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ABSTRACT
Objectives To study ontology modularization techniques
when applied to SNOMED CT in a scenario in which no
previous corpus of information exists and to examine if
frequency-based filtering using MEDLINE can reduce
subset size without discarding relevant concepts.
Materials and Methods Subsets were first extracted
using four graph-traversal heuristics and one logic-based
technique, and were subsequently filtered with
frequency information from MEDLINE. Twenty manually
coded discharge summaries from cardiology patients
were used as signatures and test sets. The coverage,
size, and precision of extracted subsets were measured.
Results Graph-traversal heuristics provided high
coverage (71e96% of terms in the test sets of discharge
summaries) at the expense of subset size (17e51% of
the size of SNOMED CT). Pre-computed subsets and
logic-based techniques extracted small subsets (1%),
but coverage was limited (24e55%). Filtering reduced
the size of large subsets to 10% while still providing 80%
coverage.
Discussion Extracting subsets to annotate discharge
summaries is challenging when no previous corpus
exists. Ontology modularization provides valuable
techniques, but the resulting modules grow as
signatures spread across subhierarchies, yielding a very
low precision.
Conclusion Graph-traversal strategies and frequency
data from an authoritative source can prune large
biomedical ontologies and produce useful subsets that
still exhibit acceptable coverage. However, a clinical
corpus closer to the specific use case is preferred when
available.

Due to their growing complexity and size,
biomedical ontologies represent a serious challenge
to creators, maintainers, and potential users. One of
the most prominent examples of this type of
ontology is SNOMED CT, the largest ontology
project in the biomedical domain.1

SNOMED CT, which is intended to provide
comprehensive, multilingual terminology for
encoding all aspects of electronic health records, is
based on a taxonomy of more than 390 000
concepts linked to terms and multilingual syno-
nyms. In addition to this terminological component,
SNOMED CT exhibits a language-independent
ontological layer composed of a large polyhierarchic
taxonomic backbone enriched by formal axioms
that connects concepts across the hierarchies and
supplies necessary and (partly) sufficient criteria
formulated as description logic axioms conforming
to the EL++ standard.2 3 Although SNOMED CT
describes itself as a terminology, because it is

expressed in a description logic and shows strong
ontological commitment it is often referred of as
an ontology.4

SNOMED CT provides a mechanism to build
specific vocabularies defined by users, referred to as
subsets (or reference sets in the new release format
2). Subsets have been suggested as being the key to
making SNOMED CT usable,5 and their represen-
tation and management are thoroughly explained
in SNOMED CT’s technical documentation.6

The advisability of using only a part of rather
than the whole ontology is not specific to
SNOMED CT. In fact, the increasing size and
complexity of ontologies has resulted in the estab-
lishment of an independent area of research known
as ontology modularization, or decomposition.7

Reasons for modularization include computability
(eg, scalability for querying data and reasoning,
scalability for evolution and maintenance, and
quality assurance) as well as usability (eg, under-
standability, context-awareness, personalization,
and reuse).7

Ontology subsets are also referred to as
segments, partitions, or modules. Given an input
set of terms, known as seeds, target nodes, or
signatures, modularization techniques identify
terms that are related to the signature and that are
therefore expected to be of interest for that
particular use case. Graph-traversal modularization
employs link-traversal heuristics to collect terms
and axioms related to the signature, considering the
ontology itself a graph;8e11 logic-based approaches
use the underlying logic describing the ontology to
collect axioms that guarantee safe reuse of the
signature for reasoning purposes.12

