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Abstract

Broadly neutralizing antibodies (bnAbs) against highly variable viral pathogens are much sought-

after to treat or protect against global circulating viruses. We have probed the neutralizing 

antibody repertoires of four HIV-infected donors with remarkably broad and potent neutralizing 

responses and rescued 17 new monoclonal antibodies (MAbs) that neutralize broadly across 

clades. Many of the new MAbs are almost 10-fold more potent than the recently described PG9, 

PG16, and VRC01 bnMAbs and 100-fold more potent than the original prototype HIV 
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bnMAbs1–3. The MAbs largely recapitulate the neutralization breadth found in the corresponding 

donor serum and many recognize novel epitopes on envelope (Env) glycoprotein gp120, 

illuminating new targets for vaccine design. Analysis of neutralization by the full complement of 

anti-HIV bnMAbs now available reveals that certain combinations of antibodies provide 

significantly more favorable coverage of the enormous diversity of global circulating viruses than 

others and these combinations might be sought in active or passive immunization regimes. 

Overall, the isolation of multiple HIV bnMAbs, from several donors, that, in aggregate, provide 

broad coverage at low concentrations is a highly positive indicator for the eventual design of an 

effective antibody-based HIV vaccine.

Most successful anti-viral vaccines elicit neutralizing antibodies as a correlate of 

protection4,5. For highly variable viruses, such as HIV, HCV and, to a lesser extent, 

influenza, vaccine design efforts have been hampered by the difficulties associated with 

eliciting neutralizing antibodies that are effective against the enormous diversity of global 

circulating isolates (i.e. bnAbs)6,7. However, for HIV for example, 10–30% of infected 

individuals do, in fact, develop broadly neutralizing sera, and protective bnMAbs have been 

isolated from infected donors1,2,8–12. It has been suggested that, given the appropriate 

immunogen, it should be possible to elicit these types of responses by vaccination13 and 

understanding the properties of bnMAbs has become a major thrust in research on highly 

variable viruses.

We have previously screened sera from approximately 1,800 HIV infected donors for 

neutralization breadth and potency, designating the top 1% as “elite neutralizers”, based on a 

score incorporating both breadth and potency14. In this study, we set out to isolate bnMAbs 

from the top four elite neutralizers (Supplementary Table 1) by screening antibody-

containing memory B cell supernatants for broad neutralizing activity using a recently 

described high-throughput functional approach2. Antibody variable genes were rescued from 

B cell cultures that displayed cross-clade neutralizing activity and expressed as full-length 

IgGs. Analysis of the sequences revealed that all of the MAbs isolated from each individual 

donor belong to a distant, but clonally related cluster of antibodies (Supplementary Table 2). 

Since it has been proposed that antibodies from HIV infected patients are often 

polyreactive15,16, we tested the new MAbs for binding to a panel of antigens and showed 

that they were not polyreactive (Supplementary Fig. 2).

The potency and breadth of the MAbs were next assessed on a 162-pseudovirus panel 

representing all major circulating HIV subtypes (Fig. 1, Supplementary Tables 3 and 4)2. All 

of the MAbs exhibited cross-clade neutralizing activity, but more strikingly, several 

displayed exceptional potency. The median IC50s and IC90s of PGT MAbs 121-123 and 

125-128 were almost 10-fold lower (i.e. more potent) than the recently described PG9, 

PG16, VRC01, and PGV04 bnMAbs1,2 (Falkowska et al., manuscript in preparation), and 

approximately 100-fold lower than other bnMAbs described earlier (Fig. 1). At 

concentrations less than 0.1 μg/ml, these MAbs still neutralized 27% to 50% of viruses in 

the panel (Fig. 1 and Fig. 4a). Although PGT MAbs 135, 136, and 137 displayed lesser 

neutralization breadth than the other MAbs, they all still potently neutralized over 30% of 

the clade C viruses on the panel (Supplementary Fig. 2 and Supplementary Table 3b). This 
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result is significant considering that HIV clade C predominates in sub-Saharan Africa and 

accounts for more than 50% of all HIV infections worldwide.

