are not exposed to the
medical researchers, as their purpose is solely to improve linkage.
By counting the matches found by matching SSNs that were
not found by matching our composite identifier, we established
a lower bound estimate on the rate of false negatives.

We also felt it important to eliminate all false positives from
our data set, so for the purpose of validating the matching
algorithm we received approval from both study site IRBs to
examine the real identifiers of any patients identified as candi-
date matches by our algorithm. By manually reviewing the fully
identified complete registration record for each pair of proposed
matches, we were able to identify all false positives.

RESULTS
We measured specificity for data sets of several different sizes,
ranging from 2.5 M records to 10 000, the results of which are
tabulated in table 1.

We then measured sensitivity and specificity for full first and
last name plus date of birth, SSN, and our composite identifier
on a data set of 19 105 records as described below (table 2).

In this context sensitivity measures the ability to correctly
identify patients in common, and specificity measures the chances
of two different patient records being mistakenly joined. Sensi-
tivity is defined as the number of true positives divided by the
number of true positives plus the number of false negatives, and

specificity is defined as the number of true negatives divided by
the sum of the number of true negatives and the number of false
positives. Our measures for these values are shown in table 3.
Table 4 compares the sensitivity we measured for our composite

identifier to other commonly employed linkage variables.

DISCUSSION
Since the formula for specificity is based on data set size rather
than total number of comparisons, this measure changes with
data set size. If instead one divides the number of matches (all of
which are deemed to be false positives) by the number of total
comparisons: m/((n2en)/2), the resulting ratio is constant,
which makes it more useful when attempting to predict the
number of false positives that can be expected for a given data
set.
Applying this formula to a STRIDE test data set with

m¼18 917 and n¼158 300, yields

18917=
��
15830002 � 1583000

��
2
� ¼ 1:5310�8

or 1.5 errors per 108 comparisons.
Therefore, when comparing two data sets of around 10 000

patients each, which when compared to each other results in
about 108 comparisons, one can expect a few false positives,
whereas data sets with 5000 or fewer records are likely to not
contain any false positives when linked with the proposed
composite identifier. This number is only useful as a very rough
rule of thumb, however, since each data set has its own char-
acteristics, and is mostly intended to underscore the point that if
false positives are considered unacceptable, this algorithm
cannot be relied upon exclusively but should instead be used in
conjunction with other linkage variables.
We then turned our attention to the study data set of female

breast cancer patients from Stanford and PAMF. With 10 939
patients in one data set and 8166 in the other, our combined
cohort contained 19 105 records, of which 2087 were found to be
held in common after manual review. After our matching efforts
were complete, we found just three erroneous matches, which is
reasonably consistent with our predictions.
Our composite identifier found 2028 of the 2087 confirmed

matches, with an additional 59 patients found by comparing
hashed SSNs, as shown in figure 2. Given the fact that we had

Table 1 Specificity, an inverse measure of the chances
of mistakenly joining two different patients, decreases
quadratically with the size of the data set

Data set size Specificity

2.5 M 99.44%

1.5 M 99.74%

0.5 M 99.89%

10 000 99.99%

Table 2 Sensitivity and specificity for social security number (SSN),
full composite identifier, and abbreviated composite identifier

Sensitivity Specificity

SSN 86.5% 99.6%

Full name+date of birth 87.4% 100%

Composite identifier 97.2% 99.98%

Table 3 Counts for true and false positives and negatives for the three
record linkage variables being compared

Composite identifier
Social security
number

Full name+date
of birth

True positives 2028 1806 1821

False negatives 59 281 263

False positives 3 57 0

True negatives 14 928 14 872 14 931

Table 4 Sensitivity per linkage variable

Sensitivity Linkage variable

86.5% Social security number (overall)

87.4% First+last name+date of birth

93.1% First name

94.5% Social security number (when present)

95.2% Last name

96.7%e97.2% Hash consisting of first two letters of first
and last names+date of birth

99.7% Date of birth
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SSNs on only 87% of our patients, we consider the number 59 as
a lower bound on the number of false negatives. In our subse-
quent manual review of the full identifiers from both sites for
patients identified as candidate matches, we found that of the
2028 patients found to be in common by only looking at the
composite identifier, 1824 were exactly matching in all of full
first name, full last name, and date of birth. The remaining 204
were confirmed by inspection of the full identifiers at both sites
to be the same person. This was a very interesting result in that
it provided us with a measure of how much better our approach
is compared to using full names rather than two-letter prefixes.
Fully 10% of our shared cohort would have been mistakenly split
had we relied on string hashes of date of birth plus full names
rather than using two-letter name prefixes with date of birth.

We obtained IRB approval to share the cryptographic hashes
of each patient’s SSN between informatics staff specifically for
the purpose of identifying false negatives. We found 59 patients
with differing name prefix/date of birth identifiers who shared
the same SSN and turned out to be the same person for
a sensitivity measure of 2028/(2028+59)¼97.17%, although our
true sensitivity may be as low as 2028/(2028+68)¼96.7%, since
we were missing SSNs on 13% of our cohort. Figure 3 shows the
various sources of identity mismatch (false negatives) when
matching is based entirely on name prefix and date of birth.