Evaluating the performance or optimality of
ontology modules has proved to be extremely
difficult. Cuenca Grau et al12 acknowledged that
their ‘experiments may not necessarily reflect an
actual ontology reuse scenario’. After attempting
to establish a set of criteria to determine the qual-
ity of a module, D’Aquin et al13 concluded that
‘there is no universal way to modularize an
ontology ’ and that ‘the choice of a particular
technique or approach should be guided by the
requirements of the application or scenario relying
on modularization’.
However, modularization is particularly relevant

to biomedical informatics, as biomedical ontologies
are among the largest and most complex ontologies
ever developed. Furthermore, due to the high degree
of specialization in healthcare and life sciences, very
few users require the whole breadth of these
extended biomedical ontologies.14 By using
modules in applications, such as annotation, an
increase in accuracy, consistency and speed is
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expected. Therefore, modularization use cases related to
semantic annotation are broad, ranging from clinical notes for
intensive care services to medical images.15 16

However, neither the link-traversal nor logical methods may
be satisfactory for biomedicine in general, and for annotation use
cases in particular. An alternative approach is to extract
a representative module (eg, a module providing high coverage
when annotating) rather than a minimal module.12 For this
reason, biomedical researchers have explored other approaches
that do not rely on ontology structure or logic, but instead
depend on related external information. For example, the CORE
problem list subset for SNOMED CT is a subset of 5814
SNOMED CT concepts built with the help of seven health
institutions worldwide. It contains the terms most frequently
used when annotating clinical information at a summary level in
several disciplines.17 Patrick et al15 developed a SNOMED CT
subset after analyzing 44 million patient progress notes at an
intensive care service. In this case, a specific logic-based tool to
post-process the module was used.

Frequently, these restricted preconditions cannot be met:
extensive case-specific pre-existing information might be scarce
or even non-existent in many cases, and a specific tool might not
be available, or could be tied to a particular ontology. Under
these conditions, frequency-based filtering using an authoritative
corpus can be used as an alternative to reduce the size of an
ontology or a subset. Concepts that do not reach a certain
threshold are considered irrelevant and can be filtered out. As an
example, the united medical language system (UMLS) termi-
nology has been filtered using information from MEDLINE with
encouraging results.18

Through this study, we aimed to understand better what
results are to be expected when graph-traversal and logic-based
ontology modularization techniques are applied to a large
biomedical terminology, such as SNOMED CT, under the
specific conditions of an annotation scenario in which no
previous corpus to be analyzed exists. We were also interested in
evaluating the coverage-neutral reduction of the extracted
modules’ size by filtering them using an authoritative external
corpus. To our knowledge, the approach and comparative results
described in this report are the first of their kind.

OBJECTIVES
The main objectives of this study are:
(1) To evaluate the effectiveness of the following techniques in

the context of a representative annotation scenario using
SNOMED CT:12

(1.1) graph-traversal ontology modularization techniques9

(1.2) a logic-based ontology modularization technique19 20

(1.3) a frequency-based technique18

(2) To explore whether a combination of (1.1) and (1.2) with
(1.3) can extract better modules in terms of size, coverage,
and precision.

As a use case for evaluation, we present an annotation
scenario with the following aims: to create a SNOMED CT
module, which we term a SNOMED CT M module (for
a domain of discourse D), that is (a) significantly (ie, one order of
magnitude) smaller, and (b) provides high coverage of D.
Furthermore, (c) the fragment should preserve the logical
entailments that can be derived from the original ontology as
much as possible.

However, for the current use cases (c) is a secondary goal, as
SNOMED CT’s routine use has thus far been restricted to the
provision of controlled terms, given the preliminary and still

controversial status of many axioms and the structure of the
hierarchies.21e23

MATERIALS AND METHODS
We have chosen annotation of cardiology discharge summaries
as our domain of discourse. These summaries contain informa-
tion such as the reasons for admission, past history, interven-
tions, and proposed follow-up.
When compared with classic modularization approaches, the

task here is not to extract a minimal module, but to extract
a representative module.12 We expected different resulting
SNOMED CT M modules for the same typical, but not
exhaustive, input signatures for D. For instance, the signatures
may include several SNOMED CT concepts that represent
typical cardiovascular drugs, and M is predicted to include
additional drugs that are likely to be prescribed for cardiovas-
cular disorders, but not, for example, chemotherapeutic agents
used in the treatment of cancer.