Interestingly, many of the clonally related MAbs exhibited differing degrees of overall 

neutralization potency. For example, the median IC50s of PGT MAbs 131, 136, 137, and 

144 were approximately 10- to 50-fold higher than those of their somatically related sister 

clones (Fig. 1). Also, in some cases, the somatically related MAbs exhibited similar 

neutralization potency, but differing degrees of neutralization breadth, against the panel of 

viruses tested (Fig. 1 and Supplementary Tables 3 and 4). For example, PGT 128 neutralized 

with comparable overall potency but significantly greater neutralization breadth than the 

clonally related PGT 125, 126, and 127 MAbs (Fig. 1 and Supplementary Tables 3 and 4). 

Overall, these observations suggest that serum neutralization breadth may develop from the 

successive selection of somatic variants that bind to a modified epitope or a slightly different 

envelope (Env) conformation expressed on virus escape variants. Comparison of the 

neutralization profiles of the MAbs isolated from a given donor with that from the 

corresponding serum revealed that the isolated MAbs could largely recapitulate the serum 

neutralization breadth and potency (Fig. 2 and Supplementary Fig. 3).

We next sought to gain information on the epitopes recognized by the newly isolated 

bnMAbs. ELISA binding assays indicated that PGT MAbs 121-123, 125-128, 130, 131, and 

135-137, bound to monomeric gp120 (Supplementary Table 5). In contrast, the PGT 

141-145 bnMAbs exhibited a strong preference for membrane-bound, trimeric HIV Env 

(Supplementary Fig. 4). Based on this result, we postulated that these bnMAbs bound to 

quaternary epitopes similar to those of the recently described PG9 and PG16 bnMAbs2. 

Indeed, this hypothesis was confirmed by competition studies, N160K sensitivity, and, for 

PGT MAbs 141-144, an inability to neutralize JR-CSF pseudoviruses expressing 

homogenous Man9GlcNAc2 glycans17 (Supplementary Fig. 5).

To define the epitopes recognized by the remaining PGT antibodies, competition ELISA 

assays were carried out with a panel of well-characterized neutralizing and non-neutralizing 

antibodies (Fig. 3a). Unexpectedly, all of the remaining antibodies (PGT MAbs 121-123, 

125-128, 130, 131, and 135-137) competed with the glycan-specific bnMAb 2G12. This 

result was surprising given that 2G12 had previously formed its own unique competition 

group. All of the MAbs, except for PGT MAbs 135, 136 and 137, also competed with a V3 

loop-specific mAb and failed to bind to gp120 ΔV3, suggesting their epitopes were in 

proximity to or contiguous with V3 (Fig. 3a and Supplementary Table 5). Deglycosylation 

of gp120 with Endo H abolished binding by all the MAbs, indicating that certain 

oligomannose glycans were important for epitope recognition (Supplementary Table 5). 

Competition of these MAbs with 2G12 and lack of binding to deglycosylated gp120 

prompted us to investigate whether these antibodies contacted glycans directly. Glycan array 

analysis revealed that PGT MAbs 125-128 and 130 bound specifically to both 

Man8GlcNAc2 and Man9GlcNAc2, whereas the remaining antibodies showed no detectable 

binding to high-mannose glycans (Fig. 3b). Interestingly, binding of PGT MAbs 125-128 

and 130 to gp120 was competed by Man9, but, unlike 2G12, was not competed by 

monomeric mannose or Man4 (D1 arm of Man9GlcNAc2) (Fig. 3c,d), suggesting a different 

mode of glycan recognition. Furthermore, in contrast to 2G12, no evidence was found for 
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domain exchange and monomeric Fab fragments still exhibited potent neutralizing activity 

(Supplementary Fig. 7 and data not shown).