By way of contrasting the efficacy of our composite identifier
with a real-world identifier, we looked at the results produced by
matching on a patient’s SSN. By both metrics of rate of false
positives and rate of false negatives, SSNs fare significantly
worse13 than our composite identifier. The number of patients in
common found by comparing SSNs was only 1806, compared

with 2028 found by the name prefix and date of birth identifier.
Put another way, since there were 222 patients in common
found by our identifier who would have been misclassified as
different patients had we relied entirely on matching by SSN,
the rate of false negatives for SSN-only matches is 10% higher
than that of our identifier. One hundred and seventy-two of
these were cases where one or both of the SSNs were missing;
the reasons for the false negative in the remaining 50 cases are
depicted in figure 4.
Similarly, the rate of false positives was much higher with

SSN matching. Compared with only three false positives for our
composite identifier, there were 57 false positives for SSN
matches, resulting in a nearly 20 times greater number of
misclassified records.
Finally, we exchanged individual cryptographic hashes of the

patient’s full first name, full last name, and date of birth and
analyzed the results in order to measure the error rate of other
individual linkage variables, the results of which are given in
table 5.
We observed incidentally that both our institutions appear to

adopt a practice of keeping the woman’s maiden name on file,
generally hyphenating it with her married name, when
recording a change of name due to marriage. This is presumably
to help the doctors recall the patient. We have no data, however,
on how systematic or widespread this practice is, nor can we
assess how many records remained split due to name change at
one institution but not the other. We do expect at least 0.3% of
our patients remain unlinked due to typographic errors in the
date of birth and name variations affecting the initial letters of
both first and last name.

CONCLUSION
This approach is most useful in situations where privacy policies
preclude the full exchange of identifiers required by more
sophisticated and sensitive linkage algorithms. If institutional
permission is forthcoming, we highly recommend using the

Figure 2 Characteristics of name prefix plus date of birth as an identity
preserving anonymized identifier. PAMF, Palo Alto Medical Foundation;
SSN, social security number.

Figure 3 Analysis of reasons for false negatives in name prefix/date of
birth (DoB) hash. These cases were identified by matching social
security numbers. All 59 false negatives were determined by manual
review to be the same person.

Figure 4 Reasons for false negatives in social security number (SSN)
matching. In 12 cases the SSNs were completely different, despite our
verification that the matched records referred to the same individual.

Table 5 Characterization of the primary source of error for several
linkage variables in our data set

Sensitivity Variable Primary source of error

86.5% Social security number Missing entries

93.1% First name Greater use of nicknames
in an outpatient setting

94.5% Social security number
when present

2/3 typos, 1/3 invalid
(900e999 prefix)

95.2% Last name Marriage

96.7%e97.2% Composite identifier Spelling variation in initial letters

99.7% Date of birth Typos

e160 J Am Med Inform Assoc 2012;19:e157ee161. doi:10.1136/amiajnl-2011-000329

Research and applications



approach described by Kuchinke et al14 in which patient iden-
tifiers are securely exchanged in order to first assemble a defini-
tive master patient lookup table that accounts for variations in
spelling as well as changes over time in name and address. The
MPI is used by technical support staff to accurately identify
cases where the same patient’s data appear in records from
multiple sites; standard probabilistic record linkage techniques
(see the seminal paper by Jaro15) preferably augmented by
sophisticated treatment of strings as described by Winkler,16 can
be used for a high quality linkage of the MPI. Note that existing
open source software implementations exist that can be lever-
aged as well.17 The multi-site data set is then anonymized before
giving it to the researchers for analysis.

However, if the minimum necessary rule is interpreted locally
to preclude any exchange of PHI for patients not held in
common, and the data set contains highly available names and
dates of birth, we recommend establishing a formal research
collaboration with (1) mutual IRB determinations of non-
human subjects research clearly stating the shared clinical
research agenda for the linked data set, (2) mutual IRB protocols
with waiver of consent and authorization to cover record
linkage validation in which PHI is exchanged only in the case of
suspected shared identity as indicated by hashed string identifier
collision, and (3) performance of the linkage under the full IRB
protocol by first exchanging the cryptographic seed, then two
de-identified match variables, one consisting of a one-way
cryptographic hash of a string built from the first two letters of
each of the patient’s first and last names plus their full date of
birth, the other a similar hash of the SSN if available and not
a placeholder. If gender is both reliably available and discrimi-
natory for the study ’s patient population, gender can be added
to one of these two strings prior to hashing. If both hashes
match exactly, the records can be considered matched. If both
hashes differ, the patients are considered distinct. And in the
cases where one of the two hashes match but the second does
not, the fully identified complete registration record for the
patient should be exchanged by way of resolving the question of
patient identity.

We further recommend (4) generating an anonymous coded
identifier for use in the final research data set, if only to avoid
any appearance of risk of inadvertent disclosure.

By way of a caveat, it is important however to note that
because record linkage is so dependent on data quality, others
should assess the performance characteristics of these algo-
rithms in their own data prior to assuming that similar results
can be achieved. For data sets of sufficiently high quality this
approach, while presumably producing a lower rate of matching
than the approach described by Durham et al6 or by using
FEBRL,17 has the merit of being easy to explain to an IRB or

privacy officer, is far faster and easier to implement than a full
probabilistic linkage, and seems surprisingly effective.
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