Experimental design
Figure 1 shows the experimental arrangement of (1) the inputs
(the SNOMED CT ontology to be modularized, the reference
authoritative corpus used to filter the modules, and the input
annotations to provide signatures and to measure coverage); (2)
the processes (module extraction, term frequency analysis and
filtering, and evaluation); (3) the parameters (modularization
technique and filtering threshold); and (4) the measured outputs
(module size, coverage, and precision). The rest of this section
describes the experimental processes in detail.

Module extraction using ontology modularization techniques
The January 2010 international release of SNOMED CT was
used as the target ontology for modularization. This release
contained 390 022 concepts; of these, 291 205 were marked as
active, and the remaining concepts were retained for backwards
compatibility.
To extract subsets using graph-traversal heuristics, we

followed the approach proposed by Seidenberg and Rector.9

Their method, ontology segmentation, employs a heuristic to
traverse a graph for the purpose of obtaining a subset, or
segment, of related nodes, starting from one or more input nodes
of interest, which are referred to as seeds, target nodes or
signatures.
Signatures for the experiments were obtained from a corpus of

20 discharge summaries. This corpus was written in Portuguese
and authored by physicians of the Hospital de Clínicas de Porto

Figure 1 Experimental set-up, design, parameters and measured
variables.
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Alegre, which is a large university hospital in Porto Alegre,
Brazil. In the context of an information extraction project, all
medical terms appearing in each summary had been manually
coded using the concept identifiers of the most fine-grained
terms in SNOMED CT. The text appearing in each summary
contained reasons for admission, past history, interventions, and
the proposed follow-up of cardiology inpatients. The number of
SNOMED CT concepts required to annotate the discharge
summaries ranged from 17 to 64, with an average of 35. A total
of 439 different SNOMED CTconcepts was needed to annotate
the complete set of 20 summaries. A sample fragment of an
annotated discharge summary is shown in table 1.

The discharge summaries were also used to evaluate the
estimated coverage of the extracted subsets. Complete infor-
mation regarding the use of the annotations can be found in the
Evaluation section.

The heuristic proposed by Seidenberg and Rector9 first builds
a set containing the complete hierarchy of the target node and
then recursively follows links for every node in the set. However,
depending on the size and topology of the ontology and target
nodes, this method might not be useful in practice for both
performance and size reasons: Seidenberg and Rector9 had to
introduce two strategies, property filtering and depth limiting,
to limit the segment size. Furthermore, Doran et al10 proposed
a modification of the heuristic that prevented upwards naviga-
tion of the taxonomy from the target node, based on the justi-
fication that this would increase the probability of extracting
modules as large as the whole ontology.

Taking these strategies into account, we developed four graph-
traversal heuristics of increasing complexity to collect concepts
of interest but limit the size of the extracted subset.
< Upwards segmentation: A modification of the heuristic

described by Seidenberg and Rector,9 where is-a and attribute
links from the concepts in the signature are followed upwards
in the hierarchy, with the root on top. However, our variation
does not recursively repeat the process for every node in the
sub-trees of concepts in the signature.

< S-heuristic: This heuristic follows the same strategy as the
upwards segmentation but adds the sibling nodes of signature
concepts.

< ST-heuristic: This is the same as the S-heuristic, also
including the complete sub-trees of all added siblings.

< IL-heuristic: Similar to the ST-heuristic, it adds all nodes that
are connected to the signature concepts using linkage
concepts.

An example of the nodes collected by each heuristic with
respect to the previous one is shown in figure 2. The heuristics
are incremental: nodes collected by the upwards segmentation
heuristic are also collected by the S-heuristic, while nodes
collected by the S-heuristic are also collected by the ST-heuristic,
and so on. Further details about the heuristics can be found in
supplementary appendix A (available online only).
To evaluate the locality logic-based modularization technique

of Cuenca Grau et al,12 we used the tool provided by the
authors.24 The intuitive idea behind locality is to identify and
discard all axioms from an ontology that are logically irrelevant
to the input signature. The resulting module can then be safely
used as a substitute of the whole ontology when referring to
symbols from the signature (see supplementary appendix B,
available online only, for details). Locality-based modularization
is now part of the ontology web language application
programming interface (OWL API).