To further define the epitopes recognized by the MAbs, neutralizing activity against a large 

panel of HIV-1JR-CSF variants incorporating single alanine substitutions was assessed using 

a single round of replication pseudovirus assay (Supplementary Table 6). In the panel of 

mutants, the N-linked glycans at positions 332 and/or 301 were important for neutralization 

by PGT MAbs 125-128, 130, and 131 suggesting their direct involvement in epitope 

formation. The apparent dependency on so few glycans suggests that, although these PGT 

MAbs contact Man8-9GlcNAc2 glycans directly, their arrangement in the context of gp120 is 

critical for high affinity glycan recognition and neutralization potency. This is further 

highlighted by the inability of the PGT MAbs to neutralize SIVmac239, HIV-2 or HCV, 

which display a high level of glycosylation (data not shown). Interestingly, although PGT 

MAbs 121-123 failed to exhibit detectable binding to high-mannose glycans and be 

competed by mannose sugars (Supplementary Fig. 6), the only substitutions that completely 

abolished neutralization by these MAbs were those that resulted in removal of the glycan at 

position 332. Although structural studies will be required to fully define the epitopes 

recognized by these antibodies, the above results suggest either that the PGT MAbs 121-123 

bind to a protein epitope along the gp120 polypeptide backbone that is conformationally 

dependent on the N332 glycan or that the glycan contributes more strongly to binding in the 

context of the intact protein.

Vaccines against pathogens with low antigenic diversity, such as hepatitis B virus or 

measles, commonly achieve 90–95 % efficacy18. Similarly, the influenza vaccine achieves 

85–90% efficacy in years when the vaccine and circulating seasonal strain are well-

matched19,20. However, efficacy drops severely in years when there is a mismatch between 

the vaccine and circulating strain. In the case of HIV, the global diversity of circulating 

viruses is such that the match between the prophylactic antibodies and the circulating 

viruses, i.e. the antibody viral coverage, will be crucial for the degree of efficacy of active or 

passive prophylaxis approaches. To date, although the recent RV144 trial has led to 

speculation that some degree of protection against HIV may be achieved through extra-

neutralizing activities of antibodies, such as antibody-dependent cell-mediated cytotoxicity 

or phagocytosis, the strongest evidence for protection is for neutralizing antibodies in non-

human primate models using simian-human immunodeficiency virus (SHIV) challenge21–25. 

Passive administration of neutralizing antibodies in these models suggests that a serum 

antibody concentration of approximately or greater than 100 times the in vitro pseudovirus 

assay IC50 is required to achieve a meaningful level of protection21–25. Therefore, if a 

vaccine elicits a serum bNAb concentration on the order of 10 μg/ml26 and if an IC50: 

protective serum concentration ratio of 1:100 is assumed, then protection would be only 

achieved against viruses for which the bNAb IC50 is lower than 0.1 μg/ml. As a second more 

conservative scenario, for an IC50: protective serum concentration ratio of 1:500, protection 

would be achieved against viruses for which the bNAb IC50 is lower than 0.02 μg/ml. As 

shown in Figure 4, although various bnMAbs display breadth at high concentrations, viral 

coverage often drops sharply at lower concentrations. Therefore, if elicited or delivered 

singly, only the most potent Abs, such as 121 and 128, would be able to achieve a 

meaningful level of viral coverage, in particular at concentrations corresponding to the more 
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conservative scenario given above. As bnMAbs display different and in some cases 

complementary breadth, we further looked at the coverage achieved by antibody 

combinations. For the two IC50: protective serum concentration ratios above, a combination 

of PGV04 and VRC01, the two most potent CD4bs bnMAbs, would provide protection 

against 50% and 3% of viruses, respectively (Fig. 4b). In contrast, for a vaccine eliciting 

antibodies with high potency and favorable non-overlapping breadth, such as 128 and 145, 

coverage would be achieved against 70% and 40% of viruses for the two scenarios (Fig 4c). 

Several combinations of two bnMAbs, including those directed to overlapping epitopes, can 

yield this degree of coverage (Supplementary Fig. 8). In addition, a combination of all of the 

bnMAbs would cover 89% and 62% of viruses, correspondingly. Coverage against such a 

large proportion of viruses would likely have an important impact on the pandemic.

In summary, an effective vaccine against HIV will likely require the elicitation of a 

combination of complementary potent neutralizing antibodies. The demonstration that large 

numbers of potent and diverse bnMAbs can be isolated from several different individuals 

provides grounds for renewed optimism that an antibody-based vaccine may be achievable.