Term frequency analysis and module filtering
The aim of the filtering process is to identify relevant nodes
according to MEDLINE. Given an input set of concepts, the
filtering process selects or discards each input concept depending
on its precomputed score in the ranked ontology and the
threshold set by the user. A threshold of one selects all concepts
that appear at least once in the local MEDLINE repository; of
two, concepts that appear twice, etc. A threshold of zero indicates
no filtering.
We built a ranked version of SNOMED CT, following the

approach of Xu et al.18 Although other sources of synonyms
exist (eg, the UMLS metathesaurus), the scope of our project
was limited to SNOMED CT; thus, SNOMED CT terms were
obtained from the descriptions file included in SNOMED CTas
distributed by International Health Terminology Standards
Development Organisation (IHTSDO). The file contains all
terms linked to SNOMED CT concepts, ie, preferred terms and
(quasi-)synonyms. As an example, 11 terms are accepted for
concept identifier 22298006 (‘myocardial infarction’), including
‘heart attack’, ‘cardiac infarction’ and ‘infarction of heart’. The
SNOMED CT version used in this study contained 1 157 834
descriptions for 390 022 concepts.
For each SNOMED CT concept, we counted the number of

occurrences of each term associated with the concept in either
the title or abstract of a subset of MEDLINE articles (see the
Term frequency analysis and module filtering in the Results
section for details). Terms that did not reach a minimum input
threshold were considered irrelevant to scientific discourse and
therefore filtered out. Details on the complete process of term
matching, SNOMED CT ranking and module filtering can be
found in supplementary appendix C (available online only).

Evaluation
The effects of every modularization technique and filtering
threshold on size, coverage, and precision were measured. The
detailed configuration of the 10-fold cross-validation experi-
ments that were performed can be found in supplementary
appendix D (available online only).
As values for the modularization parameter, we used the five

techniques presented in the Materials and methods section:
upwards segmentation, S-heuristic, ST-heuristic, IL-heuristic,
and locality (LUM). The full SNOMED CT terminology and the
CORE problem list subset were also added as useful references.
Note that the CORE problem list subset was used as distributed,
without any post-processing. As values for the filtering threshold
parameter, we used 0, 1, 10, 100, 1000, 10 000, and 100 000.

Table 1 Sample fragment of an annotated discharge summary

Original text
Most fine-grained
SNOMED CT term

SNOMED CT
concept ID

Masculino Male (finding) 248153007

43 anos Current chronological age
(observable entity)

42414402

Hipertenso Hypertensive disorder,
systemic arterial (disorder)

38341003

Tabagista Tobacco user (finding) 110483000

Etilista Current drinker of alcohol
(finding)

219006

Interna Hospital admission (procedure) 32485007

Por infarto agudo
do miocárdio

Acute myocardial infarction
(disorder)

57054005

Sem supradesnivelamento
de segmento ST

ST segment elevation (finding) 76388001

The terms appearing in each summary had been manually coded using the concept
identifiers of the most fine-grained terms in SNOMED CT.
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The following variables were measured:
1. Size: Total number of concepts in the extracted subset in

relation to SNOMED CT (390 022).
2. Coverage (or ‘recall’): Ratio of relevant concepts in a subset to

the total number of (unique) concepts in the test set of
patient summaries. A concept in the subset was considered
relevant if its code occurred at least once in the test set.

3. Precision: Ratio of relevant concepts to the total number of
concepts in the subset.

RESULTS
The average performance of the extracted subsets in terms of
coverage, size, and precision over the results of the different test
sets in the 10-fold cross-validation is shown in table 2 and figure
3. The full SNOMED CT dataset and the CORE problem list
subset were added as references for comparison.

Using graph-traversal techniques, the average coverage ranged
from 71% to 96%, while the average module size ranged from
17% to 51%. The locality-based technique extracted the smallest
(1%) and most precise (1.14%) module, but coverage was
strongly affected (55%).

As can be seen in table 2, an increase from 1% (locality) to
23% (S-heuristic) in the module size raised the coverage to 78%.
Doubling the module size to a total of 50% (ST-heuristic) added
only another 20%, bringing the coverage up to 95%. Doubling
the module size again to 100% using the full SNOMED CTonly
added the final 5% coverage or less. Therefore, 23% and 50% are
two important sizes to consider depending on the coverage
needs of the application (78% or 95%). Precision was extremely
low in all cases (approximately 1% or lower). In order to preserve

logical entailments, many auxiliary concepts must be included
(eg, anatomical structure, organisms, values for qualifiers, etc).
These auxiliary concepts never appear on their own in the
discharge summaries, even though they typically outnumber the
concepts in the original signature.

Term frequency analysis and module filtering
The first step to filter the previous subsets was to build a ranked
version of SNOMED CT by analyzing the frequency of
appearance of each of its terms in MEDLINE.
Through accessing the PubMed search engine, 206 484 records

of interest were retrieved by searching for a subset containing
human case reports written in English from the past 5 years.
After parsing and insertion into Lucene, the indexing engine
reported a total of 947 285 stored terms, with 120 657 appearing
in the title field and 826 628 being found in the abstract.
After analyzing and matching each active SNOMED CT term,

a total of 43 550 different concepts was found to have been cited
in the MEDLINE subset. The frequency of each matched term
was added to the ranked copy of SNOMED CT, and the
frequency data were then used to filter the subsets with
thresholds of 1, 10, 100, 1000, 10 000, and 100 000.
Figure 4 compares the performance of the original subsets and

a filtered copy using a threshold of one. After filtering, the IL and
ST-heuristics both showed a dramatic reduction in module size
(from 50% to 9%) while still providing more than 77% coverage.
When filtering the whole SNOMED CT, a module with a size of
15% providing coverage of 81% was obtained.
Table 3 shows the influence of filtering thresholds ranging

from 0 (no filtering) to 100 000 on subset size, coverage, and
precision. Filtering improved precision in all cases, and
a threshold of 1000 provided the highest value for this parameter
(except for the CORE problem list, in which 10 000 provided
higher precision).
Figure 5 graphically displays the data presented in table 3. A

dramatic reduction in subset size can be observed, even with the
lowest filtering threshold, while there was only a modest loss of
coverage.

DISCUSSION
Our case study revealed that a common scenario in biomedicine,
the annotation of discharge summaries, can be particularly
challenging for ontology modularization techniques that do not

Figure 2 Example ontology showing
nodes identified by each of the graph-
traversal heuristics.

Table 2 Average subset size, coverage and precision for the analyzed
modularization techniques, in addition to the CORE problem list subset
and the full SNOMED CT, which are included as references

Modularization technique
Subset size
(SNOMED CT %)

Subset
coverage

Subset
precision

CORE problem list 1.49% 24.44% 0.27%

Locality (LUM) 0.80% 55.08% 1.14%

Upwards segmentation 17.40% 71.15% 0.07%

S-heuristic 23.76% 78.16% 0.05%

ST-heuristic 50.07% 95.26% 0.03%

IL-heuristic 51.01% 96.26% 0.03%

Full SNOMED CT 100.00% 100.00% 0.02%
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rely on additional information to improve accuracy or reduce
subset size, such as using an external corpus for filtering. The
main difficulty of the case study presented here is that the
required subset, although it is compact and specific to a domain
(cardiology), is still complex and is spread across a wide range of
subhierarchies, as discharge summaries include information such
as reasons for admission, past history, interventions, and
proposed follow-up. When extracting modules, link-traversal
techniques identify concepts from hierarchies (eg, intermediate
concepts and sub-trees of target nodes, see supplementary
appendix A, available online only), while logic-based techniques
identify concepts that are parts of definitions or restrictions (see
supplementary appendix B, available online only). Therefore,