Methods Summary

Activated memory B cell supernatants were screened in a high throughput format for 

neutralization activity using a micro-neutralization assay, as described2. Heavy and light 

chain variable regions were isolated from B cell lysates of selected neutralizing hits by 

reverse transcription from RNA followed by multiplex PCR amplification using family-

specific V-gene primer sets. For some antibodies, traditional cloning methods were used for 

antibody isolation, as described2. For other antibodies, amplicons from each lysate were 

uniquely tagged with multiplex identifier (MID) sequences and 454 sequencing regions 

(Roche). Single round of replication pseudovirus neutralization assays and cell surface 

binding assays were performed as described previously2,27,28. Glycan reactivities were 

profiled on a printed glycan microarray (version 5.0 from the Consortium for Functional 

Glycomics (CFG)) as described previously29.

Methods

Antibodies and Antigens

The following antibodies and reagents were procured by the IAVI Neutralizing Antibody 

Consortium: antibody 2G12 (Polymun Scientific, Vienna, Austria), antibody F425/b4E8 

(provided by Lisa Cavacini, Beth Israel Deaconess Medical Center, Boston, MA), soluble 

CD4 (Progenics, Tarrytown, NY), HxB2 gp120, SF162 gp120, BaL gp120, JR-FL gp120, 

JR-CSF gp120 and YU2 gp120 (provided by Guillaume Stewart-Jones, Oxford University). 

Purified ADA gp120 was produced in the laboratory of Robert Doms, University of 

Pennsylvania. Fab X5 was expressed in E.coli and purified using an anti-human Fab specific 

affinity column. Deglycosylated gp120 JRFL was expressed in HEK 293S GnTI−/− cells and 

treated with Endo H (Roche).
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Donors

The donors identified for this study were selected from the IAVI sponsored study, Protocol 

G14. Eligibility for enrolment into Protocol G was defined as: male or female at least 18 

years of age with documented HIV infection for a least three years, clinically asymptomatic 

at the time of enrolment, and not currently receiving antiretroviral therapy. Selection of 

individuals for monoclonal antibody generation was based on a rank-order high throughput 

screening and analytical algorithm14. Volunteers were identified as elite neutralizers based 

on broad and potent neutralizing activity against a cross-clade pseudovirus panel14.

Isolation of MAbs

The method for isolating human MAbs from memory B cells in circulation has previously 

been described2. Surface IgG+ B cells seeded at near clonal density in 384-well microplates 

were activated in short-term culture. Supernatants were screened for neutralization activity 

against 2-4 pseudotyped viruses for which neutralization activity was detected at high titers 

in the donor serum. Heavy and light chain variable regions were isolated from B cell lysates 

of selected neutralizing hits by reverse transcription from RNA followed by multiplex PCR 

amplification using family-specific V-gene primer sets. Amplicons from each lysate were 

uniquely tagged with multiplex identifier (MID) sequences and 454 sequencing regions 

(Roche, Indianapolis, IN). A normalized pooling of gamma, kappa and lambda chains was 

performed based on agarose gel image quantitation and the pool was analysed by 454 

TitaniumR sequencing. Consensus sequences of the VH and VL chains were generated using 

the Amplicon Variant Analyzer (Roche) and assigned to specific B cell culture wells by 

decoding the MID tags. Selected VH and VL chains were synthesized and cloned in 

expression vectors with the appropriate IgG1, Igκ or Igλ constant domain. Monoclonal 

antibodies were reconstituted by transient transfection in HEK293 cells followed by 

purification from serum-free culture supernatants.

PGT antibody expression and purification

Antibody genes were cloned into an expression vector and transiently expressed with the 

FreeStyle 293 Expression System (Invitrogen, Carlsbad, CA). Antibodies were purified 

using affinity chromatography (Protein A Sepharose Fast Flow, GE Healthcare, UK) and 

purity and integrity checked with SDS-PAGE.

Neutralization assays

Neutralization by monoclonal antibodies and donor sera was performed by Monogram 

Biosciences using a single round of replication pseudovirus assay as previously described31. 