a number of concepts that might not be relevant for coding are
nevertheless necessarily included in the subsets, severely
affecting precision.
Several issues should be considered when comparing the

performance of the CORE subset with the rest of our results: (1)
the CORE subset is derived from problem lists that cover all of
the major specialties in medicine, while the ontology modula-
rization techniques presented here used concepts from a specific
corpus (cardiology) as signatures; (2) in addition to findings,
diagnoses and procedures, our test datasets also include drugs,
laboratory tests and non-clinical concepts, none of which are
within the scope of the CORE subset; and (3) the CORE subset
cannot properly be considered a logically consistent module

Figure 3 Subset extraction using
ontology modularization techniques.

Figure 4 Comparison of unfiltered
versus filtered modules with a threshold
of 1.
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because it preserves neither the structure nor the logic of
SNOMED CT. Post-processing to convert the CORE problem list
into a module was performed by Rector et al,25 increasing the
number of concepts from 8500 to 35 000, which is approxi-
mately 10% of the size of SNOMED CT. The public availability
of this module in the SNOMED CT distribution format, along

with the currently distributed plain list of problems, would be
extremely useful to researchers in the field.
The number of SNOMED CTconcepts found by Patrick et al15

in their corpus (30 000) is in good agreement with our observa-
tions (43 000). The results of Patrick et al15 (1% size, 96%
coverage) suggest that when a large corpus specific to the use

Table 3 Influence of filtering thresholds on subset size, coverage, and precision

Filtering threshold 0 1 10 100 1000 10 000 100 000

CORE problem list

Module size 1.49% 0.88% 0.58% 0.22% 0.03% <0.01% <0.01%

Coverage 24.44% 24.00% 22.41% 16.95% 7.36% 0.80% <0.01%

Precision 0.27% 0.45% 0.64% 1.27% 3.64% 8.33% <0.01%

Locality (LUM)

Module size 0.80% 0.57% 0.45% 0.31% 0.15% 0.02% <0.01%

Coverage 55.08% 44.80% 39.07% 27.53% 14.07% 1.40% <0.01%

Precision 1.14% 1.29% 1.41% 1.45% 1.51% 1.01% <0.01%

Upwards segmentation

Module size 17.40% 3.26% 1.54% 0.64% 0.24% 0.04% <0.01%

Coverage 71.15% 59.47% 49.45% 33.44% 14.45% 1.40% <0.01%

Precision 0.07% 0.30% 0.52% 0.85% 0.98% 0.59% <0.01%

S-heuristic

Module size 23.76% 3.93% 1.94% 0.84% 0.31% 0.05% <0.01%

Coverage 78.16% 64.50% 53.30% 34.99% 14.85% 1.40% <0.01%

Precision 0.05% 0.27% 0.45% 0.68% 0.78% 0.44% <0.01%

ST-heuristic

Module size 50.07% 9.10% 4.15% 1.54% 0.42% 0.07% <0.01%

Coverage 95.26% 77.17% 62.97% 40.26% 16.64% 1.76% <0.01%

Precision 0.03% 0.14% 0.25% 0.43% 0.64% 0.42% <0.01%

IL-heuristic

Module size 51.01% 9.62% 4.60% 1.86% 0.51% 0.07% <0.01%

Coverage 96.26% 77.70% 63.50% 40.79% 17.08% 1.76% <0.01%

Precision 0.03% 0.13% 0.23% 0.36% 0.54% 0.38% <0.01%

Full SNOMED CT

Module size 100% 15.61% 7.42% 2.89% 0.78% 0.13% 0.01%

Coverage 100% 80.87% 65.51% 41.73% 17.38% 1.94% <0.01%

Precision 0.02% 0.08% 0.14% 0.24% 0.36% 0.23% <0.01%

A threshold of 0 indicates no filtering.