Briefly, pseudoviruses capable of a single round of infection were produced by co-

transfection of HEK293 cells with a subgenomic plasmid, pHIV-1lucu3, that incorporates a 

firefly luciferase indicator gene and a second plasmid, pCXAS that expressed HIV-1 Env 

libraries or clones. Following transfection, pseudoviruses were harvested and used to infect 

U87 cell lines expressing co-receptors CCR5 or CXCR4. Pseudovirus neutralization assays 

using HIV-1JR-CSF alanine mutants are fully described elsewhere2. Neutralization activity of 

MAbs against HIV-1JR-CSF alanine mutants was measured using a TZM-BL assay, as 

described2. Kifunensine-treated pseudoviruses were produced by treating 293T cells with 25 
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μM kifunensine on the day of transfection. Memory B cell supernatants were screened in a 

micro-neutralization assay against a cross-clade panel of HIV-1 isolates and SIVmac239 

(negative control). This assay was based on the 96- well pseudotyped HIV-1 neutralization 

assay (Monogram Biosciences) and was modified for screening 15 μl of B cell culture 

supernatants in a 384-well format.

Cell surface binding assays

Titrating amounts of antibodies were added to HIV-1 Env transfected 293T cells, incubated 

for 1 hr at 37°C, washed with FACS buffer, and stained with goat anti- human IgG F(ab′)2 

conjugated to phycoerythin (Jackson ImmunoResearch, West Grove, PA). Binding was 

analyzed using flow cytometry, and binding curves were generated by plotting the mean 

fluorescence intensity of antigen binding as a function of antibody concentration. For 

competition assays, titrating amounts of competitor antibodies were added to the cells 30 

min prior to adding biotinylated PGT MAbs at a concentration required to give EC50.

ELISA assays

For antigen-binding ELISAs, serial dilutions of MAbs were added to antigen-coated wells 

and binding was probed with alkaline phosphatase-conjugated goat anti-human 

immunoglobulin G (IgG) F(ab′)2 Ab (Pierce, Rockford, IL). For competition ELISAs, 

titrating amounts of competitor MAbs were added to gp120-coated ELISA wells and 

incubated for 30 min prior to adding biotinylated PGT MAbs at a concentration required to 

give IC70. Biotinylated PGT MAbs were detected using alkaline phosphatase conjugated 

streptavidin (Pierce) and visualized using p-nitrophenol phosphate substrate (Sigma, St. 

Louis, MO).

Glycan microarray analysis

Monoclonal antibodies were screened on a printed glycan microarray version 5.0 from the 

Consortium for Functional Glycomics (CFG) as described previously29. Antibodies were 

used at a concentration of 30 μg/ml and were precomplexed with 15 μg/ml secondary 

antibody (goat-anti-human-Fc-rPE, Jackson Immunoresearch) before addition to the slide. 

Complete glycan array data sets for all antibodies may be found at 

www.functionalglycomics.org in the CFG data archive under “cfg_rRequest_2250”.

Oligomannose Dendron synthesis

The oligomannose dendrons (Man4D and Man9D) were synthesized by Cu(I) catalyzed 

alkyne-azide cycloaddition between azido oligomannose and the second generation of AB3 

type alkynyl dendron. Detailed procedures and characterization were previously reported30.

Fabrication of gp120 microarray

NHS-activated glass slides (Nexterion slide H, Schott North American) were printed with 

robotic pin (Arrayit 946) to deposit gp120 JRFL at concentrations of 750 or 250 μg/ml in 

printing buffer (120 mM phosphate, pH 8.5; containing 5% glycerol and 0.01 % Tween 20). 

12 replicates were used for each concentration. The printed slides were incubated in relative 

humidity 75% chamber overnight and treated with blocking solution (superblock blocking 
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buffer in PBS, Thermo) at room temperature for 1 h. The slides were then rinsed with PBS-

T (0.05% Tween 20) and PBS buffer, and centrifuged at 200 g to remove residual solution 

from slide surface.

Oligomannose dendron-gp120 competition assay with MAbs

Serial diluted oligomannose dendrons were mixed with MAb (40 μg/ml) in PBS-BT buffer 

(1% BSA and 0.05 % Tween 20 in PBS). The mixtures were applied directly to each sub-

array on slide. After incubation in a humidified chamber for 1 h at RT, the slides were rinsed 

sequentially with PBS-T and PBS buffer, and then centrifuged at 200 g. Each sub-array was 

then stained with Cy3 labeled goat anti-human Fc IgG (7.5 μg/ml in PBSBT) for 1 h in a 

humidified chamber. The slides were then rinsed sequentially with PBS-T and demonized 

water and centrifuged at 200 g. The fluorescence of the final arrays was imaged at 10 μm 

resolution (Ex: 540 nm; Em: 595 nm) with an ArrayWorx microarray reader (Applied 

Precision).

Sequence analysis

Germ line genes were predicted using the immunoglobulin sequence alignment tools 

IMGT/V-QUEST32 and SoDA233. Clonally related sequences were identified by common 

germ line V-genes and long stretches of identical N-nucleotides.

Statistics

Statistical analyses were done with Prism 5.0 for Mac (GraphPad, La Jolla, CA). Viruses 

that are not neutralized at an IC50 or IC90 < 50 μg/ml were given a value of 50 μg/ml for 

median calculations. For combinations of antibodies, a virus was counted as covered if at 

least one of the MAbs was neutralized depending on individual concentrations (IC50). This 

approach does not take additivity into account and therefore underestimates the 

neutralization potency of antibody combinations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Neutralization activity of the newly identified PGT antibodies
a, Median neutralization potency against viruses neutralized with an IC50 < 50 μg/ml. The 

color-coding is as follows: yellow, 2 - 20 μg/ml; orange, 0.2 - 2 μg/ml; red, < 0.2 μg/ml. b, 

Neutralization breadth at different IC50 cut-offs. The color-coding is as follows: green, 1% 

to 30%; yellow, 30% to 60%; orange, 60% to 90%; red, > 90%.
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Figure 2. Key MAbs fully recapitulate serum neutralization by the corresponding donor serum
Serum breadth was corelated with the breadth of the broadest MAb for each donor (% 

viruses neutralized at NT50 > 100 or IC50 < 50 μg/ml, respectively). Of note, MAbs isolated 

from donor 39 could not completely recapitulate the serum neutralization breadth.
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Figure 3. Epitope mapping of PGT antibodies
a, Competition of PGT MAbs with sCD4 (soluble CD4), b12 (anti-CD4bs), 2G12 (anti-

glycan), F425/b4e8 (anti-V3), X5 (CD4i), PG9 (anti-V1/V2 and V3, quaternary) and each 

other. Competition assays were performed by ELISA using gp120Bal or gp120 JR-FL, except 

for the PG9 competition assay, which was performed on the surface of JR-FLE168K or JR-

CSF transfected cells. Boxes are color coded as follows: red, 75–100% competition; orange, 

50–75% competition; yellow, 25–50% competition; gray, <25% competition. Experiments 

were performed in duplicate, and data represent an average of at least two independent 

experiments. b, Glycan microarray analysis (Consortium for Functional Glycomics, CFG, v 

5.0) reveals that PGT MAbs 125, 126, 127, 128, and 130 contact Man8 (313), 

Man8GlcNAc2 (193), Man9 (314) and Man9GlcNAc2 (194) glycans directly. Only glycans 

structures with RFU (relative fluorescent units) > 3000 are shown. PGT-131 showed no 

detectable binding to the CFG glycan array but bound to Man9-oligodendrons30 (data not 

shown). Error bars represent standard deviation. c, d, Binding of PGT MAbs 125, 126, 127, 

128 and 130 to gp120 is competed by Man9 oligodendrons but not Man4 oligodendrons. 

Binding of 131 to immobilized gp120 was too low to measure any competition.
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Figure 4. Certain antibodies or antibody combinations are able to cover a broad range of HIV 
isolates at low, vaccine achievable, concentrations
a, Cumulative frequency distribution of IC50 values of broadly neutralizing MAbs tested 

against a 162-virus panel. The y-axis shows the cumulative frequency of IC50 values up to 

the concentration shown on the x-axis and can therefore also be interpreted as the breadth at 

a specific IC50 cut-off. b, c, Percent viruses covered by single MAbs (solid lines) or by at 

least one of the MAbs in dual combinations (dashed black lines) dependent on individual 

concentrations. The grey area in both panels is the coverage of 26 MAbs tested on the 162-

virus panel (PGT121-123, PGT125-128, PGT130-131, PGT135-137, PGT141-145, PG9, 

PG16, PGC14, VRC01, PGV04, b12, 2G12, 4E10, 2F5) and depicts the theoretical maximal 

achievable coverage known to date.
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