Figure 5 Influence of filtering in
module coverage and size. A threshold
of 0 indicates no filtering.
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case exists, it should definitely be used as the primary source of
information, in contrast to an external authoritative corpus.
Unfortunately, a locally derived corpus is often not available.

Filtering was also employed by Xu et al18 to reduce the size of
UMLS down to 13% using MEDLINE abstracts. When we
employ filtering techniques and MEDLINE titles and abstracts
to prune the full SNOMED CT, our results are similar (15% on
average). However, filtering techniques require a preprocessing
(matching, ranking, indexing) and post-processing workload
(ontology reconstruction) that should be taken into account, as
should the possible bias of the corpus. In our case, the most
plausible explanation for the coverage of the filtered version of
SNOMED CT (81%) is the content mismatch between clinical
texts and scientific abstracts as well as the vocabulary mismatch
between clinical jargon and scientific language. Nevertheless, the
use of frequency data appears to be promising, and we will use
a clinical corpus in the future.

When analyzing ontology modularization approaches, graph-
traversal heuristics only require a small signature of concepts of
interest and have been shown to provide decent coverage (from
71% to 96%), although at the expense of considerable subset size
in some cases (from 17% to 51%). As expected when adding
intermediate concepts into the hierarchy to preserve the
entailments derived from the original ontology, precision is very
low (<1%). However, this study provides evidence that when
combined with the use of information on data frequency from
a publicly available, authoritative source for filtering, graph-
traversal techniques can prune large biomedical ontologies and
produce subsets with an acceptable coverage. In our case, only
20 discharge summaries, but no pre-existing corpus, were used
to provide the signatures for the ontology modularization
techniques as well as to perform the evaluation. The limited
number of discharge summaries employed should be taken into
account when analyzing the results.

Although outside of the scope of our study, an open question
of interest is whether the modules extracted by graph-traversal
heuristics fulfil the safety requirements postulated by Cuenca
Grau et al,12 ie, whether they produce exactly the same entail-
ments as the complete SNOMED CT. All of the heuristics
presented in this study preserve is-a relationships as well as
cross-references from the concepts in the signature, and
SNOMED CT axioms are rather uniform due to EL expressive-
ness and limited nesting. However, further investigation is
needed if the subsets are to be used for reasoning purposes.

CONCLUSIONS AND FURTHER WORK
A combination of graph-traversal strategies and information on
data frequency from an external authoritative corpus can prune
large biomedical ontologies and produce convenient subsets
with fair coverage, without requiring a pre-existing corpus of
information closely related to the use case or employing natural
language processing techniques. However, how acceptable this
coverage is depends on each specific use case.

In our future work, we will explore the following optimiza-
tion strategies:
< Size/coverage analysis differentiated by SNOMED CT sub-

hierarchies, for example, findings, procedures, and substances;
< Identifying the sections of SNOMED CT that could appear in

a discharge summary from those that could not on their own
(eg, ‘organism’, ‘anatomy ’, etc);

< Frequency data from real patient records to avoid terminology
mismatches between the language of clinicians and researchers;

< Use of novel ontology segmentation techniques currently
being developed by the ontology modularization community.

Furthermore, different SNOMED CTcoding scenarios may be
distinguished. For instance, a scenario that allows concept post-
coordination would probably require fewer concepts for a given
coverage compared with the hitherto standard approach of only
using pre-coordinated terms.
Extension to additional clinical disciplines would also be

desirable. However, this would require the use of coded data
covering the entire clinical process, which are still rare, or the use
of natural language processing techniques for the automated
annotation of medical summaries.
Problems when using precision in the classic sense suggest

that improved metrics for utility and representativeness should
be defined in future studies.
Finally, this study shows that the requirements of preserving

entailments and achieving high precision necessarily conflict.
The function of extracting entailment preserving modules, and
of extracting most precise modules for use in coding patient data
is different, and attempting to satisfy the two aims simulta-
neously can lead to unsatisfactory results.
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